

UNDERSTANDING LTE
WITH MATLAB®

UNDERSTANDING LTE
WITH MATLAB®
FROM MATHEMATICAL MODELING
TO SIMULATION AND PROTOTYPING

Dr Houman Zarrinkoub
MathWorks, Massachusetts, USA

© 2014, John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is
sold on the understanding that the publisher is not engaged in rendering professional services and neither the
publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant
the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related
products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or
particular use of the MATLAB® software.

Library of Congress Cataloging-in-Publication Data

Zarrinkoub, Houman.
Understanding LTE with MATLAB : from mathematical foundation to simulation, performance evaluation and

implementation / Houman Zarrinkoub.
pages cm

Includes bibliographical references and index.
ISBN 978-1-118-44341-5 (hardback)

1. Long-Term Evolution (Telecommunications)–Computer simulation. 2. MATLAB. I. Title.
TK5103.48325.Z37 2014
621.3845′6–dc23

2013034138

A catalogue record for this book is available from the British Library.

ISBN: 9781118443415

Typeset in 10/12pt TimesLTStd by Laserwords Private Limited, Chennai, India

1 2014

Contents

Preface xiii

List of Abbreviations xvii

1 Introduction 1
1.1 Quick Overview of Wireless Standards 1
1.2 Historical Profile of Data Rates 4
1.3 IMT-Advanced Requirements 4
1.4 3GPP and LTE Standardization 5
1.5 LTE Requirements 5
1.6 Theoretical Strategies 6
1.7 LTE-Enabling Technologies 7

1.7.1 OFDM 7
1.7.2 SC-FDM 8
1.7.3 MIMO 8
1.7.4 Turbo Channel Coding 8
1.7.5 Link Adaptation 9

1.8 LTE Physical Layer (PHY) Modeling 9
1.9 LTE (Releases 8 and 9) 11
1.10 LTE-Advanced (Release 10) 11

1.11 MATLAB® and Wireless System Design 11
1.12 Organization of This Book 11

References 12

2 Overview of the LTE Physical Layer 13
2.1 Air Interface 13
2.2 Frequency Bands 14
2.3 Unicast and Multicast Services 14
2.4 Allocation of Bandwidth 16
2.5 Time Framing 17
2.6 Time–Frequency Representation 17
2.7 OFDM Multicarrier Transmission 20

2.7.1 Cyclic Prefix 21
2.7.2 Subcarrier Spacing 22

vi Contents

2.7.3 Resource Block Size 22
2.7.4 Frequency-Domain Scheduling 22
2.7.5 Typical Receiver Operations 23

2.8 Single-Carrier Frequency Division Multiplexing 23
2.9 Resource Grid Content 24
2.10 Physical Channels 25

2.10.1 Downlink Physical Channels 26
2.10.2 Function of Downlink Channels 27
2.10.3 Uplink Physical Channels 30
2.10.4 Function of Uplink Channels 30

2.11 Physical Signals 31
2.11.1 Reference Signals 31
2.11.2 Synchronization Signals 33

2.12 Downlink Frame Structures 34
2.13 Uplink Frame Structures 35
2.14 MIMO 35

2.14.1 Receive Diversity 36
2.14.2 Transmit Diversity 37
2.14.3 Spatial Multiplexing 38
2.14.4 Beam Forming 39
2.14.5 Cyclic Delay Diversity 40

2.15 MIMO Modes 40
2.16 PHY Processing 41
2.17 Downlink Processing 41
2.18 Uplink Processing 43

2.18.1 SC-FDM 44
2.18.2 MU-MIMO 44

2.19 Chapter Summary 45
References 46

3 MATLAB® for Communications System Design 47
3.1 System Development Workflow 47
3.2 Challenges and Capabilities 48
3.3 Focus 49
3.4 Approach 49
3.5 PHY Models in MATLAB 49
3.6 MATLAB 49
3.7 MATLAB Toolboxes 50
3.8 Simulink 51
3.9 Modeling and Simulation 52

3.9.1 DSP System Toolbox 52
3.9.2 Communications System Toolbox 52
3.9.3 Parallel Computing Toolbox 52
3.9.4 Fixed-Point Designer 53

Contents vii

3.10 Prototyping and Implementation 53
3.10.1 MATLAB Coder 53
3.10.2 Hardware Implementation 54

3.11 Introduction to System Objects 54
3.11.1 System Objects of the Communications System Toolbox 54
3.11.2 Test Benches with System Objects 57
3.11.3 Functions with System Objects 58
3.11.4 Bit Error Rate Simulation 60

3.12 MATLAB Channel Coding Examples 60
3.12.1 Error Correction and Detection 61
3.12.2 Convolutional Coding 62
3.12.3 Hard-Decision Viterbi Decoding 63
3.12.4 Soft-Decision Viterbi Decoding 64
3.12.5 Turbo Coding 66

3.13 Chapter Summary 68
References 69

4 Modulation and Coding 71
4.1 Modulation Schemes of LTE 72

4.1.1 MATLAB Examples 73
4.1.2 BER Measurements 77

4.2 Bit-Level Scrambling 79
4.2.1 MATLAB Examples 80
4.2.2 BER Measurements 83

4.3 Channel Coding 85
4.4 Turbo Coding 85

4.4.1 Turbo Encoders 86
4.4.2 Turbo Decoders 87
4.4.3 MATLAB Examples 87
4.4.4 BER Measurements 89

4.5 Early-Termination Mechanism 93
4.5.1 MATLAB Examples 94
4.5.2 BER Measurements 95
4.5.3 Timing Measurements 98

4.6 Rate Matching 99
4.6.1 MATLAB Examples 100
4.6.2 BER Measurements 104

4.7 Codeblock Segmentation 105
4.7.1 MATLAB Examples 106

4.8 LTE Transport-Channel Processing 107
4.8.1 MATLAB Examples 107
4.8.2 BER Measurements 110

4.9 Chapter Summary 112
References 113

viii Contents

5 OFDM 115
5.1 Channel Modeling 115

5.1.1 Large-Scale and Small-Scale Fading 116
5.1.2 Multipath Fading Effects 116
5.1.3 Doppler Effects 117

5.1.4 MATLAB
®
Examples 117

5.2 Scope 121
5.3 Workflow 121
5.4 OFDM and Multipath Fading 122
5.5 OFDM and Channel-Response Estimation 123
5.6 Frequency-Domain Equalization 124
5.7 LTE Resource Grid 124
5.8 Configuring the Resource Grid 125

5.8.1 CSR Symbols 126
5.8.2 DCI Symbols 127
5.8.3 BCH Symbols 127
5.8.4 Synchronization Symbols 128
5.8.5 User-Data Symbols 128

5.9 Generating Reference Signals 130
5.10 Resource Element Mapping 132
5.11 OFDM Signal Generation 136
5.12 Channel Modeling 137
5.13 OFDM Receiver 140
5.14 Resource Element Demapping 141
5.15 Channel Estimation 143
5.16 Equalizer Gain Computation 145
5.17 Visualizing the Channel 146
5.18 Downlink Transmission Mode 1 147

5.18.1 The SISO Case 148
5.18.2 The SIMO Case 155

5.19 Chapter Summary 164
References 165

6 MIMO 167
6.1 Definition of MIMO 167
6.2 Motivation for MIMO 168
6.3 Types of MIMO 168

6.3.1 Receiver-Combining Methods 169
6.3.2 Transmit Diversity 169
6.3.3 Spatial Multiplexing 169

6.4 Scope of MIMO Coverage 170
6.5 MIMO Channels 170

6.5.1 MATLAB
®
Implementation 171

6.5.2 LTE-Specific Channel Models 173
6.5.3 MATLAB Implementation 175

Contents ix

6.5.4 Initializing MIMO Channels 176
6.5.5 Adding AWGN 177

6.6 Common MIMO Features 178
6.6.1 MIMO Resource Grid Structure 178
6.6.2 Resource-Element Mapping 179
6.6.3 Resource-Element Demapping 183
6.6.4 CSR-Based Channel Estimation 186
6.6.5 Channel-Estimation Function 188
6.6.6 Channel-Estimate Expansion 190
6.6.7 Ideal Channel Estimation 194
6.6.8 Channel-Response Extraction 196

6.7 Specific MIMO Features 197
6.7.1 Transmit Diversity 197
6.7.2 Transceiver Setup Functions 205
6.7.3 Downlink Transmission Mode 2 215
6.7.4 Spatial Multiplexing 221
6.7.5 MIMO Operations in Spatial Multiplexing 225
6.7.6 Downlink Transmission Mode 4 234
6.7.7 Open-Loop Spatial Multiplexing 248
6.7.8 Downlink Transmission Mode 3 253

6.8 Chapter Summary 260
References 262

7 Link Adaptation 263
7.1 System Model 264
7.2 Link Adaptation in LTE 265

7.2.1 Channel Quality Estimation 266
7.2.2 Precoder Matrix Estimation 266
7.2.3 Rank Estimation 266

7.3 MATLAB® Examples 266
7.3.1 CQI Estimation 267
7.3.2 PMI Estimation 270
7.3.3 RI Estimation 271

7.4 Link Adaptations between Subframes 275
7.4.1 Structure of the Transceiver Model 275
7.4.2 Updating Transceiver Parameter Structures 276

7.5 Adaptive Modulation 277
7.5.1 No Adaptation 277
7.5.2 Changing the Modulation Scheme at Random 278
7.5.3 CQI-Based Adaptation 279
7.5.4 Verifying Transceiver Performance 280
7.5.5 Adaptation Results 281

7.6 Adaptive Modulation and Coding Rate 283
7.6.1 No Adaptation 283
7.6.2 Changing Modulation Scheme at Random 283
7.6.3 CQI-Based Adaptation 284

x Contents

7.6.4 Verifying Transceiver Performance 285
7.6.5 Adaptation Results 285

7.7 Adaptive Precoding 287
7.7.1 PMI-Based Adaptation 289
7.7.2 Verifying Transceiver Performance 290
7.7.3 Adaptation Results 291

7.8 Adaptive MIMO 291
7.8.1 RI-Based Adaptation 293
7.8.2 Verifying Transceiver Performance 294
7.8.3 Adaptation Results 294

7.9 Downlink Control Information 294
7.9.1 MCS 296
7.9.2 Rate of Adaptation 298
7.9.3 DCI Processing 298

7.10 Chapter Summary 302
References 303

8 System-Level Specification 305
8.1 System Model 306

8.1.1 Transmitter Model 306
8.1.2 MATLAB Model for a Transmitter Model 308
8.1.3 Channel Model 310
8.1.4 MATLAB Model for a Channel Model 310
8.1.5 Receiver Model 311
8.1.6 MATLAB Model for a Receiver Model 313

8.2 System Model in MATLAB 315
8.3 Quantitative Assessments 316

8.3.1 Effects of Transmission Modes 317
8.3.2 BER as a Function of SNR 319
8.3.3 Effects of Channel-Estimation Techniques 320
8.3.4 Effects of Channel Models 322
8.3.5 Effects of Channel Delay Spread and Cyclic Prefix 322
8.3.6 Effects of MIMO Receiver Algorithms 324

8.4 Throughput Analysis 325
8.5 System Model in Simulink 326

8.5.1 Building a Simulink Model 328
8.5.2 Integrating MATLAB Algorithms in Simulink 328
8.5.3 Parameter Initialization 336
8.5.4 Running the Simulation 339
8.5.5 Introducing a Parameter Dialog 341

8.6 Qualitative Assessment 349
8.6.1 Voice-Signal Transmission 350
8.6.2 Subjective Voice-Quality Testing 351

8.7 Chapter Summary 351
References 352

Contents xi

9 Simulation 353
9.1 Speeding Up Simulations in MATLAB 353
9.2 Workflow 354
9.3 Case Study: LTE PDCCH Processing 355
9.4 Baseline Algorithm 356
9.5 MATLAB Code Profiling 358
9.6 MATLAB Code Optimizations 360

9.6.1 Vectorization 361
9.6.2 Preallocation 367
9.6.3 System Objects 371

9.7 Using Acceleration Features 383
9.7.1 MATLAB-to-C Code Generation 383
9.7.2 Parallel Computing 385

9.8 Using a Simulink Model 387
9.8.1 Creating the Simulink Model 388
9.8.2 Verifying Numerical Equivalence 389
9.8.3 Simulink Baseline Model 390
9.8.4 Optimizing the Simulink Model 391

9.9 GPU Processing 399
9.9.1 Setting up GPU Functionality in MATLAB 399
9.9.2 GPU-Optimized System Objects 400
9.9.3 Using a Single GPU System Object 401
9.9.4 Combining Parallel Processing with GPUs 403

9.10 Case Study: Turbo Coders on GPU 406
9.10.1 Baseline Algorithm on a CPU 407
9.10.2 Turbo Decoder on a GPU 410
9.10.3 Multiple System Objects on GPU 411
9.10.4 Multiple Frames and Large Data Sizes 413
9.10.5 Using Single-Precision Data Type 416

9.11 Chapter Summary 419

10 Prototyping as C/C++ Code 421
10.1 Use Cases 422
10.2 Motivations 422
10.3 Requirements 422
10.4 MATLAB Code Considerations 423
10.5 How to Generate Code 423

10.5.1 Case Study: Frequency-Domain Equalization 424
10.5.2 Using a MATLAB Command 424
10.5.3 Using the MATLAB Coder Project 426

10.6 Structure of the Generated C Code 429
10.7 Supported MATLAB Subset 432

10.7.1 Readiness for Code Generation 433
10.7.2 Case Study: Interpolation of Pilot Signals 434

10.8 Complex Numbers and Native C Types 436

xii Contents

10.9 Support for System Toolboxes 438
10.9.1 Case Study: FFT and Inverse FFT 439

10.10 Support for Fixed-Point Data 444
10.10.1 Case Study: FFT Function 445

10.11 Support for Variable-Sized Data 447
10.11.1 Case Study: Adaptive Modulation 448
10.11.2 Fixed-sized Code Generation 449
10.11.3 Bounded Variable-Sized Data 454
10.11.4 Unbounded Variable-Sized Data 456

10.12 Integration with Existing C/C++ Code 458
10.12.1 Algorithm 458
10.12.2 Executing MATLAB Testbench 460
10.12.3 Generating C Code 463
10.12.4 Entry-Point Functions in C 463
10.12.5 C Main Function 467
10.12.6 Compiling and Linking 468
10.12.7 Executing C Testbench 469

10.13 Chapter Summary 471
References 471

11 Summary 473
11.1 Modeling 473

11.1.1 Theoretical Considerations 474
11.1.2 Standard Specifications 474

11.1.3 Algorithms in MATLAB
® 474

11.2 Simulation 476
11.2.1 Simulation Acceleration 476
11.2.2 Acceleration Methods 477
11.2.3 Implementation 477

11.3 Directions for Future Work 477
11.3.1 User-Plane Details 478
11.3.2 Control-Plane Processing 479
11.3.3 Hybrid Automatic Repeat Request 479
11.3.4 System-Access Modules 479

11.4 Concluding Remarks 480

Index 483

Preface

The LTE (Long Term Evolution) and LTE-Advanced are the latest mobile communications
standards developed by the Third Generation Partnership Project (3GPP). These standards
represent a transformative change in the evolution of mobile technology. Within the present
decade, the network infrastructures and mobile terminals have been designed and upgraded to
support the LTE standards. As these systems are deployed in every corner of the globe, the
LTE standards have finally realized the dream of providing a truly global broadband mobile
access technology.
In this book we will examine the LTE mobile communications standard, and specifically its

PHY (Physical Layer), in order to understand how and why it can achieve such a remarkable
feat. We will look at it simultaneously from an academic and a pragmatic point of view. We
will relate the mathematical foundation of its enabling technologies, such as Orthogonal Fre-
quency Division Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO), to its
ability to achieve such a superb performance. We will also show how pragmatic engineering
considerations have shaped the formulation of many of its components. As an integral part
of this book, we will use MATLAB®, a technical computing language and simulation envi-
ronment widely used by the scientific and engineering community, to clarify the mathematical
concepts and constructs, provide algorithms, testbenches, and illustrations, and give the reader
a deep understanding of the specifications through the use of simulations.
This book is written for both the academic community and the practicing professional. It

focuses specifically on the LTE standard and its evolution. Unlike many titles that treat only
the mathematical foundation of the standard, this book will discuss the mathematical for-
mulation of many enabling technologies (such as OFDM and MIMO) in the context of the
overall performance of the system. Furthermore, by including chapters dedicated to simula-
tion, performance evaluation, and implementation, the book broadens its appeal to a much
larger readership composed of both academicians and practitioners.
Through an intuitive and pedagogic approach, we will build up components of the LTE PHY

progressively from simple to more complex using MATLAB programs. Through simulation
of the MATLAB programs, the reader will feel confident that he or she has learned not only
all the details necessary to fully understand the standard but also the ability to implement it.
We aim to clarify technical details related to PHY modeling of the LTE standard. There-

fore, knowledge of the basics of communication theory (topics such as modulation, coding,
and estimation) and digital signal processing is a prerequisite. These prerequisites are usually
covered by the senior year of most electrical engineering undergraduate curricula. It also aims
to teach through simulation with MATLAB. Therefore a basic knowledge of the MATLAB

xiv Preface

language is necessary to follow the text. This book is intended for professors, researchers, and
students in electrical and computer engineering departments, as well as engineers, designers,
and implementers of wireless systems. What they learn from both a technical and a program-
ming point of view may be quite applicable to their everyday work. Depending on the reader’s
function and the need to implement or teach the LTE standard, this book may be considered
introductory, intermediate, or advanced in nature.
The book is conceptually composed of two parts. The first deals with modeling the PHY of

the LTE standard and with MATLAB algorithms that enable the reader to simulate and verify
various components of the system. The second deals with practical issues such as simulation
of the system and implementation and prototyping of its components. In the first chapter we
provide a brief introduction to the standard, its genesis, and its objective, and we identify four
enabling technologies (OFDM, MIMO, turbo coding, and dynamic link adaptations) as the
components responsible for its remarkable performance. In Chapter 2, we provide a quick and
sufficiently detailed overview of the LTE PHY specifications. Chapter 3 introduces the mod-
eling, simulation, and implementation capabilities of MATLAB and Simulink that are used
throughout this book. In Chapters 4–7 we treat each of the enabling technologies of the LTE
standard (modulation and coding, OFDM, MIMO, and link adaptations) in detail and create
models in MATLAB that iteratively and progressively build up LTE PHY components based
on these. We wrap up the first part of the book in Chapter 8 by putting all the enabling tech-
nologies together and showing how the PHY of the LTE standard can be modeled inMATLAB
based on the insight obtained in the preceding chapters.
Chapter 9 includes a discussion on how to accelerate the speed of our MATLAB programs

through the use of a variety of techniques, including parallel computing, automatic C code
generation, GPU processing, and more efficient algorithms. In Chapter 10 we discuss some
implementation issues, such as target environments, and how they affect the programming
style. We also discuss fixed-point numerical representation of data as a prerequisite for hard-
ware implementation and its effect on the performance of the standard. Finally, in Chapter 11
we summarize what we have discussed and provide some directions for future work.
Any effort related to introducing the technical background of a complex communications

system like LTE requires addressing the question of scope. We identify three conceptual ele-
ments that can combine to provide a deep understanding of the way the LTE standard works:

• The theoretical background of the enabling technologies
• Details regarding the standard specifications
• Algorithms and simulation testbenches needed to implement the design

To make the most of the time available to develop this book, we decided to strike a balance in
covering each of these conceptual elements.We chose to provide a sufficient level of discussion
regarding the theoretical foundations and technical specifications of the standard. To leverage
our expertise in developing MATLAB applications, we decided to cover the algorithms and
testbenches that implement various modes of the LTE standard in further detail. This choice
was motivated by two factors:

1. There are many books that extensively cover the first two elements and do not focus on
algorithms and simulations. We consider the emphasis on simulation one of the innovative
characteristics of this work.

Preface xv

2. By providing simulation models of the LTE standard, we help the reader develop an under-
standing of the elements that make up a communications system and obtain a programmatic
recipe for the sequence of operations that make up the PHY specifications. Algorithms and
testbenches naturally reveal the dynamic nature of a system through simulation.

In this sense, the insight and understanding obtained by delving into simulation details are
invaluable as they provide a better mastery of the subject matter. Even more importantly, they
instill a sense of confidence in the reader that he or she can try out new ideas, propose and test
new improvements, and make use of new tools and models to help graduate from a theoretical
knowledge to a hands-on understanding and ultimately to the ability to innovate, design, and
implement.
It is our hope that this book can provide a reliable framework for modeling and simulation of

the LTE standard for the community of young researchers, students, and professionals inter-
ested in mobile communications. We hope they can apply what they learn here, introduce their
own improvements and innovations, and become inspired to contribute to the research and
development of the mobile communications systems of the future.

List of Abbreviations

ASIC Application-Specific Integrated Circuit
BCH Broadcast Channel
BER Bit Error Rate
BPSK Binary Phase Shift Keying
CP Cyclic Prefix
CQI Channel Quality Indicator
CRC Cyclic Redundancy Check
CSI Channel State Information
CSI-RS Channel State Information Reference Signal
CSR Cell-Specific Reference
CUDA Compute Unified Device Architecture
DM-RS Demodulation Reference Signal
DSP Digital Signal Processor
eNodeB enhanced Node Base station
E-UTRA Evolved Universal Terrestrial Radio Access
FDD Frequency Division Duplex
FPGA Field-Programmable Gate Array
HARQ Hybrid Automatic Repeat Request
HDL Hardware Description Language
LTE Long Term Evolution
MAC Medium Access Control
MBMS Multimedia Broadcast and Multicast Service
MBSFN Multicast/Broadcast over Single Frequency Network
MIMO Multiple Input Multiple Output
MMSE Minimum Mean Square Error
MRC Maximum Ratio Combining
MU-MIMO Multi-User Multiple Input Multiple Output
OFDM Orthogonal Frequency Division Multiplexing
PBCH Physical Broadcast Channel
PCFICH Physical Control Format Indicator Channel
PCM Pulse Code Modulation
PDCCH Physical Downlink Control Channel
PDSCH Physical Downlink Shared Channel
PHICH Physical Hybrid ARQ Indicator Channel

xviii List of Abbreviations

PHY Physical Layer
PMCH Physical Multicast Channel
PRACH Physical Random Access Channel
PSS Primary Synchronization Signal
PUCCH Physical Uplink Control Channel
PUSCH Physical Uplink Shared Channel
QAM Quadrature Amplitude Modulation
QPP Quadratic Permutation Polynomial
QPSK Quadrature Phase Shift Keying
RLC Radio Link Control
RMS Root Mean Square
RRC Radio Resource Control
RTL Register Transfer Level
SC-FDM Single-Carrier Frequency Division Multiplexing
SD Sphere Decoder
SFBC Space–Frequency Block Coding
SINR Signal-to-Interference-plus-Noise Ratio
SNR Signal-to-Noise Ratio
SSD Soft-Sphere Decoder
SSS Secondary Synchronization Signal
STBC Space–Time Block Coding
SFBC Space-Frequency Block Coding
SU-MIMO Single-User MIMO
TDD Time-Division Duplex
UE User Equipment
ZF Zero Forcing

1
Introduction

We live in the era of a mobile data revolution.With themass-market expansion of smartphones,
tablets, notebooks, and laptop computers, users demand services and applications frommobile
communication systems that go far beyond mere voice and telephony. The growth in data-
intensive mobile services and applications such as Web browsing, social networking, and
music and video streaming has become a driving force for development of the next gener-
ation of wireless standards. As a result, new standards are being developed to provide the
data rates and network capacity necessary to support worldwide delivery of these types of rich
multimedia application.
LTE (Long Term Evolution) and LTE-Advanced have been developed to respond to the

requirements of this era and to realize the goal of achieving global broadband mobile com-
munications. The goals and objectives of this evolved system include higher radio access data
rates, improved system capacity and coverage, flexible bandwidth operations, significantly
improved spectral efficiency, low latency, reduced operating costs, multi-antenna support, and
seamless integration with the Internet and existing mobile communication systems.
In some ways, LTE and LTE-Advanced are representatives of what is known as a fourth-

generation wireless system and can be considered an organic evolution of the third-generation
predecessors. On the other hand, in terms of their underlying transmission technology they
represent a disruptive departure from the past and the dawn of what is to come. To put into
context the evolution of mobile technology leading up to the introduction of the LTE standards,
a short overview of the wireless standard history will now be presented. This overview intends
to trace the origins of many enabling technologies of the LTE standards and to clarify some of
their requirements, which are expressed in terms of improvements over earlier technologies.

1.1 Quick Overview of Wireless Standards

In the past two decades we have seen the introduction of various mobile standards, from 2G to
3G to the present 4G, and we expect the trend to continue (see Figure 1.1). The primary man-
date of the 2G standards was the support of mobile telephony and voice applications. The 3G
standards marked the beginning of the packet-based data revolution and the support of Internet

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

2 Understanding LTE with MATLAB®

2G

802.11a

GSM

IS-54 IS-136

IS-95

GPRS Edge

HSDPA

HSUPA

HSPA+
LTE

LTE
Advanced

CDMA-
2000

1x-EV
Do

W-
CDMA
(UMTS)

802.11b 802.11g 802.11n 802.16d 802.16e

802.16m

IEEE
standards

European
standards

North
American
standards

1990 2000 2004 2010 time

2.5G 3G 3.5G 3.9G 4G ...beyond

Figure 1.1 Evolution of wireless standards in the last two decades

applications such as email,Web browsing, textmessaging, and other client-server services. The
4G standards will feature all-IP packet-based networks and will support the explosive demand
for bandwidth-hungry applications such as mobile video-on-demand services.
Historically, standards for mobile communication have been developed by consortia of net-

work providers and operators, separately in North America, Europe, and other regions of the
world. The second-generation (2G) digital mobile communications systems were introduced
in the early 1990s. The technology supporting these 2G systems were circuit-switched data
communications. The GSM (Global System for Mobile Communications) in Europe and the
IS-54 (Interim Standard 54) in North America were among the first 2G standards. Both were
based on the Time Division Multiple Access (TDMA) technology. In TDMA, a narrowband
communication channel is subdivided into a number of time slots and multiple users share the
spectrum at allocated slots. In terms of data rates, for example, GSM systems support voice
services up to 13 kbps and data services up to 9.6 kbps.
The GSM standard later evolved into the Generalized Packet Radio Service (GPRS), sup-

porting a peak data rate of 171.2 kbps. The GPRS standard marked the introduction of the
split-core wireless networks, in which packet-based switching technology supports data trans-
mission and circuit-switched technology supports voice transmission. The GPRS technology
further evolved into Enhanced Data Rates for Global Evolution (EDGE), which introduced a
higher-rate modulation scheme (8-PSK, Phase Shift Keying) and further enhanced the peak
data rate to 384 kbps.
In North America, the introduction of IS-95 marked the first commercial deployment of a

Code Division Multiple Access (CDMA) technology. CDMA in IS-95 is based on a direct
spread spectrum technology, where multiple users share a wider bandwidth by using orthog-
onal spreading codes. IS-95 employs a 1.2284MHz bandwidth and allows for a maximum
of 64 voice channels per cell, with a peak data rate of 14.4 kbps per fundamental channel.
The IS-95-B revision of the standard was developed to support high-speed packet-based
data transmission. With the introduction of the new supplemental code channel supporting
high-speed packet data, IS-95-B supported a peak data rate of 115.2 kbps. In North America,

Introduction 3

3GPP2 (Third Generation Partnership Project 2) was the standardization body that established
technical specifications and standards for 3Gmobile systems based on the evolution of CDMA
technology. From 1997 to 2003, 3GPP2 developed a family of standards based on the original
IS-95 that included 1xRTT, 1x-EV-DO (Evolved Voice Data Only), and EV-DV (Evolved
Data and Voice). 1xRTT doubled the IS-95 capacity by adding 64 more traffic channels to
achieve a peak data rate of 307 kbps. The 1x-EV-DO and 1x-EV-DV standards achieved peak
data rates in the range of 2.4–3.1Mbps by introducing a set of features including adaptive
modulation and coding, hybrid automatic repeat request (HARQ), turbo coding, and faster
scheduling based on smaller frame sizes.
The 3GPP (Third-Generation Partnership Project) is the standardization body that originally

managed European mobile standard and later on evolved into a global standardization organi-
zation. It is responsible for establishing technical specifications for the 3G mobile systems and
beyond. In 1997, 3GPP started working on a standardization effort to meet goals specified by
the ITU IMT-2000 (International Telecommunications Union International Mobile Telecom-
munication) project. The goal of this project was the transition from a 2G TDMA-based
GSM technology to a 3G wide-band CDMA-based technology called the Universal Mobile
Telecommunications System (UMTS). The UMTS represented a significant change in mobile
communications at the time. It was standardized in 2001 and was dubbed Release 4 of the
3GPP standards. The UMTS system can achieve a downlink peak data rate of 1.92Mbps. As
an upgrade to the UMTS system, the High-Speed Downlink Packet Access (HSDPA) was
standardized in 2002 as Release 5 of the 3GPP. The peak data rates of 14.4Mbps offered by
this standard were made possible by introducing faster scheduling with shorter subframes and
the use of a 16QAM (Quadrature Amplitude Modulation) modulation scheme. High-Speed
Uplink Packet Access (HSUPA) was standardized in 2004 as Release 6, with a maximum rate
of 5.76Mbps. Both of these standards, together known as HSPA (High-Speed Packet Access),
were then upgraded to Release 7 of the 3GPP standard known as HSPA+ or MIMO (Multiple
Input Multiple Output) HSDPA. The HSPA+ standard can reach rates of up to 84Mbps and
was the first mobile standard to introduce a 2× 2 MIMO technique and the use of an even
higher modulation scheme (64QAM). Advanced features that were originally introduced as
part of the North American 3G standards were also incorporated in HSPA and HSPA+. These
features include adaptive modulation and coding, HARQ, turbo coding, and faster scheduling.
Another important wireless application that has been a driving force for higher data rates

and spectral efficiency is the wireless local area network (WLAN). The main purpose of
WLAN standards is to provide stationary users in buildings (homes, offices) with reliable
and high-speed network connections. As the global mobile communications networks were
undergoing their evolution, IEEE (Institute of Electrical and Electronics Engineers) was devel-
oping international standards forWLANs andwireless metropolitan area networks (WMANs).
With the introduction of a family of WiFi standards (802.11a/b/g/n) and WiMAX standards
(802.16d/e/m), IEEE established Orthogonal Frequency Division Multiplexing (OFDM) as a
promising and innovative air-interface technology. For example, the IEEE 802.11a WLAN
standard uses the 5GHz frequency band to transmit OFDM signals with data rates of up to
54Mb/s. In 2006, IEEE standardized a newWiMAX standard (IEEE 802.16m) that introduced
a packet-based wireless broadband system. Among the features of WiMAX are scalable band-
widths up to 20MHz, higher peak data rates, and better special efficiency profiles than were
being offered by the UMTS and HSPA systems at the time. This advance essentially kicked
off the effort by 3GPP to introduce a new wireless mobile standard that could compete with
the WiMAX technology. This effort ultimately led to the standardization of the LTE standard.

4 Understanding LTE with MATLAB®

Table 1.1 Peak data rates of various wireless standards
introduced over the past two decades

Technology Theoretical peak data rate
(at low mobility)

GSM 9.6 kbps

IS-95 14.4 kbps

GPRS 171.2 kbps

EDGE 473 kbps

CDMA-2000 (1xRTT) 307 kbps

WCDMA (UMTS) 1.92Mbps

HSDPA (Rel 5) 14Mbps

CDMA-2000 (1x-EV-DO) 3.1Mbps

HSPA+ (Rel 6) 84Mbps

WiMAX (802.16e) 26Mbps

LTE (Rel 8) 300Mbps

WiMAX (802.16m) 303Mbps

LTE-Advanced (Rel 10) 1Gbps

1.2 Historical Profile of Data Rates

Table 1.1 summarizes the peak data rates of various wireless technologies. Looking at the
maximum data rates offered by these standards, the LTE standard (3GPP release 8) is specified
to provide a maximum data rate of 300Mbps. The LTE-Advanced (3GPP version 10) features
a peak data rate of 1Gbps.
These figures represent a boosts in peak data rates of about 2000 times above what was

offered by GSM/EDGE technology and 50–500 times above what was offered by the
W-CDMA/UMTS systems. This remarkable boost was achieved through the development
of new technologies introduced within a time span of about 10 years. One can argue that
this extraordinary advancement is firmly rooted in the elegant mathematical formulation of
the enabling technologies featured in the LTE standards. It is our aim in this book to clarify
and explain these enabling technologies and to put into context how they combine to achieve
such a performance. We also aim to gain insight into how to simulate, verify, implement, and
further enhance the PHY (Physical Layer) technology of the LTE standards.

1.3 IMT-Advanced Requirements

The ITU has published a set of requirements for the design of mobile systems. The first
recommendations, released in 1997, were called IMT-2000 (InternationalMobile Telecommu-
nications 2000) [1]. These recommendations included a set of goals and requirements for radio
interface specification. 3G mobile communications systems were developed to be compliant
with these recommendations. As the 3G systems evolved, so did the IMT-2000 requirements,
undergoing multiple updates over the past decade [2].
In 2007, ITU published a new set of recommendations that set the bar much higher

and provided requirements for IMT-Advanced systems [3]. IMT-Advanced represents the

Introduction 5

requirements for the building of truly global broadband mobile communications systems.
Such systems can provide access to a wide range of packet-based advanced mobile services,
support low- to high-mobility applications and a wide range of data rates, and provide
capabilities for high-quality multimedia applications. The new requirements were published
to spur research and development activities that bring about a significant improvement in
performance and quality of services over the existing 3G systems.
One of the prominent features of IMT-Advanced is the enhanced peak data for advanced

services and applications (100Mbps for high mobility and 1Gbps for low mobility). These
requirements were established as targets for research. The LTE-Advanced standard developed
by 3GPP and the mobile WiMAX standard developed by IEEE are among the most promi-
nent standards to meet the requirements of the IMT-Advanced specifications. In this book, we
focus on the LTE standards and discuss how their PHY specification is consistent with the
requirements of the IMT-Advanced.

1.4 3GPP and LTE Standardization

The LTE and LTE-Advanced are developed by the 3GPP. They inherit a lot from previous 3GPP
standards (UMTS and HSPA) and in that sense can be considered an evolution of those tech-
nologies. However, to meet the IMT-Advanced requirements and to keep competitive with the
WiMAX standard, the LTE standard needed to make a radical departure from the W-CDMA
transmission technology employed in previous standards. LTE standardization work began in
2004 and ultimately resulted in a large-scale and ambitious re-architecture of mobile networks.
After four years of deliberation, and with contributions from telecommunications companies
and Internet standardization bodies all across the globe, the standardization process of LTE
(3GPP Release 8) was completed in 2008. The Release 8 LTE standard later evolved to LTE
Release 9 with minor modifications and then to Release 10, also known as the LTE-Advanced
standard. The LTE-Advanced features improvements in spectral efficiency, peak data rates, and
user experience relative to the LTE.With a maximum peak data rate of 1Gbps, LTE-Advanced
has also been approved by the ITU as an IMT-Advanced technology.

1.5 LTE Requirements

LTE requirements cover two fundamental components of the evolved UMTS system architec-
ture: the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) and the Evolved
Packet Core (EPC). The goals of the overall system include the following:

• Improved system capacity and coverage
• High peak data rates
• Low latency (both user-plane and control-plane)
• Reduced operating costs
• Multi-antenna support
• Flexible bandwidth operations
• Seamless integration with existing systems (UMTS, WiFi, etc.).

As a substantial boost in mobile data rates is one of the main mandates of the LTE
standards, it is useful to review some of the recent advances in communications research as

6 Understanding LTE with MATLAB®

well as theoretical considerations related to the maximum achievable data rates in a mobile
communications link. We will now present some highlights related to this topic, inspired by
an excellent discussion presented in Reference [4].

1.6 Theoretical Strategies

Shannon’s fundamental work on channel capacity states that data rates are always limited
by the available received signal power or the received signal-to-noise-power ratio [5]. It also
relates the data rates to the transmission bandwidths. In the case of low-bandwidth utilization,
where the data rate is substantially lower than the available bandwidth, any increase of the data
rate will require an increase in the received signal power in a proportional manner. In the case
of high-bandwidth utilization, where data rates are equal to or greater than the available band-
width, any increase in the data rate will require a much larger relative increase in the received
signal power unless the bandwidth is increased in proportion to the increase in data rate.
A rather intuitive way to increase the overall power at the receiver is to use multiple

antennas at the receiver side. This is known as receive diversity. Multiple antennas can also
be used at the transmitter side, in what is known as transmit diversity. A transmit diversity
approach based on beamforming uses multiple transmit antennas to focus the transmitted
power in the direction of the receiver. This can potentially increase the received signal power
and allow for higher data rates.
However, increasing data rates by using either transmit diversity or receive diversity can

only work up to a certain point. Beyond this, any boost in data rates will start to saturate.
An alternative approach is to use multiple antennas at both the transmitter and the receiver.
For example, a technique known as spatial multiplexing, which exploits multiple antennas at
the transmitter and the receiver sides, is an important member of the class of multi-antenna
techniques known as MIMO. Different types of MIMO technique, including open-loop and
closed-loop spatial multiplexing, are used in the LTE standard.
Beside the received signal power, another factor directly impacting on the achievable data

rates of a mobile communications system is the transmission bandwidth. The provisioning
of higher data rates usually involves support for even wider transmission bandwidths. The
most important challenge related to wider-band transmission is the effect of multipath fading
on the radio channel. Multipath fading is the result of the propagation of multiple versions
of the transmitted signals through different paths before they arrive at the receiver. These
different versions exhibit varying profiles of signal power and time delays or phases. As a
result, the received signal can be modeled as a filtered version of the transmitted signal that
is filtered by the impulse response of the radio channel. In the frequency domain, a multipath
fading channel exhibits a time-varying channel frequency response. The channel frequency
response inevitably corrupts the original frequency-domain content of the transmitted signal,
with an adverse effect on the achievable data rates. In order to adjust for the effects of channel
frequency selectivity and to achieve a reasonable performance, we must either increase
the transmit power, reduce our expectations concerning data rates, or compensate for the
frequency-domain distortions with equalization.
Many channel-equalization techniques have been proposed to counter the effects of multi-

path fading. Simple time-domain equalization methods have been shown to provide adequate
performance for transmission over transmission bandwidths of up to 5MHz. However, for

Introduction 7

LTE standards and other mobile systems that provision for wider bandwidths of 10, 15, or
20MHz, or higher, the complexity of the time-domain equalizers become prohibitively large.
In order to overcome the problems associated with time-domain equalization, two approaches
to wider-band transmission have been proposed:

• The use of multicarrier transmission schemes, where a wider band signal is represented as
the sum of several more narrowband orthogonal signals. One special case of multicarrier
transmission used in the LTE standard is the OFDM transmission.

• The use of a single-carrier transmission scheme, which provides the benefits of low-
complexity frequency-domain equalization offered by OFDM without introducing its
high transmit power fluctuations. An example of this type of transmission is called
Single-Carrier Frequency Division Multiplexing (SC-FDM), which is used in the LTE
standard as the technology for uplink transmission.

Furthermore, a rather straightforward way of providing higher data rates within a given
transmission bandwidth is the use of higher-order modulation schemes. Using higher-order
modulation allows us to represent more bits with a single modulated symbol and directly
increases bandwidth utilization. However, the higher bandwidth utilization comes at a cost:
a reduced minimum distance between modulated symbols and a resultant increased sensitiv-
ity to noise and interference. Consequently, adaptive modulation and coding and other link
adaptation strategies can be used to judiciously decide when to use a lower- or higher-order
modulation. By applying these adaptive methods, we can substantially improve the throughput
and achievable data rates in a communications link.

1.7 LTE-Enabling Technologies

The enabling technologies of the LTE and its evolution include the OFDM, MIMO, turbo
coding, and dynamic link-adaptation techniques. As discussed in the last section, these
technologies trace their origins to well-established areas of research in communications and
together help contribute to the ability of the LTE standard to meet its requirements.

1.7.1 OFDM

As elegantly described in Reference [6], the main reasons LTE selects OFDM and its
single-carrier counterpart SC-FDM as the basic transmission schemes include the following:
robustness to the multipath fading channel, high spectral efficiency, low-complexity imple-
mentation, and the ability to provide flexible transmission bandwidths and support advanced
features such as frequency-selective scheduling, MIMO transmission, and interference
coordination.
OFDM is a multicarrier transmission scheme. The main idea behind it is to subdivide the

information transmitted on a wideband channel in the frequency domain and to align data
symbols with multiple narrowband orthogonal subchannels known as subcarriers. When the
frequency spacing between subcarriers is sufficiently small, an OFDM transmission scheme
can represent a frequency-selective fading channel as a collection of narrowband flat fading
subchannels. This in turn enables OFDM to provide an intuitive and simple way of estimating

8 Understanding LTE with MATLAB®

the channel frequency response based on transmitting known data or reference signals. With a
good estimate of the channel response at the receiver, we can then recover the best estimate of
the transmitted signal using a low-complexity frequency-domain equalizer. The equalizer in a
sense inverts the channel frequency response at each subcarrier.

1.7.2 SC-FDM

One of the drawbacks of OFDMmulticarrier transmission is the large variations in the instan-
taneous transmit power. This implies a reduced efficiency in power amplifiers and results in
higher mobile-terminal power consumption. In uplink transmission, the design of complex
power amplifiers is especially challenging. As a result, a variant of the OFDM transmission
known as SC-FDM is selected in the LTE standard for uplink transmission. SC-FDM is imple-
mented by combining a regular OFDM system with a precoding based on Discrete Fourier
Transform (DFT) [6]. By applying a DFT-based precoding, SC-FDM substantially reduces
fluctuations of the transmit power. The resulting uplink transmission scheme can still fea-
ture most of the benefits associated with OFDM, such as low-complexity frequency-domain
equalization and frequency-domain scheduling, with less stringent requirements on the power
amplifier design.

1.7.3 MIMO

MIMO is one of the key technologies deployed in the LTE standards.With deep roots in mobile
communications research, MIMO techniques bring to bear the advantages of using multiple
antennas in order to meet the ambitious requirements of the LTE standard in terms of peak
data rates and throughput.
MIMO methods can improve mobile communication in two different ways: by boosting

the overall data rates and by increasing the reliability of the communication link. The MIMO
algorithms used in the LTE standard can be divided into four broad categories: receive
diversity, transmit diversity, beamforming, and spatial multiplexing. In transmit diversity
and beamforming, we transmit redundant information on different antennas. As such, these
methods do not contribute to any boost in the achievable data rates but rather make the
communications link more robust. In spatial multiplexing, however, the system transmits
independent (nonredundant) information on different antennas. This type of MIMO scheme
can substantially boost the data rate of a given link. The extent to which data rates can
be improved may be linearly proportional to the number of transmit antennas. In order to
accommodate this, the LTE standard provides multiple transmit configurations of up to four
transmit antennas in its downlink specification. The LTE-Advanced allows the use of up to
eight transmit antennas for downlink transmission.

1.7.4 Turbo Channel Coding

Turbo coding is an evolution of the convolutional coding technology used in all previous
standards with impressive near-channel capacity performance [7]. Turbo codingwas first intro-
duced in 1993 and has been deployed in 3G UMTS and HSPA systems. However, in these

Introduction 9

standards it was used as an optional way of boosting the performance of the system. In the
LTE standard, on the other hand, turbo coding is the only channel coding mechanism used to
process the user data.
The near-optimal performance of turbo coders is well documented, as is the computational

complexity associated with their implementation. The LTE turbo coders come with many
improvements, aimed at making them more efficient in their implementation. For example,
by appending a CRC (Cyclic Redundancy Check) checking syndrome to the input of the turbo
encoder, LTE turbo decoders can take advantage of an early termination mechanism if the
quality of the code is deemed acceptable. Instead of following through with a fixed number of
decoding iterations, the decoding can be stopped early when the CRC check indicates that no
errors are detected. This very simple solution allows the computational complexity of the LTE
turbo decoders to be reduced without severely penalizing their performance.

1.7.5 Link Adaptation

Link adaptation is defined as a collection of techniques for changing and adapting the trans-
mission parameters of a mobile communication system to better respond to the dynamic nature
of the communication channel. Depending on the channel quality, we can use different modu-
lation and coding techniques (adaptive modulation and coding), change the number of transmit
or receive antennas (adaptive MIMO), and even change the transmission bandwidth (adaptive
bandwidth). Closely related to link adaptation is channel-dependent scheduling in a mobile
communication system. Scheduling deals with the question of how to share the radio resources
between different users in order to achieve more efficient resource utilizations. Typically, we
need to either minimize the amount of resources allocated to each user or match the resources
to the type and priority of the user data. Channel-dependent scheduling aims to accommodate
as many users as possible, while satisfying the best quality-of-service requirements that may
exist based on the instantaneous channel condition.

1.8 LTE Physical Layer (PHY) Modeling

In this book we will focus on digital signal processing in the physical layer of the Radio Access
networks. Almost no discussion of the LTE core networks is present here, and we will leave
the discussion of higher-layer processing such as Radio Resource Control (RRC), Radio Link
Control (RLC), and Medium Access Control (MAC) to another occasion.
Physical layer modeling involves all the processing performed on bits of data that are handed

down from the higher layers to the PHY. It describes how various transport channels are
mapped to physical channels, how signal processing is performed on each of these channels,
and how data are ultimately transported to the antenna for transmission.
For example, Figure 1.2 illustrates the PHYmodel for the LTE downlink transmission. First,

the data is multiplexed and encoded in a step known as Downlink Shared Channel processing
(DLSCH). The DLSCH processing chain involves attaching a CRC code for error detection,
segmenting the data into smaller chunks known as subblocks, undertaking channel-coding
operations based on turbo coding for the user data, carrying out a rate-matching operation that
selects the number of output bits to reflect a desired coding rate, and finally reconstructing
the codeblocks into codewords. The next phase of processing is known as physical downlink

10 Understanding LTE with MATLAB®

CRC attachment

Subblock
segmentation

Channel coding
(turbo encoder)

Rate matching

Codeword
reconstruction

Scrambling
Modulation

mapper
Precoding

Layer
mapping

Resource
element
mapping

OFDM
signal

generation

OFDM
Symbols

for multiple
transmit

antennas

OFDM
MIMO

PDSCH
processing

DLSCH
processing

LTE Downling transmitter model

Transport
block

payload
bits

0100010011...

Figure 1.2 Physical layer specifications in LTE

shared channel processing. In this phase, the codewords first become subject to a scrambling
operation and then undergo a modulation mapping that results in a modulated symbol stream.
The next step comprises the LTEMIMO or multi-antenna processing, in which a single stream
of modulated symbols is subdivided into multiple substreams destined for transmission via
multiple antennas. The MIMO operations can be regarded as a combination of two steps:
precoding and layer mapping. Precoding scales and organizes symbols allocated to each sub-
stream and layer mapping selects and routes data into each substream to implement one of
the nine different MIMO modes specified for downlink transmission. Among the available
MIMO techniques implemented in downlink transmission are transmit diversity, spatial mul-
tiplexing, and beamforming. The final step in the processing chain relates to the multicarrier
transmission. In downlink, the multicarrier operations are based on the OFDM transmission
scheme. The OFDM transmission involves two steps. First, the resource element mapping
organizes the modulated symbols of each layer within a time–frequency resource grid. On the
frequency axis of the grid, the data are aligned with subcarriers in the frequency domain. In the
OFDM signal-generation step, a series of OFDM symbols are generated by applying inverse
Fourier transform to compute the transmitted data in time and are transported to each antenna
for transmission.
In my opinion, it is remarkable that such a straightforward and intuitive transmission struc-

ture can combine all the enabling technologies so effectively that they meet the diverse and
stringent IMT-Advanced requirements set out for the LTE standardization. By focusing on
PHY modeling, we aim to address challenges in understanding the development of the digital
signal processing associated with the LTE standard.

Introduction 11

1.9 LTE (Releases 8 and 9)

The introduction of the first release of the LTE standard was the culmination of about four
years of work by 3GPP, starting in 2005. Following an extensive study of various technologies
capable of delivering on the requirements set for the LTE standard, it was decided that the air
interface transmission technology of the new standard would be based on OFDM in down-
link and SC-FDM in uplink. The full specifications, including various MIMO modes, were
then incorporated in the standard. The first version of the LTE standard (3GPP version 8) was
released in December 2008. Release 9 came in December 2009; it included relatively minor
enhancements such as Multimedia Broadcast/Multicast Services (MBMS) support, location
services, and provisioning for base stations that support multiple standards [4].

1.10 LTE-Advanced (Release 10)

The LTE-Advanced was released in December 2010. LTE-Advanced is an evolution of the
original LTE standard and does not represent a new technology. Among the technologies added
to the LTE standard to result in the LTE-Advanced were carrier aggregation, enhanced down-
link MIMO, uplink MIMO, and relays [4].

1.11 MATLAB® and Wireless System Design

In this book, we useMATLAB tomodel the PHY of the LTE standard and to obtain insight into
its simulation and implementation requirements. MATLAB is a widely used language and a
high-level development environment for mathematical modeling and numerical computations.
We also use Simulink, a graphical design environment for system simulations andmodel-based
design, as well as various MATLAB toolboxes – application-specific libraries of components
that make the task of modeling applications inMATLAB easier. For example, in order to model
communications systems we use functionalities from the Communication System Toolbox.
The toolbox provides tools for the design, prototyping, simulation, and verification of com-
munications systems, including wireless standards in both MATLAB and Simulink.
Among the functionalities in MATLAB that are introduced in this book are the new System

objects. System objects are a set of algorithmic building blocks suitable for system design
available in various MATLAB toolboxes. They are self-documented algorithms that make the
task of developing MATLAB testbenches to perform system simulations easier. By covering
a wide range of algorithms, they also eliminate the need to recreate the basic building blocks
of communications systems in MATLAB, C, or any other programming language. System
objects are designed not only for modeling and simulation but also to provide support for
implementation. For example, they have favorable characteristics that help accelerate simula-
tion speeds and support C/C++ code generation and fixed-point numeric, and a few of them
support automatic HDL (Hardware Description Language) code generation.

1.12 Organization of This Book

The thesis of this book is that by understanding its four enabling technologies (OFDMA,
MIMO, turbo coding, and link adaptation) the reader can obtain an adequate understanding
of the PHY model of the LTE standard. Chapter 2 provides a short overview of the technical
specifications of the LTE standard. Chapter 3 provides an introduction to the tools and features

12 Understanding LTE with MATLAB®

in MATLAB that are useful for the modeling and simulation of mobile communications sys-
tems. In Chapters 4–7, we treat each of the OFDM, MIMO, modulation, and coding and link
adaptation techniques in detail. In each chapter, we create models in MATLAB that iteratively
and progressively build up components of the LTE PHY based on these techniques. Chapter
8, on system-level specifications and performance evaluation, discusses various channel mod-
els specified in the standard and ways of performing system-level qualitative and quantitative
performance analysis in MATLAB and Simulink. It also wraps up the first part of the book
by putting together a system model and showing how the PHY of the LTE standard can be
modeled in MATLAB based on the insight obtained in the preceding chapters.
The second part deals with practical issues such as simulation of the system and implemen-

tation of its components. Chapter 9 includes discussion on how to accelerate the speed of our
MATLAB programs using a variety of techniques, including parallel computing, automatic C
code generation, GPU (Graphics Progressing Unit) processing, and the use of more efficient
algorithms. In Chapter 10, we discuss related implementation issues such as automatic C/C++
code generation from the MATLAB code, target environments, and code optimizations, and
how these affect the programming style. We also discuss fixed-point numerical representa-
tion of data as a prerequisite for hardware implementation and its effect on the performance
of various modeling components. Finally, in Chapter 11, we summarize our discussions and
highlight directions for future work.

References

[1] ITU-R (1997) International Mobile Telecommunications-2000 (IMT-2000). Recommendation ITU-R M.
687-2, February 1997.

[2] ITU-R (2010) Detailed specifications of the radio interfaces of international mobile telecommunications-2000
(IMT-2000). Recommendation ITU-R M.1457-9, May 2010.

[3] ITU-R (2007) Principles for the Process of Development of IMT-Advanced. Resolution ITU-R 57, October
2007.

[4] Dahlman, E., Parkvall, S. and Sköld, J. (2011) 4G LTE/LTE-Advanced for Mobile Broadband, Elsevier.
[5] Shannon, C.E. (1948) A mathematical theory of communication. Bell System Technical Journal, 379–423,

623–656.
[6] Ghosh, A. and Ratasuk, R. (2011) Essentials of LTE and LTE-A, Cambridge University Press, Cambridge.
[7] Proakis, J.G. (2001) Digital Communications, McGraw-Hill, New York.

2
Overview of the LTE Physical
Layer

The focus of this book is the LTE (Long Term Evolution) radio access technology and
particularly its PHY (Physical Layer). Here, we will highlight the major concepts related to
understanding the technology choices made in the design of the LTE PHY radio interface.
Focusing on this topic will best explain the remarkable data rates achievable by LTE and
LTE-Advanced standards.
LTE specifies data communications protocols for both the uplink (mobile to base station) and

downlink (base station tomobile) communications. In the 3GPP (Third Generation Partnership
Project) nomenclature, the base station is referred to as eNodeB (enhanced Node Base station)
and the mobile unit is referred to as UE (User Equipment).
In this chapter, we will cover topics related to PHY data communication and the transmis-

sion protocols of the LTE standards. We will first provide an overview of frequency bands,
FDD (Frequency Division Duplex) and TDD (Time Division Duplex) duplex methodologies,
flexible bandwidth allocation, time framing, and the time–frequency resource representation
of the LTE standard. We will then study in detail both the downlink and uplink processing
stacks, which include multicarrier transmission schemes, multi-antenna protocols, adaptive
modulation, and coding schemes and channel-dependent link adaptations.
In each case, we will first describe the various channels that connect different layers of the

communication stacks and then describe in detail the signal processing in the PHY applied
on each of the downlink and uplink physical channels. The amount of detail presented will be
sufficient to enables us to model the downlink PHY processing as MATLAB® programs. In
the subsequent four chapters we will iteratively and progressively derive a system model from
simpler algorithms in MATLAB.

2.1 Air Interface

The LTE air interface is based on OFDM (Orthogonal Frequency Division Multiplexing)
multiple-access technology in the downlink and a closely related technology known as

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

14 Understanding LTE with MATLAB®

Single-Carrier Frequency Division Multiplexing (SC-FDM) in the uplink. The use of OFDM
provides significant advantages over alternative multiple-access technologies and signals
a sharp departure from the past. Among the advantages are high spectral efficiency and
adaptability for broadband data transmission, resistance to intersymbol interference caused
by multipath fading, a natural support for MIMO (Multiple Input Multiple Output) schemes,
and support for frequency-domain techniques such as frequency-selective scheduling [1].
The time–frequency representation of OFDM is designed to provide high levels of flexibility

in allocating both spectra and the time frames for transmission. The spectrum flexibility in LTE
provides not only a variety of frequency bands but also a scalable set of bandwidths. LTE also
provides a short frame size of 10ms in order to minimize latency. By specifying short frame
sizes, LTE allows better channel estimation to be performed in the mobile, allowing timely
feedbacks necessary for link adaptations to be provided to the base station.

2.2 Frequency Bands

The LTE standards specify the available radio spectra in different frequency bands. One of the
goals of the LTE standards is seamless integration with previous mobile systems. As such, the
frequency bands already defined for previous 3GPP standards are available for LTE deploy-
ment. In addition to these common bands, a few new frequency bands are also introduced for
the first time in the LTE specification. The regulations governing these frequency bands vary
between different countries. Therefore, it is conceivable that not just one but many of the fre-
quency bands could be deployed by any given service provider to make the global roaming
mechanism much easier to manage.
As was the case with previous 3GPP standards, LTE supports both FDD and TDD modes,

with frequency bands specified as paired and unpaired spectra, respectively. FDD frequency
bands are paired, which enables simultaneous transmission on two frequencies: one for the
downlink and one for the uplink. The paired bands are also specified with sufficient separa-
tions for improved receiver performance. TDD frequency bands are unpaired, as uplink and
downlink transmissions share the same channel and carrier frequency. The transmissions in
uplink and downlink directions are time-multiplexed.
Release 11 of the 3GPP specifications for LTE shows the comprehensive list of ITU IMT-

Advanced (International Telecommunications Union International Mobile Telecommunica-
tion) frequency bands [2]. It includes 25 frequency bands for FDD and 11 for TDD. As shown
in Table 2.1, the paired bands used in FDD duplex mode are numbered from 1 to 25; the
unpaired bands used in TDD mode are numbered from 33 to 43, as illustrated in Table 2.2.
The band number 6 is not applicable to LTE and bands 15 and 16 are dedicated to ITU
Region 1.

2.3 Unicast and Multicast Services

In mobile communications, the normal mode of transmission is known as a unicast trans-
mission, where the transmitted data are intended for a single user. In addition to unicast ser-
vices, the LTE standards support a mode of transmission known as Multimedia Broadcast/
Multicast Services (MBMS). MBMS delivers high-data-rate multimedia services such as TV
and radio broadcasting and audio and video streaming [1].

Overview of the LTE Physical Layer 15

Table 2.1 Paired frequency bands defined for E-UTRA

Operating Uplink (UL) Downlink (DL) Duplex
band operating band operating band mode
index frequency range (MHz) frequency range (MHz)

1 1920–1980 2110–2170 FDD

2 1850–1910 1930–1990 FDD

3 1710–1785 1805–1880 FDD

4 1710–1755 2110–2155 FDD

5 824–849 869–894 FDD

6 830–840 875–885 FDD

7 2500–2570 2620–2690 FDD

8 880–915 925–960 FDD

9 1749.9–1784.9 1844.9–1879.9 FDD

10 1710–1770 2110–2170 FDD

11 1427.9–1447.9 1475.9–1495.9 FDD

12 699–716 729–746 FDD

13 777–787 746–756 FDD

14 788–798 758–768 FDD

15 Reserved Reserved FDD

16 Reserved Reserved FDD

17 704–716 734–746 FDD

18 815–830 860–875 FDD

19 830–845 875–890 FDD

20 832–862 791–821 FDD

21 1447.9–1462.9 1495.9–1510.9 FDD

22 3410–3490 3510–3590 FDD

23 2000–2020 2180–2200 FDD

24 1626.5–1660.5 1525–1559 FDD

25 1850–1915 1930–1995 FDD

MBMS has its own set of dedicated traffic and control channels and is based on a multicell
transmission scheme forming a Multimedia Broadcast Single-Frequency Network (MBSFN)
service area. A multimedia signal is transmitted from multiple adjacent cells belonging to a
given MBSFN service area. When the content of a single Multicast Channel (MCH) is trans-
mitted from different cells, the signals on the same subcarrier are coherently combined at the
UE. This results in a substantial improvement in the SNR (signal-to-noise ratio) and signifi-
cantly improves the maximum allowable data rates for the multimedia transmission. Being in
either a unicast or a multicast/broadcast mode of transmission affects many parameters and
components of the system operation. As we describe various components of the LTE technol-
ogy, we will highlight how different channels, transmission modes, and physical signals and
parameters are used in the unicast and multicast modes of operations. The focus throughout
this book will be on unicast services and data transmission.

16 Understanding LTE with MATLAB®

Table 2.2 Unpaired frequency bands defined
for E-UTRA

Operating Uplink and downlink Duplex
band operating band mode
index frequency range (MHz)

33 1900–1920 TDD

34 2010–2025 TDD

35 1850–1910 TDD

36 1930–1990 TDD

37 1910–1930 TDD

38 2570–2620 TDD

39 1880–1920 TDD

40 2300–2400 TDD

41 2496–2690 TDD

42 3400–3600 TDD

43 3600–3800 TDD

2.4 Allocation of Bandwidth

The IMT-Advanced guidelines require spectrum flexibility in the LTE standard. This leads
to scalability in the frequency domain, which is manifested by a list of spectrum allocations
ranging from 1.4 to 20MHz. The frequency spectra in LTE are formed as concatenations of
resource blocks consisting of 12 subcarriers. Since subcarriers are separated by 15 kHz, the
total bandwidth of a resource block is 180 kHz. This enables transmission bandwidth config-
urations of from 6 to 110 resource blocks over a single frequency carrier, which explains how
the multicarrier transmission nature of the LTE standard allows for channel bandwidths rang-
ing from 1.4 to 20.0MHz in steps of 180 kHz, allowing the required spectrum flexibility to be
achieved.
Table 2.3 illustrates the relationship between the channel bandwidth and the number of

resource blocks transmitted over an LTE RF carrier. For bandwidths of 3–20MHz, the total-
ity of resource blocks in the transmission bandwidth occupies around 90% of the channel

Table 2.3 Channel bandwidths
specified in LTE

Channel Number of

bandwidth (MHz) resource blocks

1.4 6

3 15

5 25

10 50

15 75

20 100

Overview of the LTE Physical Layer 17

Transmission bandwidth = Number of resource blocks

Channel bandwidth

⎪H(f)⎪

fc

f

… …

Figure 2.1 Relationship between channel bandwidth and number of resource blocks

bandwidth. In the case of 1.4 kHz, the percentage drops to around 77%. This helps reduce
unwanted emissions outside the bandwidth, as illustrated in Figure 2.1. A formal definition of
the time–frequency representation of the spectrum, the resource grid, and the blocks will be
presented shortly.

2.5 Time Framing

The time-domain structure of the LTE is illustrated in Figure 2.2. Understanding of LTE trans-
mission relies on a clear understanding of the time–frequency representation of data, how it
maps to what is known as the resource grid, and how the resource grid is finally transformed
into OFDM symbols for transmission.
In the time domain, LTE organizes the transmission as a sequence of radio frames of length

10ms. Each frame is then subdivided into 10 subframes of length 1ms. Each subframe is
composed of two slots of length 0.5ms each. Finally, each slot consists of a number of OFDM
symbols, either seven or six depending on whether a normal or an extended cyclic prefix is
used. Next, we will focus on the time–frequency representation of the OFDM transmission.

2.6 Time–Frequency Representation

One of the most attractive features of OFDM is that it maps explicitly to a time–frequency
representation for the transmitted signal. After coding and modulation, a transformed version
of the complex-valued modulated signal, the physical resource element, is mapped on to a
time-frequency coordinate system, the resource grid. The resource grid has time on the x-axis
and frequency on the y-axis. The x-coordinate of a resource element indicates the OFDM

18 Understanding LTE with MATLAB®

Frame = 10 ms

Each frame = 10 subframes

Each subframe = 2 slots

1st CP length
5.20 μs

Remaining CP length
4.68 μs

Each CP length
16.67 μs

71.87 μs 71.35 μs 71.35 μs 71.35 μs 83.33 μs 83.33 μs 83.33 μs

subframe = 1 ms

slot = ½ ms

Frame = 10 ms

½ ms

1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms

½ ms

7 ODFM symbols with normal cyclic prefix

…

… … … …

6 ODFM symbols with extended cyclic prefix

½ ms ½ ms

Figure 2.2 LTE time-domain structure

symbol to which it belongs in time. The y-coordinate signifies the OFDM subcarrier to which
it belongs in frequency.
Figure 2.3 illustrates the LTE downlink resource grid when a normal cyclic prefix is used. A

resource element is placed at the intersection of an OFDM symbol and a subcarrier. The sub-
carrier spacing is 15 kHz and, in the case of normal cyclic prefix, there are 14 OFDM symbols
per subframe or seven symbols per slot. A resource block is defined as a group of resource ele-
ments corresponding to 12 subcarriers or 180 kHz in the frequency domain and one 0.5ms slot
in the time domain. In the case of a normal cyclic prefix with seven OFDM symbols per slot,
each resource block consists of 84 resource elements. In the case of an extended cyclic prefix
with six OFDM symbols per slot, the resource block contains 72 resource elements. The defi-
nition of a resource block is important because it represents the smallest unit of transmission
that is subject to frequency-domain scheduling.
As we discussed earlier, the LTE PHY specification allows an RF carrier to consist of any

number of resource blocks in the frequency domain, ranging from a minimum of six resource
blocks up to a maximum of 110 resource blocks. This corresponds to transmission bandwidths
ranging from 1.4 to 20.0MHz, with a granularity of 15 kHz, and allows for a very high degree
of LTE bandwidth flexibility. The resource-block definition applies equally to both the down-
link and the uplink transmissions. There is a minor difference between the downlink and the
uplink regarding the location of the carrier center frequency relative to the subcarriers.
In the uplink, as illustrated in Figure 2.4, no unused DC subcarrier is defined and the center

frequency of an uplink carrier is located between two uplink subcarriers. In the downlink,
the subcarrier that coincides with the carrier-center frequency is left unused. This is shown
in Figure 2.5. The reason why the DC subcarrier is not used for downlink transmission is the
possibility of disproportionately high interference.

Overview of the LTE Physical Layer 19

Frequency

Resource
element

Resource
block

Resource
grid

Δf = 15 kHz

Slot 1 Slot 2 10.5

1 subframe = 1 ms

…

…

Figure 2.3 Resource elements, blocks, and grid

DC lies between 2
subcarriers

Resource block =
12 subcarriers

Uplind bandwidth

fc f

… …

Figure 2.4 Resource blocks and DC components of the frequency in uplink transmission

20 Understanding LTE with MATLAB®

Unused DC subcarrier

Resource block =
12 subcarriers

Downlink bandwidth

fc f

… …

Figure 2.5 Resource blocks and DC components of the frequency in downlink transmission

The choice of 15 kHz as subcarrier spacing fits perfectly with the OFDMmandate that turns
a frequency-selective channel into a series of frequency-flat subchannels with fine resolution.
This is turn helps the OFDM to efficiently combat frequency-selective fading by using a bank
of low-complexity equalizers that apply to each of the flat-faded subchannels in the frequency
domain.

2.7 OFDMMulticarrier Transmission

In the LTE standard, the downlink transmission is based on an OFDM scheme and the uplink
transmission is based on a closely related methodology known as SC-FDM. OFDM is a mul-
ticarrier transmission methodology that represents the broadband transmission bandwidth as
a collection of many narrowband subchannels.
There are multiple steps involved in OFDM signal generation. First, modulated data are

mapped on to the resource grid, where they are organized and aligned in the frequency domain.
Each modulated symbol ak is assigned to a single subcarrier on the frequency axis. With N
subcarriers occupying the bandwidth with a subcarrier spacing of Δf, the relationship between
the bandwidth and subcarrier spacing is given by:

BW = NrbΔf (2.1)

Each subcarrier fk can be considered an integer multiple of subcarrier spacing:

fk = kΔf (2.2)

The OFDM modulator consists of a bank of N complex modulators, where each modulator
corresponds to a single subcarrier. The OFDM modulated output x(t) is thus expressed as:

x(t) =
N∑
k=1

ake
j2𝜋fkt =

N∑
k=1

ake
j2𝜋kΔft (2.3)

Overview of the LTE Physical Layer 21

Assuming that the channel sample rate is Fs and the channel sample time is Ts= 1/Fs, the
discrete-time representation of the OFDM modulator can be expressed as:

x(n) =
N∑
k=1

ake
j2𝜋kΔfn∕N (2.4)

The OFDMmodulation lends itself naturally to an efficient implementation based on Inverse
Fast Fourier Transform (IFFT). After the OFDM modulation, an OFDM symbol is generated
and a cyclic prefix is added to the modulated signal. Insertion of a cyclic prefix is essentially
copying of the last part of the OFDM symbol to its beginning.

2.7.1 Cyclic Prefix

Cyclic prefix insertion is an important function during OFDM signal generation. A cyclic
prefix is necessary to prevent interference from previously transmitted OFDM symbols. The
intersymbol interference can be viewed as a direct result of multipath propagation. At first
glance, cyclic prefix insertion may be regarded as a useless operation since it is merely repeats
a copy of the existing data in the OFDM symbol and does not add any new information. How-
ever, it is instrumental for multiple reasons. First, it helps maintain orthogonality between
subcarriers in the receiver, which is one of the foundations of an orthogonal frequency divi-
sion transmission. It also provides a periodic extension to the OFDM signal through which
the “linear convolution” operation performed on the transmitted signal by the channel can be
approximated by a “circular convolution” operation. Mimicking a circular convolution with a
cyclic prefix is quite important if you want OFDM to represent the modulated signal in the fre-
quency domain. The validity of the frequency-domain equalization performed in the receiver is
only ensured if channel response can be viewed as circular convolution, something that cyclic
prefix insertion can ensure [2].
The length of the cyclic prefix is an important design parameter for a multicarrier transmis-

sion system. On one hand, the length of the cyclic prefix must be sufficient to cover typical
delay spreads encountered in most propagation scenarios within a cellular environment. On the
other hand, the cyclic prefix represents redundant data and a necessary overhead. As the name
“prefix” implies, the first portion of the received OFDM signal is discarded at the receiver.
Therefore, LTE must specify as small a cyclic prefix as possible in order to minimize the over-
head and maximize the spectral efficiency. To resolve this tradeoff, LTE specifies the cyclic
prefix length as the expected delay spread of the propagation channel and provides a margin
for error to account for imperfect timing alignment.
As shown in Table 2.4, the LTE standard specifies three different cyclic prefix values:

(i) normal (4.7 μs) and (ii) extended (16.6 μs) for subcarrier spacing of 15 kHz and (iii)

Table 2.4 Normal and extended cyclic prefix specifications

Configuration Subcarrier spacing Number of subcarriers Number of OFDM symbols

(Δf) (kHz) per resource block per resource block

Normal cyclic prefix 15 12 7

Extended cyclic prefix 15 12 6

7.5 24 3

22 Understanding LTE with MATLAB®

extended (33 μs) for subcarrier spacing of 7.5 kHz. Note that the subcarrier spacing 7.5 kHz
can only be used in a multicast/broadcast context. The normal cyclic prefix length of 4.7 μs is
appropriate for transmissions over most urban and suburban environments and reflects typical
delay spread values for those environments. Given that the time occupied by each OFDM
modulated symbol is about 66.7 μs, the cyclic prefix in normal mode accounts for an overhead
of about 7%. The overhead associated with an extended cyclic prefix of length 16.7 μs is 25%.
This rather excessive overhead is necessary for transmissions over rural environments with
longer delay spread and for broadcast services.

2.7.2 Subcarrier Spacing

Small subcarrier spacing ensures that the fading on each subcarrier is frequency nonselective.
However, subcarrier spacing cannot be arbitrarily small. Performance degrades as subcarrier
spacing decreases beyond a certain limit as a result of Doppler shift and phase noise [1].
Doppler shift is caused when a mobile terminal moves, and it increases with higher velocity.
Doppler shift causes intercarrier interference and the resulting degradations get amplified
with small subcarrier spacing. Phase noise or jitter results from fluctuations in the frequency
of the local oscillator and will cause intercarrier interference. To minimize the degradations
caused by phase noise and Doppler shift, a subcarrier spacing of 15 kHz is specified in the
LTE standard.

2.7.3 Resource Block Size

In LTE, a block of resource elements, known as a resource block, forms the unit of resource
scheduling. Several factors must be considered in the selection of the resource block size. First,
it should be small enough that the gain in frequency-selective scheduling (i.e., scheduling of
data transmission on good-frequency subcarriers) is large. Small resource block size ensures
that the frequency response within each resource block is similar, thereby enabling the sched-
uler to assign only good resource blocks. However, since the eNodeB does not know which
resource blocks are experiencing good channel conditions, the UE must report this informa-
tion back to the eNodeB. Thus, the resource block size must be sufficiently large to avoid
excessive feedback overhead. Since in LTE a subframe size of 1ms is used to ensure low
latency, the resource block size in frequency should be small, so that small data packets can be
efficiently supported. As a result, 180 kHz (12 subcarriers) was chosen as the resource block
bandwidth.

2.7.4 Frequency-Domain Scheduling

LTE supports different system bandwidths. OFDM and SC-FDM generate the transmitted
signal with an IFFT operation. We can thus accommodate different bandwidths by choosing
different FFT lengths. Regardless of the bandwidth used, LTE keeps the OFDM symbol dura-
tion constant at a fixed value of 66.7 μs. This enables the use of the same subcarrier of 15 kHz
for all bandwidths. These design choices ensure that the same frequency-domain equaliza-
tion techniques can be applied across multiple bandwidths. Having constant symbol durations
also means having the same subframe length in different bandwidths, a feature that greatly

Overview of the LTE Physical Layer 23

Table 2.5 Resource blocks, FFT, and cyclic prefix sizes for each LTE bandwidth

OFDM parameters for downlink transmission subframe duration (1ms) subcarrier
spacing (15 kHz)

Bandwidth (MHz) 1.4 3 5 10 15 20

Sampling frequency (MHz) 1.92 3.84 7.68 15.36 23.04 30.72

FFT size 128 256 512 1024 1536 2048

Number of resource blocks 6 15 25 50 75 100

OFDM symbols per slot 14/12 (Normal/extended)

CP length 4.7/5.6 (Normal/extended)

simplifies the time framing of the transmissions model. Although the actual FFT size used in
each bandwidth is not specified by the standard, an FFT size of 2048 is usually associated
with 20MHz. The FFT sizes for other bandwidths are usually the scaled-down versions of this
value, as shown in Table 2.5.

2.7.5 Typical Receiver Operations

In the receiver, we perform the inverses of the transmitter operations. Although the LTE stan-
dard, like many other requirement-based standards, does not specify the way receiver-side
operations are performed, discussing typical receiver operations is useful in understanding the
motivations behind specific transmitter-side operations defined in the standard.
The OFDM receiver reverses the operations of OFDM signal generation and transmission.

First, we delete the cyclic prefix samples from the beginning of the received OFDM symbol.
Then, by performing an FFT operation, we compute the received resource grid elements of a
particular OFDM symbol. At this stage we need to perform an equalization operation on the
received resource elements in order to undo the effects of channel and intersymbol interference
in order to recover the best estimate of the transmitted resource elements.
In order to perform equalization, we first need to estimate the channel frequency response

for the entire bandwidth; that is, for all resource elements. This is where the importance of
pilots or cell-specific reference (CSR) signals becomes evident. By transmitting known signal
values as pilots at various known points in the resource grid, we can estimate the actual channel
response at the corresponding subcarriers easily. These channel responses can be computed in
multiple ways, including via a simple ratio of received signal to transmitted signal. Now that
we have the channel responses at some regular points within the resource grid, we can employ
various averaging or interpolation operations to estimate the channel response for the entire
resource grid. After estimating the channel response for the grid, we recover the best estimates
of the transmitted resource elements through multiplication of the resource elements received
by the reciprocal values of the estimated channel responses.

2.8 Single-Carrier Frequency Division Multiplexing

The LTE uplink is based on a variant of the OFDM transmission scheme known as SC-FDM.
SC-FDM reduces the instantaneous power fluctuations observed in OFDM transmission.

24 Understanding LTE with MATLAB®

Therefore, it is a better choice for the design of low-power amplifiers suitable for user
terminals (UE). The way SC-FDM is implemented in the LTE standard is by essentially
preceding the OFDM modulator with a DFT (Discrete Fourier Transform) precoder. This
technique is known as Discrete Fourier Transform-Spread Orthogonal Frequency Division
Multiplexing (DFTS-OFDM).
The distinguishing feature of single-carrier transmission is that each data symbol is essen-

tially spread over the entire allocated bandwidth. This is in contrast to OFDM, where each
data symbol is assigned to one subcarrier. By spreading the data power over the bandwidth,
SC-FDM reduces the mean transmission power and guarantees that the dynamic range of the
transmitted signal stays within the linear region of the power amplifier. SC-FDM is capable
of providing the same advantages offered by OFDM, including (i) maintaining orthogonality
among multiple uplink users, (ii) recovering data using a frequency-domain equalization, and
(iii) combating multipath fading. However, the performance of SC-FDM transmission is usu-
ally inferior to that of OFDM when the same receiver is used [1]. DFTS-OFDM is discussed
in more detail later in this chapter.

2.9 Resource Grid Content

The LTE transmission scheme provides a time resolution of 12 or 14 OFDM symbols for each
subframe of 1ms, depending on the length of the OFDMcyclic prefix. Regarding the frequency
resolution, it provides for a number of resource blocks ranging from 6 to 100, depending on
the bandwidth, each containing 12 subcarriers with 15 kHz spacing. The next question is what
type of data occupies the resource elements that make up the resource grid. To answer this,
we must describe the various physical channels and signals that constitute the content of the
resource grid.
There are essentially three types of information contained in the physical resource grid.

Each resource element contains the modulated symbol of either user data or a reference or
synchronization signal or control information originating from various higher-layer channels.
Figure 2.6 shows the relative locations of the user data, control information, and reference
signal in a resource grid as defined for a unicast mode of operation.
In unicast mode, the user data carry the information that each user wants to communicate

and are delivered from the MAC (Medium Access Control) layer to the PHY as a transport
block. Various types of reference and synchronization signal are generated in a predictable
manner by the base station and the mobile set. These signals are used for such purposes as
channel estimation, channel measurement, and synchronization. Finally we have various types
of control information, which are obtained via the control channels and carry information that
the receiver requires in order to correctly decode the signal.
Next, we will describe the physical channels used in downlink and uplink transmission

and their relationships to higher-layer channels; that is, transport channels and logical chan-
nels. Compared with UMTS (Universal Mobile Telecommunications System) and other 3GPP
standards, LTE has substantially reduced its use of dedicated channels and relies more on
shared channels. This explains the convergence of many different types of logical and trans-
port channel on the shared physical channels. Beside physical channels, two types of physical
signals – reference signals and synchronization signals – are also transmittedwithin the shared
physical channel. The details of LTE channels and signals are presented in the following
sections.

Overview of the LTE Physical Layer 25

Control region
1–3 OFDM symbols

User data region
11–13 OFDM symbols

OFDM symbols

User data

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12 13 14

Cell specific
reference

signal

Control data

Subcarriers

Figure 2.6 Physical channel and signal content of LTE downlink subframe in unicast mode

Radio Resource Control

Medium Access Control

Physical Layer

Logical channels

Physical channels

Layer 1

Layer 2

Layer 3

Transport channels

Figure 2.7 Layer architecture in a LTE radio access network

2.10 Physical Channels

Among the objectives of the LTE standard is to create a more efficient and streamlined protocol
stack and architecture. Many dedicated channels specified in previous 3GPP standards have
been replaced by shared channels and the total number of physical channels has been reduced.
Figure 2.7 shows the protocol stack of the radio access network and its layer architecture.
Logical channels represent the data transfers and connections between the radio link control

(RLC) layer and the MAC layer. LTE defines two types of logical channel: a traffic channel
and a control channel. While the traffic logical channel transfers user-plane data, the control
logical channels transfer the control-plane information.

26 Understanding LTE with MATLAB®

Transport channels connect the MAC layer to the PHY and the physical channels are pro-
cessed by the transceiver at the PHY. Each physical channel is specified by a set of resource
elements that carry information from higher layers of the protocol stack for eventual trans-
mission on the air interface. Data transmission in downlink and uplink uses the DL-SCH
(Downlink Shared Channel) and UL-SCH (Uplink Shared Channel) transport channel types
respectively. A physical channel carries the time-frequency resources used for transmission of
a particular transport channel. Each transport channel is mapped to a corresponding physical
channel. In addition to the physical channels with corresponding transport channels, there are
also physical channels without corresponding transport channels. These channels, known as
L1/L2 control channels, are used for downlink control information (DCI), providing the ter-
minal with the information required for proper reception and decoding of the downlink data
transmission, and for uplink control information (UCI), used to provide the scheduler and the
Hybrid Automatic Repeat Request (HARQ) protocol with information about the situation at
the terminal. The relationship between the logical channels, transport channels, and physi-
cal channels in LTE differs in downlink versus uplink transmissions. Next, we will describe
various physical channels used in downlink and uplink, their relationships to the higher-layer
channels, and the types of information they carry.

2.10.1 Downlink Physical Channels

Table 2.6 summarizes the LTE downlink physical channels. The Physical Multicast Channel
(PMCH) is used for the purpose of MBMS. The rest of the physical channels are used in the
traditional unicast mode of transmission.
Figure 2.8 illustrates the relationship between various logical, transport, and physical chan-

nels in LTE downlink architecture. In the unicast mode, we have only a single type of traffic
logical channel – the Dedicated Traffic Channel (DTCH) – and four types of control logical
channel: the Broadcast Control Channel (BCCH), the Paging Control Channel (PCCH),
the Common Control Channel (CCCH), and the Dedicated Control Channel (DCCH). The
dedicated logical traffic channel and all the logical control channels, except for PCCH, are

Table 2.6 LTE downlink physical channels

Downlink physical channel Function

Physical Downlink Shared Channel
(PDSCH)

Unicast user data traffic and paging information

Physical Downlink Control Channel
(PDCCH)

Downlink Control Information (DCI)

Physical Hybrid-ARQ Indicator Channel
(PHICH)

HARQ Indicator (HI) and ACK/NACKs for the
uplink packets

Physical Control Format Indicator
Channel (PCFICH)

Control Format Information (CFI) containing
information necessary to decode PDCCH
information

Physical Multicast Channel (PMCH) Multimedia Broadcast Single-Frequency
Network (MBSFN) operation

Physical Broadcast Channel (PBCH) System information required by the terminal in
order to access the network during cell search

Overview of the LTE Physical Layer 27

DTCH

DL-SCH

PDSCH

PDCCH PHICH

DCI

BCH PCH
MCH

PCFICH PMCH

Physical Channels

Transport Channels

Logical Channels

PBCH

CCCH DCCH BCCH PCCH MCCH MTCH

Figure 2.8 Mapping LTE downlink logical, transport, and physical channels

multiplexed to form a transport channel known as the Downlink Shared Channel. The Paging
Control Channel (PCCH) is mapped to the Paging Channel (PCH) and combined with the
DLSCH to form the Physical Downlink Shared Channel (PDSCH). The PDSCH and four
other physical channels (PDCCH, Physical Downlink Control Channel; PHICH, Physical
Hybrid Automatic Repeat Request Indicator Channel; PCFICH, Physical Control Format
Indicator Channel; and PBCH, Physical Broadcast Channel) provide all the user data, control
information, and system information needed in the unicast mode, which are delivered from
higher layers.
In the multicast/broadcast mode, we have a traffic logical channel known as the Multicast

Traffic Channel (MTCH) and a control logical channel known as the Multicast Control Chan-
nel (MCCH). These are combined to form the transport channel known as the Multicast
Channel (MCH). Finally, the PMCH is formed as the physical channel for the MBMS mode.

2.10.2 Function of Downlink Channels

The PDSCH carries downlink user data as transport blocks that are handed down from the
MAC layer to the PHY.Usually, transport blocks are transmitted one at a time in each subframe,
except in a particular case of MIMO known as spatial multiplexing, where one or two transport
blocks can be transmitted per given subframe. Following adaptive modulation and coding,
the modulated symbols are mapped on to multiple time–frequency resource grids, which are
eventually mapped to multiple transmit antennas for transmission. The type of multi-antenna
technique used in each subframe is also subject to adaptation based on channel conditions.
The use of adaptive modulation, coding, and MIMO in the LTE standard implies that in each

subframe, depending on the channel quality observed at the mobile terminal, the base station
needs to make decisions about the type of modulation scheme, coding rate, and MIMO mode.
The measurements made in the terminal must feed back to the base station in order to help the
scheduling decisions made there for the ensuing transmissions. At each subframe, the mobile

28 Understanding LTE with MATLAB®

terminal needs to be notified about the scheduling from the base station for each transmitted
resource block. Among the information that must be communicated are the number of resource
blocks allocated to a user, the transport block size, the type of modulation, the coding rate, and
the type of MIMO mode used per each subframe.
In order to foster communication between the base station and themobile terminal, a PDCCH

is defined for each PDSCH channel. PDCCH primarily contains the scheduling decisions that
each terminal requires in order to successfully receive, equalize, demodulate, and decode the
data packets. Since PDCCH informationmust be read and decoded before decoding of PDSCH
begins, in a downlink PDCCH occupies the first few OFDM symbols of each subframe. The
exact number of OFDM symbols at the beginning of each subframe occupied by the PDCCH
(typically one, two, three, or four) depends on various factors, including the bandwidth, the
subframe index, and the use of unicast versus multicast service type.
The control information carried on the PDCCH is known as DCI. Depending on the format

of the DCI, the number of resource elements (i.e., the number of OFDM symbols needed to
carry them) varies. There are 10 different possible DCI formats specified by the LTE standard.
The available DCI formats and their typical use cases are summarized in Table 2.7.
Each DCI format contains the following types of control information: resource allocation

information, such as resource block size and resource assignment duration; transport informa-
tion, such as multi-antenna configuration, modulation type, coding rate, and transport block
payload size; and finally information related to the HARQ, including its process number, the
redundancy version, and the indicator signaling availability of new data. For example, the
content fields of DCI format 1 are summarized in Table 2.8.

Table 2.7 LTE Downlink Control Information (DCI) formats and their use cases

DCI format Use case

0 Uplink scheduling assignment

1 Downlink scheduling for one PDSCH codeword in SISO and SIMO
modes

1A Compact version of format 1 scheduling for one PDSCH codeword
or dedicated preamble assignment to iniate random access

1B Very compact downlink scheduling for one PDSCH codeword used
in MIMO mode number 6

1C Very compact downlink scheduling for paging or system
information

1D Compact downlink scheduling for one PDSCH codeword with
MIMO precoding and power offset information necessary for
multi-user MIMO

2 Downlink scheduling assignment for MIMO with closed-loop
spatial multiplexing

2A Downlink scheduling assignment for MIMO with open-loop spatial
multiplexing

3 Transmit Power Control (TPC) information for PUCCH and
PUSCH with 2 bit power adjustment

3A Transmit power control (TPC) information for PUCCH and PUSCH
with 1 bit power adjustment

Overview of the LTE Physical Layer 29

Table 2.8 Content of the DCI format 1

Field Number of bits Description

on PDCCH

Resource allocation
header

1 Indicates the selected resource allocation
of either type 0 or type 1

Resource block
assignment

Depends on resource
allocation type

Indicates resource blocks on PDSCH to
be assigned to the terminal

Modulation and Coding
Scheme (MCS)

5 Indicates the type of modulation and
coding used, together with the transport
block size and the number of resource
blocks allocated

HARQ process number 3 (FDD) 4 (TDD) Indicates the HARQ ID used in
asynchronous stop-and-wait protocol

New data indicator 1 Indicates whether the current packet is a
new transmission or a retransmission

Redundancy version 2 Indicates the incremental redundancy
state of the HARQ process

PUCCH TPC command 2 Indicates the transmit power control
command for adaptation of transmit
power on PUCCH

Downlink assignment
index

2 (Only for TDD mode) Indicates the
number of downlink subframes used
for uplink ACK/NACK bundling

The PCFICH is used to define the number of OFDM symbols that the DCI occupies in a
subframe. The PCFICH information is mapped to specific resource elements belonging to the
first OFDM symbol in each subframe. The possible values for PCFICH (one, two, three, or
four) depend on the bandwidth, frame structure, and subframe index. For bandwidths larger
than 1.4MHz, PCFICH code can take up to three OFDM symbols. For 1.4MHz bandwidth,
since the number of resource blocks is quite small, PCFICH may need up to four symbols for
control signaling.
Besides the PDCCH and PCFICH control channels, LTE defines another control channel

known as the Physical HARQ Indicator Channel (PHICH). The PHICH contains informa-
tion regarding the acknowledgment response for received packets in the uplink. Following the
transmission of an uplink packet, the UE will receive an acknowledgment for that packet on a
PHICH resource after a predetermined time delay. The duration of the PHICH is determined
by higher layers. In the case of a normal duration, the PHICH is only found in the first OFDM
symbol of a subframe; with extended duration, it is found in the first three subframes.
The PBCH carries the Master Information Block (MIB), which contains the basic PHY sys-

tem information and cell-specific information during the cell search. After the mobile terminal
correctly acquires the MIB, it can then read the downlink control and data channels and per-
form necessary operations to access the system. The MIB is transmitted on the PBCH over
40ms periods, corresponding to four radio frames, with portions transmitted in the first sub-
frame of every frame. The MIB contains four fields of information. The first two fields hold
information regarding downlink system bandwidth and PHICH configuration. The downlink

30 Understanding LTE with MATLAB®

system bandwidth is communicated as one of six values for the number of resource blocks
in downlink (6, 15, 25, 50, 75, or 100). As discussed earlier, these values for the number of
resource blocks map directly to bandwidths of 1.4, 3, 5, 10, 15, and 20MHz, respectively.
The PHICH configuration field of the MIB specifies the duration and amount of the PHICH,
as described earlier. The PBCH is always confined to the first four OFDM symbols found in
the first slot of the first subframe of every radio frame. In frequency, the PBCH occupies 72
subcarriers centered on the DC subcarrier. Following a description of the physical signals, we
can completely describe the content of the frame structures in the LTE standard.

2.10.3 Uplink Physical Channels

Table 2.9 summarizes the LTE uplink physical channels. The Physical Uplink Shared
Channel (PUSCH) carries the user data transmitted from the user terminal. The Physical
Random Access Channel (PRACH) is used for initial access of a UE to the network through
transmission of random access preambles. The Physical Uplink Control Channel (PUCCH)
carries the UCI, including scheduling requests (SRs), acknowledgments of transmission
success or failure (ACKs/NACKs), and reports of downlink channel measurements including
the Channel Quality Indicator (CQI), Precoding Matrix Information (PMI), and Rank
Indication (RI).
Figure 2.9 illustrates the relationship between logical, transport, and physical channels in the

LTE uplink architecture. Starting with logical channels, we have a Dedicated Traffic Channel
(DTCH) and two logical control channels, a Common Control Channel (CCCH), and a Ded-
icated Control Channel (DCCH). These three channels are combined to form the transport
channel known as the Uplink Shared Channel (UL-SCH). Finally, the Physical Uplink Shared
Channel (PUSCH) and the Physical Uplink Control Channel (PUCCH) are formed as the phys-
ical channels. The transport channel known as the Random Access Channel (RACH) is also
mapped to the Physical Random Access Channel (PRACH).

2.10.4 Function of Uplink Channels

The PUCCH carries three types of control signaling information: ACK/NACK signals for
downlink transmission, scheduling requests (SR) indicators, and feedback from the downlink
channel information, including the CQI, the PMI, and the RI.
The feedback of the downlink channel information relates to MIMO modes in downlink.

In order to ensure that the MIMO transmission schemes work correctly in downlink, each
terminal must perform measurements on the quality of the radio link and report the channel
characteristic to the base station. This essentially describes the channel quality functions of
the UCI as contained in the PUCCH.

Table 2.9 LTE uplink physical channels

Uplink physical channel Function

Physical Uplink Shared Channel (PUSCH) Uplink user data traffic

Physical Uplink Control Channel (PUCCH) Uplink Control Information (UCI)

Physical Random Access Channel (PRACH) Initial access to network through
random access preambles

Overview of the LTE Physical Layer 31

CCCH

RACH

PRACH PUSCH PCSCH

UL-SCH

DCCH DTCH

Physical
Channels

Transport
Channels

Logical
Channels

Figure 2.9 Mapping LTE uplink logical, transport, and physical channels

The CQI is an indicator of downlink mobile radio channel quality measures as taken by the
UE and transmitted to the base station for use in subsequent scheduling. It allows the UE to
propose to the base station a set of optimalmodulation schemes and coding ratesmatched to the
present radio link quality. There are 16 combinations of the modulation schemes and coding
rates that are transmitted as CQI information. Higher CQI values stand for higher modulation
orders and higher coding rates. Either a wideband CQI is used, which applies to all resource
blocks forming the bandwidth, or else a subband CQI is used, which assigns a given CQI
value to a certain number of resource blocks. The higher-layer configurations determine the
rate, periodicity, or frequency of CQI measurements in the terminal.
The PMI is an indication of a preferred precoding matrix to be used in a base station for a

given radio link. The PMI values represent precoding table indices for a two, four, or eight
transmit antenna configuration. The RI signals the number of useful transmit antennas, esti-
mated based on the channel quality and its effect on the correlations observed between adjacent
receive antennas. In the following sections, we will describe MIMO modes of transmission in
the LTE standard. From this, the roles of the CQI, PMI and RI indicators will become clear.

2.11 Physical Signals

A variety of physical signals, including reference and synchronization signals, are transmitted
within the shared physical channel. Physical signals map to a specific resource element used
by the PHY but do not carry information originating from higher layers. The details of LTE
signals are presented next.

2.11.1 Reference Signals

Channel-dependent scheduling in the frequency domain is one of the most attractive features
of the LTE standard. For example, in order to perform downlink scheduling that is aware of

32 Understanding LTE with MATLAB®

the actual channel quality, the mobile terminal must provide the base station with the Channel-
State Information (CSI). The CSI may be obtained by measuring reference signals transmitted
in the downlink. Reference signals are transmitted signals that are generated with synchronized
sequence generators in the transmitter and the receiver. These signals are placed in specific
resource elements in the time-frequency grid. LTE specifies several types of downlink and
uplink reference signal, which are described next.

2.11.1.1 Downlink Reference Signals

Downlink reference signals support the channel estimation functionality needed to equalize
and demodulate the control and data information. They are also instrumental in CSI measure-
ments (such as RI, CQI, and PMI) needed for channel quality feedback. LTE specifies five
types of reference signal for downlink transmission: Cell-Specific Reference Signals (CSR),
Demodulation Reference Signal (DM-RS, otherwise known as UE-specific reference signal),
Channel-State Information Reference Signal (CSI-RS), MBSFN reference signals, and posi-
tioning reference signals.
CSRs are common to all users in a cell and are transmitted in every downlink subframe.

DM-RSs are used in downlink multi-user transmission modes 7, 8, or 9. As the name implies,
they are intended for channel estimation performed by each individual mobile terminal in a
cell. CSI-RSs were first introduced in LTE Release 10. Their main function is to alleviate the
density problem associated with using CSRs for CSI measurements when more than eight
antennas are in use. Therefore, the use of CSI-RSs is limited to the multi-user downlink trans-
mission mode 9. MBSFN reference signals are used in the coherent demodulation employed
in multicast/broadcast services. Finally, positioning reference signals, first introduced in LTE
Release 9, help support measurements on multiple cells in order to estimate the position of
a given terminal. In this section, we provide more detail on the first three types of reference
signal enumerated here.

Cell-Specific Reference Signals
CRSs are transmitted in every downlink subframe and in every resource block in the
frequency domain, and thus cover the entire cell bandwidth. The CRSs can be used by the
terminal for channel estimation for coherent demodulation of any downlink physical channel
except PMCH and PDSCH in the case of transmission modes 7, 8, or 9, corresponding to
non-codebook-based precoding.
The CRSs can also be used by the terminal to acquire CSI. Finally, terminal measurements

such as CQI, RI, and PMI performed on CRSs are used as the basis for cell selection and
handover decisions.

UE-Specific Reference Signals
DM-RSs, or UE-specific reference signals, are only used in downlink transmission modes 7,
8, or 9, where CSRs are not used for channel estimation. DM-RSs were first introduced in LTE
Release 8 in order to support a single layer. In LTE Release 9, up to two layers were supported.
The extended specification introduced in Release 10 aimed to support up to eight simultaneous
reference signals.
When only one DM-RS is used, we have 12 reference symbols within a pair of resource

blocks. As will be discussed shortly, CSRs require spectral nulls or unused resource elements

Overview of the LTE Physical Layer 33

on all other antenna ports when a resource element on any given antenna is transmitting a
reference signal. This is a major difference between CSR and DM-RS. When two DM-RSs
are used on two antennas, all 12 reference symbols are transmitted on both antenna ports.
The interference between the reference signals is mitigated by generating mutually orthogonal
patterns for each pair of consecutive reference symbols.

CSI Reference Signals
CSI-RSs are designed for cases where we have between four and eight antennas. CSI-RSs were
first introduced in LTE Release 10. They are designed to perform a complementary function
to the DM-RS in LTE transmission mode 9. While the DM-RS supports channel estimation
functionality, a CSI-RS acquires CSI. To reduce the overhead resulting from having two types
of reference signal within the resource grid, the temporal resolution of CSI-RSs is reduced.
Thismakes the system incapable of tracking rapid changes in the channel condition. Since CSI-
RSs are only used with four to eight MIMO antenna configurations, and this configuration is
only active with lowmobility, the low temporal resolution of CSI-RSs does not pose a problem.

2.11.1.2 Uplink Reference Signals

There are two kinds of uplink reference signal in the LTE standard: the DM-RS and the
Sounding Reference Signal (SRS). Both uplink reference signals are based on Zadoff–Chu
sequences. Zadoff–Chu sequences are also used in generating downlink Primary Synchro-
nization Signals (PSSs) and uplink preambles. Reference signals for different UEs are derived
from different cyclic shift parameters of the base sequence.

Demodulation Reference Signals
DM-RSs are transmitted by UE as part of the uplink resource grid. They are used by the base
station receiver to equalize and demodulate the uplink control (PUCCH) and data (PUSCH)
information. In the case of PUSCH, when a normal cyclic prefix is used DSR signals are
located on the fourth OFDM symbol in each 0.5ms slot and extend across all the resource
blocks. In the case of PUCCH, the location of DSR will depend on the format of the con-
trol channel.

Sounding Reference Signals
SRSs are transmitted on the uplink in order to enable the base station to estimate the
uplink channel response at different frequencies. These channel-state estimates may be
used for uplink channel-dependent scheduling. This means the scheduler can allocate user
data to portions of the uplink bandwidth where the channel responses are favorable. SRS
transmissions have other applications, such as timing estimation and control of downlink
channel conditions when downlink and uplink channels are reciprocal or identical, as is the
case in the TDD mode.

2.11.2 Synchronization Signals

In addition to reference signals, LTE also defines synchronization signals. Downlink syn-
chronization signals are used in a variety of procedures, including the detection of frame

34 Understanding LTE with MATLAB®

boundaries, determination of the number of antennas, initial cell search, neighbor cell search,
and handover. Two synchronization signals are available in the LTE: the Primary Synchroniza-
tion Signal (PSS) and the Secondary Synchronization Signal (SSS).
Both the PSS and the SSS are transmitted as 72 subcarriers located around the DC subcarrier.

However, their placement in FDDmode differs from that in TDDmode. In an FDD frame, they
are positioned in subframes 0 and 5, next to each other. In a TDD frame, they are not placed
close together. The SSS is placed in the last symbols of subframes 0 and 5 and the PSS is
placed as the first OFDM symbols of the ensuing special subframe.
Synchronization signals are related to the PHY cell identity. There are 504 cell identities

defined in the LTE, organized into 168 groups, each of which contains three unique identities.
The PSS carries the unique identities 0, 1, or 2, whereas the SSS carries the group identity
with values 0–167.

2.12 Downlink Frame Structures

LTE specifies two downlink frame structures.A type 1 frame applies to an FDDdeployment and
a type 2 frame is used for a TDDdeployment. Each frame is composed of 10 subframes and each
subframe is characterized by the time–frequency resource grid. We have identified the three
components of a resource grid: user data, control channels and reference, and synchronization
signals. Now we can explain how and where each of these components is placed as the LTE
resource grid is populated per subframe before OFDM symbols are generated and transmitted.
Without a loss in generality, in this book we focus on FDD frame structures and type 1 frames.
Figure 2.10 shows the type 1 radio frame structure. The duration of each frame is 10ms,

composed of ten 1ms subframes denoted by indices ranging from 0 to 9. Each subframe is
subdivided into two slots of 0.5ms duration. Each slot is composed of seven or six OFDM,
depending on whether a normal or an extended cyclic prefix is used. The DCI is placed within
the first slot of each subframe. The DCI carries the content of the PDCCH, PCFICH, and
PHICH, and together they occupy up to the first three OFDM symbols in each subframe.
This region is also known as the L1/L2 control region, since it contains information that is
transferred to layer 1 (PHY) from layer 2 (the MAC layer).
The PBCH containing theMIB is located within subframe 0 and the PSS and SSS are located

within subframes 0 and 5. The PBCH channel and both the PSS and SSS signals are placed

FDD frame structure SSS User data + CSI

Control data

BCH

PSS

Subframe 0 Subframe 1 Subframe 5 Subframe 6 Subframe 9

……

Figure 2.10 Downlink FDD subframe structure

Overview of the LTE Physical Layer 35

within the six resource blocks centered on the DC subcarrier. In addition, CSRs are placed
throughout each resource block in each subframe with a specific pattern of time and frequency
separations. The pattern of placement for the CSR signals depends on the MIMO mode and
the number of antennas in use, as will be discussed shortly. The rest of the resource elements
in each subframe are allocated to user traffic data.

2.13 Uplink Frame Structures

The uplink subframe structure is in some ways similar to that for the downlink. It is com-
posed of 1ms subframes divided into two 0.5ms slots. Each slot is composed of either seven
or six SC-FDM symbols, depending on whether a normal or an extended cyclic prefix is used.
The inner-band resource blocks are reserved for data resource elements (PUSCH) in order to
reduce out-of-band emissions. Different users are assigned different resource blocks, a fact
that ensures orthogonality among users in the same cell. Data transmission can hop at the
slot boundary to provide frequency diversity. Control resources (PUCCH) are then placed at
the edge of the carrier band, with interslot hopping providing frequency diversity. The refer-
ence signals necessary for data demodulation are interspersed throughout the data and control
channels. Figure 2.11 illustrates an uplink frame structure.

2.14 MIMO

The LTE and LTE-Advanced standards achieve their maximum data rates in part due to their
incorporation of many multi-antenna or MIMO techniques. LTE standards perfectly combine

PUSCH user data

PUCCH Control data

PRACH
Random access

1-ms Subframe

Uplink frame structure

1-ms Subframe

Figure 2.11 Uplink frame structure

36 Understanding LTE with MATLAB®

the OFDM transmission structure with various MIMOmethodologies. As such, LTE standards
represent a MIMO-OFDM system. As we saw earlier, the OFDM transmission scheme in
each antenna constructs the resource grid, generates the OFDM symbols, and transmits. In
a MIMO-OFDM system, this process is repeated for multiple transmit antennas. Following
transmission of OFDM symbols associated with multiple resource grids on multiple transmit
antennas, at each receive antenna theOFDMsymbols of all transmitted antennas are combined.
The objective of a MIMO receiver is thus to separate the combined signals, and based on the
received estimates of resource elements, to resolve each resource element transmitted on each
of the transmit antennas.
Multi-antenna techniques rely on transmission by more than one antenna at the receiver or

the transmitter, in combination with advanced signal processing. Althoughmulti-antenna tech-
niques raise the computational complexity of the implementation, they can be used to achieve
improved system performance, including improved system capacity (in other words, more
users per cell), and improved coverage or the possibility of transmitting over larger cells. The
availability of multiple antennas at the transmitter or the receiver can be utilized in different
ways to achieve different aims.

2.14.1 Receive Diversity

The simplest and most common multi-antenna configuration is the use of multiple antennas at
the receiver side (Figure 2.12). This is often referred to as receive diversity. The most impor-
tant algorithm used in receive diversity is known as Maximum-Ratio Combining (MRC). It
is used within mode 1 of transmission in the LTE standard, which is based on single-antenna
transmission. This mode is also known as SISO (Single Input Single Output) where only one
receiver antenna is deployed or SIMO (Single Input Multiple Output) where multiple receive
antennas are used. Two types of combining method can be used at the receiver: MRC and
Selection Combining (SC) [2]. In MRC, we combine the multiple received signals (usually
by averaging them) to find the most likely estimate of the transmitted signal. In SC, only the
received signal with the highest SNR is used to estimate the transmitted signal.
MRC is a particularly goodMIMO technique when, in a fading channel, the number of inter-

fering signals is large and all signals exhibit rather equal strengths. As such, MRC works best
in transmission over a flat-fading channel. In practice, most wideband channels, as specified
in LTE, are subject to time dispersion, resulting in a frequency-selective fading response. To

Receive diversity

Tx Rx

Maximum
Ratio
Combing

ω1

ω2

ω3

ω4

+

Figure 2.12 MIMO receive diversity

Overview of the LTE Physical Layer 37

counteract the effects of frequency-selective coding, we must perform linear equalization, and
in order to make this more efficient it should be done in the frequency domain. The MIMO
techniques that handle these types of degradation best are discussed next.

2.14.2 Transmit Diversity

Transmit diversity exploits multiple antennas at the transmitter side to introduce diversity by
transmitting redundant versions of the same signal on multiple antennas. This type of MIMO
technique is usually referred to as Space–Time Block Coding (STBC). In STBC modulation,
symbols are mapped in the time and space (transmit antenna) domains to capture the diversity
offered by the use of multiple transmit antennas.
Space–Frequency Block Coding (SFBC) is a technique closely related to STBC that is

selected as the transmit diversity technique in the LTE standard. The main difference between
the two techniques is that in SFBC the encoding is done in the antenna (space) and frequency
domains rather than in the antenna (space) and time domains, as is the case for STBC. A block
diagram of SFBC is given in Figure 2.13.
In LTE, the second transmission mode is based on transmit diversity. SFBC and Frequency-

Switched Transmit Diversity (FSTD) are used for two- and four-antenna transmission, respec-
tively. Transmit diversity does not help with any boost in data rate; it only contributes to
the increased robustness against channel fading and improves the link quality. Other MIMO
modes – specifically, spatial multiplexing – contribute directly to the increased data rate in
the LTE standard.

Transmit diversity

Transmit
Diversity
Combiner

…

…

h11

h21 h12

h22

x3

x1

−x*4

−x*2

…

…

x4

x2

x1

x3

Figure 2.13 MIMO Space–Frequency Block Coding

38 Understanding LTE with MATLAB®

2.14.3 Spatial Multiplexing

In spatial multiplexing, completely independent streams of data are transmitted simultaneously
over each transmit antenna. The use of spatial multiplexing enables a system to increase its data
proportionally to the number of transmit antenna ports. At the same time, and at the same sub-
carrier in frequency, different modulated symbols are transmitted over different antennas. This
means spatial multiplexing can directly increase the bandwidth efficiency and result in a sys-
tem with high bandwidth utilization. The benefits of spatial multiplexing can be realized only
if transmissions over different antennas are not correlated. This is where the multipath fading
nature of a communication link actually helps the performance. Since multipath fading can
decorrelate the received signals at each receive antenna port, spatial multiplexing transmitted
over a multipath fading channel can actually enhance the performance.
All the benefits of spatial multiplexing can be realized only if a system of linear equations

describing the relationship between transmit and receive antennas can be solved. Figure 2.14
illustrates the spatial multiplexing for a 2× 2 antenna configuration. At each subcarrier, the
symbols s1 and s2 are transmitted over two transmit antennas. The received symbols at the
same subcarrier r1 and r2 may be considered the result of a linear combination of s1 and
s2 weighted by the channel matrix H with the addition of AWGN (Additive White Gaussian
Noise) n1 and n2. The resulting MIMO equation can be expressed as:[

r1
r2

]
=
[
H11 H12
H21 H22

] [
s1
s2

]
+
[
n1
n2

]
(2.5)

where the MIMO channel matrix H contains the channel frequency responses at each subcar-
rier Hij for any combination of transmit antenna i and receive antenna j. In a matrix notation
generalized for any number of transmit and receive antennas, the equation becomes:

−→r = H−→s + −→n (2.6)

where −→s represents the M-dimensional vector of transmitted signals at the transmitter side:
−→s = [s1,s2, … , sM] and the vectors −→r and −→n are N-dimensional vectors representing the
received signals and corresponding noise signals: −→r = [r1,r2, … , rM];

−→n = [n1,n2, … , nM].
When all the elements of vector −→s belong to a single user, the data streams of this sin-

gle user are multiplexed on to various antennas. This is referred to as a Single-User Multiple

Spatial multiplexing

=

X
→

X
→

Y
→

Y
→

h11

h11

h21

h21

h12

h12

h22

h22

x1 y1

x2 y2

Figure 2.14 MIMO spatial multiplexing

Overview of the LTE Physical Layer 39

Input Multiple Output (SU-MIMO) system. When data streams of different users are multi-
plexed on to different antennas, the resulting system is known as a Multi-User Multiple Input
Multiple Output (MU-MIMO) system. SU-MIMO systems substantially increase the data rate
for a given user and MU-MIMO systems increase the overall capacity of a cell to handle
multiple calls.
One of the most fundamental questions regarding the operation of a spatial multiplexing

system is whether or not the corresponding MIMO equation can be solved and whether it has
a unique solution. This question relates to the singularity of the corresponding MIMO chan-
nel matrix and whether or not it can be inverted. When the received signals on many receive
antennas are correlated, the channel matrix H may have rows or columns that are linearly
dependent. In that case, the resulting channel matrix will have a rank less than its dimension
and the matrix will be deemed non-invertible. Therefore, rank estimation is necessary for the
spatial multiplexing since it determines whether it is possible to perform the spatial multiplex-
ing operations under any given channel condition. The actual value of the rank of the matrix
indicates the maximum number of transmit antennas that can be successfully multiplexed. In
LTE terminology, the rank is known as the number of layers in the spatial multiplexing modes
of MIMO.
In closed-loop MIMO operations, the rank of the channel matrix is computed by the mobile

and transmitted to the base station via the uplink control channels. If the channel is deemed
to have less than a full rank, only a reduced number of independent data streams can take part
in spatial multiplexing in the upcoming downlink transmissions. This feature, known as rank
adaptation, is part of the adaptive MIMO schemes and complements other adaptive features
of the LTE standard.

2.14.4 Beam Forming

In beam forming, multiple transmit antennas can be used to shape the overall antenna radi-
ation pattern (or the beam) in order to maximize the overall antenna gain in the direction
of the mobile terminal. This type of beam forming provides the basis of downlink MIMO
transmission mode 7.
The use of beam-forming techniques can lead to an increase in the signal power at the

receiver proportional to the number of transmit antennas. Typically, beam forming relies on
the use of an antenna array of at least eight antenna elements [3]. Beam forming is then imple-
mented by applying different complex-valued gains (otherwise known as weights) to different
elements of the antenna array. The overall transmission beam can then be steered in differ-
ent directions by applying different phase shifts to the signals on the different antennas, as
illustrated in Figure 2.15.
The LTE standard specifies neither the number of antennas in the antenna array nor the

algorithms that are to be used in adjusting the complex-valued gains applied to each array ele-
ment. The LTE specification refers to an antenna port 5, which represents the virtual antenna
port created by the use of beam-forming techniques. UE-specific reference signals are used
for channel estimation in beam forming MIMO mode 7. Higher layers call the use of UE-
specific reference signals to the mobile terminal. Since mutually orthogonal reference sig-
nals are generated scheduled on the same pairs of resource blocks, different UEs (mobile
terminals) can resolve their allocated reference signals and use them for equalization and
demodulation.

40 Understanding LTE with MATLAB®

Beam forming

Rx

ω1

ω2

ω3

ω4

Figure 2.15 MIMO beam forming

2.14.5 Cyclic Delay Diversity

Cyclic Delay Diversity (CDD) is another form of diversity that is used in the LTE standard
in conjunction with open-loop spatial multiplexing. CDD applies cyclic shifts to vectors or
blocks of signal transmitted at any given time on different antennas. This is an effect analo-
gous to the application of a known precoder. As such, CDD fits very well with block-based
transmission schemes such as OFDM and SC-FDM. In the case of OFDM transmission, for
example, a cyclic shift of the time domain corresponds to a frequency-dependent phase shift
in the frequency domain. Since the phase shift in frequency – that is, the precoder matrix – is
known and predictable, CDD is used in open-loop spatial multiplexing and in high-mobility
scenarios where closed-loop feedback of an optimal precoder matrix is not desirable. The net
effect of applying CDD is the introduction of artificial frequency diversity as experienced by
the receiver. We can easily extend CDD to more than two transmit antennas, with different
cyclic shifts for each.

2.15 MIMO Modes

Table 2.10 summarizes the LTE transmission modes and the associated multi-antenna trans-
mission schemes. Mode 1 uses receive diversity and mode 2 is based on transmit diversity.
Modes 3 and 4 are single-user implementations of spatial multiplexing based on open-loop
and closed-loop precoding, respectively. Mode 3 also uses CDD (discussed earlier).
LTE mode 5 specifies a very simple implementation of multi-user MIMO based on mode 4

with the maximum number of layers set to one. Mode 6 features beam forming and a special
case of mode 4 where the number of layers is set to two. LTE modes 7–9 implement versions
of spatial multiplexing without the use of codebooks, with a number of layers of 1, up to 2,
and 4–8, respectively. The LTE-Advanced (Release 10) introduced major enhancements to
downlink MU-MIMO by introducing modes 8 and 9. For example, mode 9 supports eight

Overview of the LTE Physical Layer 41

Table 2.10 LTE transmission modes and their associated multi-antenna transmission schemes

LTE transmission modes

Mode 1 Single-antenna transmission

Mode 2 Transmit diversity

Mode 3 Open-loop codebook-based precoding

Mode 4 Closed-loop codebook-based precoding

Mode 5 Multi-user MIMO version of transmission mode 4

Mode 6 Single-layer special case of closed-loop codebook-based
precoding

Mode 7 Release 8 non-codebook-based precoding supporting only a
single layer, based on beam forming

Mode 8 Release 9 non-codebook-based precoding supporting up to two
layers

Mode 9 Release 10 non-codebook-based precoding supporting up to
eight layers

transmit antennas for transmissions of up to eight layers. These advances result directly from
the introduction of new reference signals (CSI-RS and DM-RS), enabling a non-codebook-
based precoding and thus adopting a lower-overhead double-codebook structure [4].

2.16 PHY Processing

In order to understand the LTE PHY, we have to specify the following sequence of operations.
First, describe channel coding, scrambling, and modulation resulting in modulated symbols,
then describe the steps in mapping the modulated signals to the resource grid, including map-
ping the user data, the reference signals, and the control data. Then, specify the MIMO modes
that enable multiple antenna transmissions. The different MIMO algorithms involve specify-
ing layer mapping, which describes how many transmit antennas are used in every frame and
what precoding transformation is applied to the modulated bits before they are mapped to the
resource grids of all transmit antennas.

2.17 Downlink Processing

The chain of signal processing operations performed in the transmitter can be summarized as
the combination of transport block processing and physical channel processing. The processing
stack is completely specified in 3GPP documents describing the multiplexing and channel
coding [5] and physical channels and modulation [3]. The baseband signal processing chain
applied to the combination of DLSCH and PDSCH can be summarized as follows:

• Transport-block CRC (Cyclic Redundancy Check) attachment
• Code-block segmentation and code-block CRC attachment
• Turbo coding based on a one-third rate
• Rate matching to handle any requested coding rates
• Code-block concatenation to generate codewords

42 Understanding LTE with MATLAB®

• Scrambling of coded bits in each of the codewords to be transmitted on a physical channel
• Modulation of scrambled bits to generate complex-valued modulation symbols
• Mapping of the complex-valued modulation symbols on to one or several transmission

layers
• Precoding of the complex-valued modulation symbols on each layer for transmission on the

antenna ports
• Mapping of complex-valuedmodulation symbols for each antenna port to resource elements
• Generation of complex-valued time-domain OFDM signal for each antenna port.

Figure 2.16 illustrates the combination of the signal processing applied to transport blocks
delivered to the PHY from the MAC layer until the OFDM signal is transferred to antennas
for transmission.
Each of the components of LTE downlink transmission is described in detail in Chapters

4–7. In Chapter 4, we will elaborate on DLSCH processing and on scrambling and modu-
lation mapper functionality. In Chapter 5, we will detail the OFDM multicarrier transmission
scheme used in downlink. In Chapter 6, we will review details regarding variousMIMO imple-
mentations of the standard. In Chapter 7, we will describe the link adaptation functionalities
that use various control channels for dynamic scheduling of resources according to the channel
conditions.

CRC attachment

Subblock
segmentation

Channel coding
(turbo encoder)

Rate matching

Codeword
reconstruction

Scrambling
Modulation
Mapping

Precoding
Layer

Mapping

Resource
element
Mapping

OFDM
signal

generation

OFDM
Symbols

for multiple
transmit

antennas

OFDMMIMO

PDSCH
processing

DLSCH
processing

LTE Downlink transmitter model

Transport
block

Payload
bits

0100010011...

Figure 2.16 Signal processing chain of downlink DLSCH and PDSCH

Overview of the LTE Physical Layer 43

2.18 Uplink Processing

The chain of signal processing operations applied to the combination of ULSCH and PUSCH
is summarized as follows:

• Transport-block CRC attachment
• Code-block segmentation and code-block CRC attachment
• Turbo coding based on a one-third rate
• Rate matching to handle any requested coding rates
• Code-block concatenation to generate codewords
• Scrambling
• Modulation of scrambled bits to generate complex-valued symbols
• Mapping of modulation symbols on to one or several transmission layers
• DCT transform precoding to generate complex-valued symbols
• Precoding of the complex-valued symbols
• Mapping of precoded symbols to resource elements
• Generation of a time-domain SC-FDM signal for each antenna port.

Figure 2.17 illustrates the combination of the signal processing applied to transport blocks
delivered to the PHY until the SC-FDM signal is transferred to antennas for transmission. The

CRC attachment

Subblock
segmentation

Channel coding
(turbo encoder)

Rate matching

Codeword
reconstruction

Scrambling
Modulation

Mapper
DFT Precoding

Layer
Mapping

Resource
element
Mapping

OFDM
signal

generation

SC-FDM
Symbols

for multiple
transmit

antennas

OFDMMIMO

PUSCH
processing

ULSCH
processing

LTE Uplink transmitter model

Transport
block

Payload
bits

0100010011...

Figure 2.17 Signal processing chain of downlink ULSCH and PUSCH

44 Understanding LTE with MATLAB®

processing stack is also fully specified in 3GPP documents describing the multiplexing and
channel coding [5] and physical channels and modulation [3].
In this section, we will describe two distinguishing components of uplink transmission:

SC-FDM based on DFT-precoded OFDM and MU-MIMO.

2.18.1 SC-FDM

In LTE, a special precoding, based on the application of DFT to modulated symbols, is used to
generate the SC-FDM signal in the frequency domain. Note that SC-FDM signal generation
is almost identical to that of OFDM, with the exception that an additional M-point DFT is
introduced. Usually, computing the DFT is less computationally efficient than computing the
FFT. However, we can find efficient implementations for certain DFTs whose sizes are of
prime lengths. This is the reason why LTE specifies the M-point DFT sizes as multiples of
two, three, or five (all prime numbers).
In uplink transmission, following coding, scrambling, and modulation and prior to resource

element mapping, a DFT-based precoder is applied to the modulated symbols of each layer.
The DFT-transformed symbols are then mapped to frequency subcarriers prior to the IFFT
operation and cyclic prefix insertion, which finally leads to SC-FDM signal generation.
The data symbols of any individual user transmitted as a SC-FDM symbol must be either
contiguous or evenly spaced in the resource grid.
Localized mapping of DF-precoded symbols within the resource grid means that the entire

allocation is contiguous in frequency. This results in acceptable channel-estimation perfor-
mance, since the pilots are contiguous and simple interpolating techniques can be used in
channel estimation. Furthermore, multiplexing of different users in the spectrum based on a
contiguous resource block pattern is quite easy. Distributed mapping, on the other hand, means
that the allocated bandwidth is evenly distributed in frequency. This type of mapping delivers a
good measure of frequency diversity. However, since it also distributes the pilots, the resulting
channel estimation performance will suffer. Multiplexing all the users together in the spectrum
will also be more difficult in distributed mapping. As such, distributed or localized frequency
allocations represent typical tradeoffs between frequency diversity and performance.

2.18.2 MU-MIMO

In mobile systems, the number of receive antennas N at the mobile terminal is often smaller
than the number of transmit antennas M at the base station. Since the capacity gain offered
by MIMO systems is scaled by the parameter min(M,N), the capacity gain of SU-MIMO is
limited by the number of receive antennas at the receiver (N) [4].
In downlink transmission, this problem is addressed by MU-MIMO techniques, offered as

transmission modes 7–9. In uplink, however, the LTE Release 8 only supports transmissions
over one transmit antenna at the mobile terminal at a time, although multiple antennas may be
present. This choice was motivated by an attempt to minimize the cost, power, and complexity
of mobile hardware.
Antenna selection can be used to select one from among many transmit antennas at any time.

In this case, the selection of the mobile transmit antenna can be either handled and signaled by

Overview of the LTE Physical Layer 45

UE3

UE1

UE2

MU=MIMO pair

MU=MIMO pair

MU=MIMO

UE4

eNB

Figure 2.18 Uplink MU-MIMO

the base station or locally managed by the mobile terminal. Uplink MU-MIMO can be viewed
as a MIMO system where, different users transmit their streams on the same resource blocks
while each transmitting on a single antenna in their mobile units.
Figure 2.18 shows a block diagram of such an uplink MU-MIMO scenario. In this example,

we form a bunch ofMU-MIMOpairs by pairing together transmissions from couples of mobile
units. The base station schedules the uplink transmission for each UE within the MU-MIMO
pair in the same subframe and on the same resource blocks. Depending on the number of
resource blocks available in the system bandwidth, we can schedule multipleMU-MIMO pairs
simultaneously. The pairing can change in time based on such considerations as power con-
trol, individual channel quality, and interference profile. Although in our example we showed
two paired users, the combination of DM-RS and CSI-RS reference signals in LTE-Advanced
allows us to share up to eight mobile terminals in MU-MIMO that share the same resource
blocks. For more information on MU-MIMO, the reader is referred to [4].

2.19 Chapter Summary

In this chapter we studied the PHY specifications of the LTE standards. We focused on identi-
fying an adequate set of elements of the PHY model necessary for a deeper understanding of
this subject. First, we examined the air interface of the standard, detailing its frequency bands,
bandwidths, time framing, and time–frequency structure. We then elaborated on the multi-
carrier schemes of the standard: OFDM for downlink transmission and SC-FDM for uplink
transmission. We identified the constituents of the OFDM resource grid, which is fundamen-
tal to understanding the PHY modeling. We also discussed the frame structures in uplink and
downlink.
We then covered the physical channels and physical signals used in both uplink and downlink

transmissions. We also provided an introduction to the MIMO schemes used in the standard,
which completely specify various transmission modes. Finally, we summarized the sequence
of operations performed in downlink and uplink transmissions. We have left the details regard-
ing modeling of the processing chain in MATLAB for Chapters 4–7.

46 Understanding LTE with MATLAB®

References

[1] Ghosh, A. and Ratasuk, R. (2011) Essentials of LTE and LTE-A, Cambridge University Press, Cambridge.
[2] Dahlman, E., Parkvall, S. and Sköld, J. (2011) 4G LTE/LTE-Advanced for Mobile Broadband, Elsevier.
[3] 3GPP (2011) Evolved Universal Terrestrial Radio Access (E-UTRA), , Physical Channels and Modulation

Version 10.0.0. TS 36.211, January 2011.
[4] C. Lim, T. Yoo, B. Clerckx, B. Lee, B. Shim, Recent trend of multiuser MIMO in LTE-advanced, IEEE

Magazine, 51, 3, 127–136, 2013.
[5] 3GPP (2011) Evolved Universal Terrestrial Radio Access (E-UTRA), Multiplexing and Channel Coding. TS

36.212.

3

MATLAB® for Communications
System Design

In this chapter, we introduce some of the capabilities in MATLAB related to the analysis,
design, modeling, simulation, implementation, and verification of communications systems.
We attempt to answer the following question: How can MATLAB, a high-level programming
language and a design and simulation environment with an extensive library of software tool-
boxes, help academics and practitioners in the development of mobile and wireless systems?

3.1 System Development Workflow

To answer this question, we review multiple stages of development: from early research and
algorithm design to integration of individual algorithms into a prototype system model, to ver-
ification using simulations that the system works as intended, to checking whether the system
is realizable, to assessing its resource consumption, memory, complexity, and so on, to coding
the design as a software or hardware implementation. The step before implementation – that
is, system-level resource assessment – requires some form of software coding for system-level
simulation. It also involves integrating real constraints such as data types and memory with
complexity trade-offs. This system-level code can be used as the basis for hardware imple-
mentation, with the aim being to integrate sufficient detail that the task of the implementer
becomes the creation of a bit-accurate model of the software simulation as either assembly
code for implementation on Digital Signal Processors (DSPs) or as Hardware Description
Language (HDL) code for implementation on a Field-Programmable Gate Array (FPGA) or
an Application-Specific Integrated Circuit (ASIC). Throughout this process we must continu-
ously monitor new details as they are added to the model in order to ensure that the elaborated
design still meets the requirements set out at the research and development level.

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

48 Understanding LTE with MATLAB®

3.2 Challenges and Capabilities

We face a number of challenges when we start from a typical standards specification until we
implement the design. These challenges include:

• Translation from a specification based on text-based explanations to a software model that
can act as a blueprint for implementation

• Introduction of innovative proprietary algorithms specially for the receiver operations where
standards provide flexibility

• Execution of the software model in order to perform a dynamic system-level performance
evaluation

• Acceleration of simulation for the handling of large data sets
• Resolving gaps in the implementation workflow.

MATLAB and its toolboxes can help address some of these challenges.

• Digital signal processing and advanced linear algebra, as foundations of the LTE (Long
Term Evolution) standard, form the core competency of the MATLAB language. The make-
up of the standard can gradually and intuitively be synthesized with a series of MATLAB
programs

• The Communications System Toolbox provides ready-to-use MATLAB tools for the build-
ing of communications-system models. With over 100 algorithms for modulation, channel
modeling, error correction, MIMO (Multiple Input Multiple Output) techniques, equaliz-
ers, and more, the Toolbox allows us to focus on communications system design rather than
software engineering. It also includes many standards-based examples in order to allow a
quick start

• MATLAB and Simulink are ideal environments for dynamic and large-scale simulations.
• MATLAB enables simulation to be accelerated.
• MATLAB allows implementation workflow gaps to be addressed, using:

• Automatic MATLAB to C/C++ and HDL (Hardware Description Language) code
generation

• Hardware-in-the-loop verification.

We can divide these capabilities into four categories: algorithm development, modeling and
simulation, simulation acceleration, and path to implementation. In this chapter, following a
quick introduction to MATLAB and Simulink as core products, we will introduce three cate-
gories of capability:

• Tools for modeling and simulation
• Tools for acceleration of the simulation speed
• Tools that enable a path to implementation.

Themodeling and simulation capabilities, including various toolboxes, enable users to create
simulation models of communications standards, including wireless and mobile standards.
Running these simulation models enables the designer to gauge the performance of the entire
system and of individual algorithms and to determine the effects of channel degradations and
other real-time conditions.

MATLAB® for Communications System Design 49

3.3 Focus

The focus of this book is on LTE PHY (Physical Layer) modeling as MATLAB programs.
For example, we discuss modeling and simulation of the LTE standard only in the FDD (Fre-
quency Division Duplex) mode. Without any loss of generality and with some modification of
MATLAB code, the reader can then adopt our MATLAB program for TDD (Time Division
Duplex) mode. We will not cover topics related to control-plane processing, roaming or ran-
dom access, or multimedia broadcast frames, nor will we cover detailed MATLAB programs
related to multicast mode or multi-user MIMO. We will focus instead on a general scenario in
which a mobile unit is assigned to a cell and we fully detail user-plane data processing.

3.4 Approach

Starting from the simplest component of the LTE (i.e., the modulators), we will create a
series of MATLAB programs that progressively add other components such as scrambling
and channel coding to the signal processing chains. At each stage, we will compute perfor-
mance measures such as Bit Error Rate (BER) to ensure that the combinations of components
are properly modeled in MATLAB. We will continue this process and develop MATLAB pro-
grams to model OFDM and MIMO operations specified in the standard. In so doing, we will
also generate multiple subfunctions that help match the model to the LTE standard. At the
end of this process, we will have MATLAB programs and Simulink models that represent
important signal processing operations of various downlink modes of the LTE standard.

3.5 PHY Models in MATLAB

In this book we will iteratively and systematically build up the necessary components of the
LTE PHY in MATLAB for downlink transmission. However, in order to make the discussion
fit a book of this size, we have to be selective in the details we highlight. The pedagogic value
of iterative and gradual design can be more beneficial than adherence to all parameters and
details specified in the standard. As the title of the book attests, we are aiming for a creating
understanding of LTE by augmentation of technical discussions with software programs that
can be executed in MATLAB. The ability to run and execute the software and simulate the
system adds another dimension to the level of understanding.
Next, we will highlight various products that helps users model, simulate, prototype, and

implement wireless systems in MATLAB.

3.6 MATLAB

MATLAB is a widely-used programming language for algorithm development, data analy-
sis, visualization, and numerical computation. If the volume of technical papers and publica-
tions mentioning it is any indication, MATLAB has a long history in communications system
design and is used by both academics and practitioners. It lets designers focus on algorithms
rather than low-level programming. Many of its features and capabilities are perfect for mod-
eling wireless systems: (i) it has an interactive program and environment that matches the
exploratory nature of science; (ii) it provides seamless access to data and algorithms; and
(iii) it has tools for visualization, algorithm development, and data analysis.

50 Understanding LTE with MATLAB®

Matrix as fundamental data type: The fundamental data type in MATLAB is the matrix.
Since most algorithms used in communications systems are based on block-based or frame-
based processing of data, expressing these algorithms is natural in MATLAB. This means
the mathematical formula expressed in the matrix format is immediately expressed in MAT-
LAB. For example, in MIMO systems the relationship between the received and the trans-
mitted data is expressed by a system of linear equations of the form y = Ax + n. These
kinds of relationship can be expressed easily by a single line of MATLAB code. Compare
that to a typical C code representing the same algorithms, which will look like a double
for loop.

Linear algebra and Fourier analysis: MATLAB contains mathematical, statistical, and
engineering functions that support all common engineering and science operations. These
functions, developed by experts in mathematics, are the foundation of the MATLAB
language. The core math functions use the LAPACK and BLAS linear algebra subroutine
libraries and the FFTW Discrete Fourier Transform library. Mathematical functions for
linear algebra, statistics, Fourier analysis, filtering, optimization, and numerical integration
are implemented as fast and accurate functions in MATLAB.

Visualization for design validation: Most graphical features required to visualize engineer-
ing and scientific data are available in MATLAB. These include 2D and 3D plotting func-
tions, 3D volume-visualization functions, tools for the interactive creation of plots, and the
exporting of results to all popular graphics formats. Plots can be customized by a variety of
methods.

Complex numbers and a range of data types: Simulation of communications systems relies
on the extensive use of complex data and random number generators. MATLAB enables you
to perform arithmetic operations on a wide range of data types, including doubles, singles,
and integers. MATLAB also has optimized functions for random number generators. Func-
tions such as randn (which models random numbers with normal distributions), rand (for
uniform distribution), and randi (for discrete integer random distributions) have favorable
properties in terms of periodicity and efficiency [1].

3.7 MATLAB Toolboxes

MATLAB’s add-on software tools are called toolboxes. These provide specialized mathemati-
cal functionalities in areas including signal processing and communications. They complement
the core MATLAB library and provide application-specific functions and objects that acceler-
ate the process of modeling and building algorithms and systems. These algorithmic building
blocks enable the user to focus on their area of expertise instead of having to reinvent and
implement the basics.
Four system toolboxes – DSP System Toolbox [2], Communications System Toolbox [3],

Phased Array System Toolbox [4], and Computer Vision System Toolbox [5] – are particularly
suitable for system modeling in different application areas. Not only do they provide algo-
rithms for the design, simulation, and verification of various application areas, but they provide
components that facilitate the creation of simulation test benches for the modeling of dynamic
systems. In later sections we will review some of these system toolboxes in further detail.

MATLAB® for Communications System Design 51

3.8 Simulink

Simulink requires MATLAB and provides an environment for multidomain simulation and
model-based design for dynamic and embedded systems [6]. It provides an interactive graphi-
cal environment and a customizable set of block libraries.With an easy-to-use graphical design
environment, Simulink allows us to design, simulate, implement, and test a variety of time-
varying systems, including communications, control, signal processing, and video processing.
With Simulink, we can create, model, and maintain a detailed block diagram of our sys-

tem using a comprehensive set of predefined blocks. Simulink provides tools for hierarchical
modeling, data management, and subsystem customization. Additional blocksets or system
toolboxes extend Simulink with specific functionality for aerospace, communications, radio
frequency, signal processing, video, image processing, and other applications; these features
are particularly useful for the modeling and simulation of communications systems.

Integration with MATLAB: MATLAB functions can be called within Simulink models in
order to implement algorithms that can analyze data and verify a design. Use of the MAT-
LAB function block in Simulink allows MATLAB code to be integrated into Simulink.
Simulink will first use its code-generation capabilities to translate the MATLAB code to
C code, then compile the C code as a MEX (MATLAB Executables) function and call the
resulting MEX function when executing the Simulink model.

Signal attributes and data-type support: Like MATLAB, Simulink defines the following
signal and parameter attributes: data types – single, double, signed, or unsigned 8, 16, or
32 bit integers; Boolean and fixed-point; dimension – scalar, vector, matrix, or N-D arrays;
values – real or complex. This enables us, for example, to monitor the effects of finite word
lengths on the accuracy of the computation in an algorithm.

Simulation capabilities: After building a model in Simulink, we can simulate its dynamic
behavior and view the results. Simulink provides several features and tools that ensure the
speed and accuracy of a simulation, including fixed-step and variable-step solvers, a graph-
ical debugger, and a model profiler.

Using solvers: Solvers are numerical-integration algorithms that compute the system dynam-
ics over time using information contained in themodel. Simulink provides solvers to support
the simulation of continuous-time (analog), discrete-time (digital), hybrid (mixed-signal),
and multirate systems.

Executing a simulation: Once we have set the simulation options for a model, we can run
the simulation interactively, using the Simulink GUI (Graphical User Interface), or sys-
tematically, by running it in batch mode from the MATLAB command line. The following
simulation modes can be used:

– Normal (default), which interpretively simulates the model
– Accelerator, which speeds model execution by creating compiled target code, while still

allowing the model parameters to be changed
– Rapid accelerator, which can simulate models faster than the accelerator mode but with

less interactivity, by creating an executable separate from Simulink that can run on a
second processing core.

52 Understanding LTE with MATLAB®

3.9 Modeling and Simulation

Most algorithm development for various systems and components starts in MATLAB. With a
library of digital signal-processing, linear algebra, and mathematical operators, designs can be
expressed easily in MATLAB as algorithms composed of a pertinent sequence of operations.
As individual algorithms are developed and connected to each other, this forms the basis of
a system model. System modeling can best be done in either MATLAB or Simulink. As we
saw earlier, Simulink allowsMATLAB algorithms and functions to be integrated seamlessly as
system components. By using various add-on toolboxes, we can expand the scope of the system
and simulate it to verify that it behaves according to specifications. In this section we will
introduce some of the MATLAB and Simulink add-on toolboxes that help with this process.

3.9.1 DSP System Toolbox

The DSP System Toolbox provides algorithms and tools for foundational signal processing
operations. It comes with a slew of specialized filter design capabilities, FFTs (Fast Fourier
Transforms), and multirate processing abilities and features algorithms captured as System
objects that make the task of processing streaming data and creating real-time prototypes eas-
ier. The DSP System Toolbox has specialized tools for connecting to audio files and devices,
performing spectral analysis, and using other interactive visualization techniques that enable
the analysis of system behavior and performance. All of these components support automatic
C/C++ code generation, most support fixed-point data, and a few generate HDL code.

3.9.2 Communications System Toolbox

The Communications System Toolbox provides algorithms and tools for the design, simula-
tion, and analysis of communications systems. This toolbox is specially designed to model the
PHYof communications systems. It contains a library of components including ones for source
coding, channel coding, interleaving, modulation, equalization, synchronization, MIMO, and
channel modeling. These components are provided as MATLAB functions, MATLAB System
objects, and Simulink blocks, so they can be used as part of MATLAB or Simulink system
models. All support C/C++ code generation, most support fixed-point data arithmetic, and a
few generate HDL code for FPGA or ASIC hardware implementation.

3.9.3 Parallel Computing Toolbox

The Parallel Computing Toolbox [7] can help accelerate computationally and data-intensive
problems using multicore processors, GPUs (Graphics Progressing Units), and computer clus-
ters. Features such as parallelized for loops, special array types, and parallelized numerical
algorithms allow the parallelization of MATLAB applications. The toolbox can be used with
Simulink to runmultiple simulations of amodel in parallel. Twomain approaches to simulation
acceleration can be identified:

Multicore or cluster processing: Some applications can be sped up by organizing them into
independent tasks and executing several at the same time on different processing units. This
class of task-parallel application includes simulations for design optimization, BER test-
ing, and Monte Carlo simulations. As one of its easy-to-use and intuitive capabilities, the

MATLAB® for Communications System Design 53

toolbox offers parfor, a parallel for-loop construct that can automatically distribute indepen-
dent tasks to multipleMATLABworkers. AMATLABworker is aMATLAB computational
engine that runs independently of the desktop MATLAB session. MATLAB can automat-
ically detect the presence of workers and will revert to serial behavior if only the desktop
session is present. Task execution can also be set up using other methods, such as manipu-
lation of task objects in the toolbox.

GPU processing: The Parallel Computing Toolbox provides a special array type that allows
computations to be performed on CUDA-enabled NVIDIA GPUs direct from MATLAB.
Supported functions include FFT, element-wise operations, and several linear algebra oper-
ations. The toolbox also provides a mechanism that allows existing CUDA-based GPU
kernels to be used directly fromMATLAB. The Communication System Toolbox has many
specialized algorithms that support GPU processing. The Parallel Computing Toolbox can
be used to execute many communications algorithms directly on the GPU.

3.9.4 Fixed-Point Designer

Fixed-Point Designer [8], previously Fixed-Point Toolbox, provides fixed-point data types,
operations, and algorithms in MATLAB. Using Fixed-Point Designer, the effects of finite
word lengths can be modeled for variables in various algorithms. The toolbox allows fixed-
point algorithms to be designed using MATLAB syntax and the results to be compared with
the floating-point implementation of the same algorithm. These algorithms can be reused in
Simulink and can pass fixed-point data to and from Simulink models. The toolbox provides a
suite of tools that make it easier to convert an algorithm from a floating-point to a fixed-point
implementation.

3.10 Prototyping and Implementation

Various MathWorks products can help elaborate a design from concept to embeddable code
while staying within theMATLAB environment. TheMATLAB algorithmmust first be refined
based on design constraints such as finite word lengths, limitations onmemory and complexity,
and so on. It can then be integrated and simulated as part of a larger system model, and bit-true
test sequences can be generated to verify that software and hardware implementations match
the golden reference results in MATLAB. Finally, C and HDL code can be generated for hard-
ware implementation. With this step, the errors introduced by manual coding can be avoided
by maintaining a single design source in MATLAB. Some of these products are presented in
this section.

3.10.1 MATLAB Coder

MATLAB Coder [9] generates standalone C and C++ code from MATLAB code. The gen-
erated source code is portable and readable. MATLAB Coder supports code generation for
a large subset of MATLAB language, including program control constructs, functions, and
matrix operations. It also supports code generation for the functions and System objects of
various toolboxes and System toolboxes. With MATLAB Coder we can generate:

• MEX functions that let us accelerate computationally intensive portions of MATLAB code
and verify the behavior of the generated code

54 Understanding LTE with MATLAB®

• Readable and portable C/C++ code for integration with existing C/C++ source codes and
environments

• Dynamic and static libraries for integration with C-based tools and environments
• C/C++ executable for prototyping of algorithms and provision of proofs-of-concept.

3.10.2 Hardware Implementation

A design for a communication system can be realized as either embedded software or embed-
ded hardware. An embedded software implementation targets DSP and general-purpose pro-
cessors. The path from a MATLAB model to an embedded software implementation involves
two steps: (i) C/C++ code generation from MATLAB and (ii) compiling or hand-coding of
the C code as assembly code on the target. MATLAB Coder can be used for the first step and
the compilers of various software simulators for hardware targets can be used for the second.
An embedded hardware implementation targets the design on FPGAs and ASICs. The pro-

cess of realizing a design from a MATLAB model to the final FPGA or ASIC prototype
involves two steps: (i) VHDL or Verilog code generation of MATLAB functions or Simulink
models with theHDLCoder and (ii) post-processing by the integrated simulation environments
to convert the RTL (Register Transfer Level) Verilog and VHDL code into a fully synthesized
FPGA or ASIC design. HDL Coder [10] generates portable, synthesizable VHDL and Verilog
code from MATLAB functions and Simulink models. It can be used to perform the first step
of the implementation. Another MathWorks HDL tool, HDL Verifier, automates Verilog and
VHDL design verification using HDL simulators and FPGA hardware-in-the-loop. HDL Ver-
ifier [11] can be used to bring an RTL design into MATLAB and to verify it by comparing the
outputs of the VHDL and Verilog code with detailed implementations of the same algorithm
in MATLAB and Simulink. Since in this book we focus on modeling, simulation, and soft-
ware prototyping of the LTE standard, discussions regarding hardware implementations and
realization of a design as HDL code are outside our scope.

3.11 Introduction to System Objects

In this book we highlight many features of the Communications System Toolbox, particularly
we will introduce the new System objects used in the product. With a very intuitive user inter-
face, System objects make the task of expressing communications systems easier and make
the resulting MATLAB code more readable and sharable. System objects can be used as part
of both MATLAB programs and Simulink models. They are MATLAB objects that represent
time-based and executable algorithms and they are organized as objects to make them easy to
use and virtually self-documenting. Since in the rest of this book we rely on System objects
to express LTE-system models in MATLAB, a short tutorial on how to use these algorithmic
components is presented in this section.

3.11.1 System Objects of the Communications System Toolbox

System objects of the Communications SystemToolbox belong to the communications (comm)
package and their names start with the common prefix “comm.” In order to access all of the
System objects of the Communications System Toolbox, type “comm.” followed by a Tab key

MATLAB® for Communications System Design 55

at the MATLAB command prompt:

>> comm.<Tab>

This will produce an alphabetical list of all the System objects available in the toolbox. As
of the latest release of MATLAB, the Communications System Toolbox contains a total of 123
algorithms provided as System objects.
Let us choose one of these System objects, for example comm.QPSKModulator, and create

one instance of this type of modulator. Let us call this instance “Modulator”:

>> Modulator=comm.QPSKModulator

AQPSK (Quadratue Phase Shift Keying) modulator will be created and a description of this
object will appear in the MATLAB workspace (Figure 3.1).
Every System object contains properties and methods. Its default properties appear when

they are created; this self-documentation is a useful feature of System objects. From looking
at the property list of a given System object, we know what parameters it can take and what
values are typically assigned to them. For example, the phase-offset property of the QPSK
modulator is by default set to 𝜋/4. Let us change this parameter to 𝜋/2. There are two ways to
modify properties:

• Create an object with default values and then change a property using dot notation. For
example:

>> Modulator = comm.QPSKModulator;
>> Modulator.PhaseOffset = pi/2

• Set different properties as they are created using property–values pairs. For example:

>>Modulator = comm.QPSKModulator ('PhaseOffset',pi/2);

If properties are expressed as a string of characters, a convenient list of possible val-
ues appears when we want to set a particular property. For example, when we type
“Modulator.SymbolMapping=” followed by a Tab, a list of mapping choices appears to
facilitate setting of the property to any of the several options, in this case “Binary” and “Gray.”

Figure 3.1 Creating a System object from the Communications System Toolbox

56 Understanding LTE with MATLAB®

The step method is the main method of execution of a System object. After an object is
created and configured, it can be passed an input (or multiple inputs) and its step method can
be called to produce its output (or multiple outputs). There are two syntaxes available by which
to execute the step method of a System object. We can:

• Use dot notation to call the System object: y=Modulator.step (u)
• Use the step method as a function and make the System object the first function argument:

y= step (Modulator, u).

In Figure 3.2, a 10× 1 column vector of bits (variable u) is created using the MATLAB randi
function and then passed as input to theModulator System object. By calling its step method, a
5× 1 output vector (y) of modulated symbols representing the modulated bits using the QPSK
algorithms based on specified properties is created.

Figure 3.2 Executing a System object by calling its step method

MATLAB® for Communications System Design 57

Now that we have seen how to access, create, set the properties of, configure, and call a
System object to perform computations, let us create a simple script that uses a few System
objects to express a simple communications system.

3.11.2 Test Benches with System Objects

Following is a MATLAB script, otherwise known as a testbench, that uses System objects
to perform BER analysis of a simple transceiver system. The transceiver is composed of
a QPSK modulator, an Additive White Gaussian Noise (AWGN) channel, and a QPSK
demodulator. Note that this code employs four System objects from the Communications
System Toolbox: comm.QPSKModulator, comm.AWGNChannel, comm.QPSKDemodulator,
and comm.ErrorRate.

Algorithm

MATLAB script

%% Constants
FRM=2048;
MaxNumErrs=200;MaxNumBits=1e7;
EbNo_vector=0:10;BER_vector=zeros(size(EbNo_vector));
%% Initializations
Modulator = comm.QPSKModulator('BitInput',true);
AWGN = comm.AWGNChannel;
DeModulator = comm.QPSKDemodulator('BitOutput',true);
BitError = comm.ErrorRate;
%% Outer Loop computing Bit-error rate as a function of EbNo
for EbNo = EbNo_vector

snr = EbNo + 10*log10(2);
AWGN.EbNo=snr;
numErrs = 0; numBits = 0;results=zeros(3,1);
%% Inner loop modeling transmitter, channel model and receiver for each EbNo
while ((numErrs < MaxNumErrs) && (numBits < MaxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Generate random bits
mod_sig = step(Modulator, u); % QPSK Modulator
% Channel
rx_sig = step(AWGN, mod_sig); % AWGN channel
% Receiver
y = step(DeModulator, rx_sig); % QPSK Demodulator
results = step(BitError, u, y); % Update BER
numErrs = results(2);
numBits = results(3);

end
% Compute BER
ber = results(1); bits= results(3);
%% Clean up & collect results

58 Understanding LTE with MATLAB®

reset(BitError);
BER_vector(EbNo+1)=ber;

end
%% Visualize results
EbNoLin = 10.^(EbNo_vector/10);
theoretical_results = 0.5*erfc(sqrt(EbNoLin));
semilogy(EbNo_vector, BER_vector)
grid;title('BER vs. EbNo - QPSK modulation');
xlabel('Eb/No (dB)');ylabel('BER');hold;
semilogy(EbNo_vector,theoretical_results,'dr');hold;
legend('Simulation','Theoretical');

The script is organized in four sections. In the initialization section, the System objects are
created and some parameters are set. The second section contains the processing testbench
that iterates through Eb/N0 values and computes the corresponding BER measures. The third
section is the transceiver processing loop, where the step methods of the System objects are
called in order to modulate the input signal, add channel noise to the modulated signal, and
demodulate to produce the received signal and compute BER. Finally, in the fourth section,
the simulation is cleaned up and terminated and the BER performance results are visualized.
Figure 3.3 verifies that the simulated results match the analytical results.
By running this script we obtain the BER curves of a QPSK modulation system using an

AWGN channel. Theoretical results for a QPSK modulation scheme processed by an AWGN
channel are expressed in the following equation:

BER = 1
2
erfc

(√
Eb
N0

)
(3.1)

The use of System objects results in a modular and easy-to-understand MATLAB code
and fosters a structure that can be expanded for more complex systems. We will follow this
four-step process of initialization, processing loop, termination, and visualization through-
out this book. One way of improving MATLAB programs and making them more readable is
to separate testbench and visualization operations from the algorithms and system description.
Next we will show how to achieve this by capturing our transceiver as a MATLAB function
and separating our algorithmic component from the testbench script.

3.11.3 Functions with System Objects

The MATLAB function chap3_ex02_qpsk performs the algorithmic portion of our simple
QPSK transceiver system. This function has three input variables:

• The first input is a scalar number that corresponds to Eb/N0
• The second input is one of the stopping criteria, based on the maximum number of errors

that can be observed before the simulation is stopped
• The third input is the other stop criterion, based on the maximum number of bits that can

be processed before the simulation is stopped.

MATLAB® for Communications System Design 59

Figure 3.3 BER curves for QPSK modulation under an AWGN channel; simulated and theoretical
results match

For each Eb/N0 value, the code runs in a while loop until either the specified maximum
number of errors is observed or the maximum number of bits is processed. The code executes
each System object by calling the step method. It computes two outputs:

• BER, defined as the ratio of the observed number of errors to the number bits processed
• The number of bits processed, based on the stopping criterion defined by the second and

third input variables.

Algorithm

MATLAB function

function [ber, bits]=chap3_ex02_qpsk(EbNo, maxNumErrs, maxNumBits)
%% Initializations
persistent Modulator AWGN DeModulator BitError
if isempty(Modulator)

Modulator = comm.QPSKModulator('BitInput',true);
AWGN = comm.AWGNChannel;
DeModulator = comm.QPSKDemodulator('BitOutput',true);
BitError = comm.ErrorRate;

end
%% Constants
FRM=2048;

60 Understanding LTE with MATLAB®

M=4; k=log2(M);
snr = EbNo + 10*log10(k);
AWGN.EbNo=snr;
%% Processsing loop modeling transmitter, channel model and receiver
numErrs = 0; numBits = 0;results=zeros(3,1);
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Random bits generator
mod_sig = Modulator.step(u); % QPSK Modulator
% Channel
rx_sig = AWGN.step(mod_sig); % AWGN channel
% Receiver
demod = DeModulator.step(rx_sig); % QPSK Demodulator
y = demod(1:FRM); % Compute output bits
results = BitError.step(u, y); % Update BER
numErrs = results(2);
numBits = results(3);

end
%% Clean up & collect results
ber = results(1); bits= results(3);
reset(BitError);

To avoid the overhead involved in creating and releasing System objects every time we call a
function, the System objects in a function are denoted by persistent variables. Using a persistent
variable allows us to perform such operations as creating System objects only the first time
a function is called. This adds to the efficiency of function calls and improves the simulation
speed as we call the function in a loop.

3.11.4 Bit Error Rate Simulation

The Communication System Toolbox provides BERTool as an integrated testbench for the
performance of BER simulations. BERTool is a graphical application that computes a series
of simulated bit error rates and compares the results with known analytical results.
For example, to visualize the simulated BERs for the function chap3_ex02_qpsk.m, as

depicted in Figure 3.4, go to the Monte Carlo tab, specify the file as the simulation MATLAB
file, and specify the Eb/N0 values and stopping criteria. BERTool will compute the BER
for the range of Eb/N0 values provided and will automatically display the results. These
simulated results can be compared with theoretical results by going to the Theoretical tab
and specifying the modulation and coding schemes used. Figure 3.5 shows an example of the
comparison plots generated by the BERTool testbench.

3.12 MATLAB Channel Coding Examples

In this section, using a pedagogic approach and a series of MATLAB programs, we will exam-
ine what the Toolbox offers in terms of channel coding. First we will model a system that

MATLAB® for Communications System Design 61

Figure 3.4 BERTool: a testbench application for BER-result visualization

uses convolutional encoding and Viterbi decoding based on hard-decision decoding. Then we
will update the algorithm to use soft-decision decoding. Finally, we will replace convolutional
coding with a turbo-coding algorithm and compare the performance at each stage. With these
simple exercises, not only will we learn how easy it is to use MATLAB and the Communica-
tions System Toolbox to add more complexity to our mobile communication model but we will
clearly see that the substantial improvement in BER performance explains the predominant
role turbo coding plays in the channel coding of the LTE standard.

3.12.1 Error Correction and Detection

Channel coding comprises error detection and error correction. With error detection using
the CRC (Cyclic Redundancy Check) detector, the receiver can request the repeat of a trans-
mission, in what is known as an automatic repeat request. Forward-error-correction coding
allows errors to be corrected based on the redundancy bits that are included with the transmit-
ted signal. A hybrid of error detection and forward error correction known as HARQ (Hybrid

62 Understanding LTE with MATLAB®

Figure 3.5 Comparison of simulated and analytical BER values: QPSK and AWGN channel

Automatic Repeat Request) forms an integral part of most 3G standards and is also used in the
LTE standards. Error-correcting codes are usually classified into block codes and convolutional
codes. Convolutional codes are widely used in 2G and 3G mobile communications standards,
primarily because of their low complexity.
In this section, we will elaborate our growing MATLAB model, which already includes

modulation, to include channel coding. As a perfect vehicle for explaining the value and moti-
vation of the use of turbo coding in the LTE standard, we will compare the performances of
convolutional and turbo coding. Furthermore, to explain the tradeoff involved in the use of
receiver designs, we will compare the performance of modulation-coding combinations with
and without soft-decision decoding.

3.12.2 Convolutional Coding

Convolutional codes are generated by the convolution of the input sequence with the impulse
response of the encoder. The encoder accepts blocks of k-bit input samples and, by operating
on the current block of data and them previous input blocks, produces an n-bit block of output
samples. The coding rate of the encoder is given by the ratio Rc= k/n and the convolutional
encoder is specified by these three parameters (n,k,m). Figure 3.6 illustrates a convolutional
encoder.

MATLAB® for Communications System Design 63

Input
sequence

Stage 1

1

1

+ + +

2

2

… k 1 2 … …

…

…

k 1 2 … k

n

Stage 2 Stage m

Encoded
sequence

Figure 3.6 Structure of an (n,k,m) convolutional encoder

3.12.3 Hard-Decision Viterbi Decoding

In the first iteration of this exercise, we modify the MATLAB function in the last section
to add a channel-coding scheme to the modulation. When a channel-coding scheme is used,
the transmitter sends redundancy bits along with message bits through the wireless channel.
The receiver accepts the transmitted signal and uses the redundancy bits to detect and correct
some of the errors introduced by the channel. Let us start by adding a convolutional encoder
and a Viterbi decoder to the communications system. This communications system uses hard-
decision Viterbi decoding, where the demodulator maps the received signal to bits and then
passes the bits to the Viterbi decoder for error correction. The following MATLAB function
(chap3_ex03_qpsk_viterbi) uses QPSK modulation and hard-decision Viterbi decoding with
an AWGN channel.

Algorithm

MATLAB function

function [ber, bits]=chap3_ex03_qpsk_viterbi(EbNo, maxNumErrs, maxNumBits)
%% Initializations
persistent Modulator AWGN DeModulator BitError ConvEncoder Viterbi
if isempty(Modulator)

Modulator = comm.QPSKModulator('BitInput',true);
AWGN = comm.AWGNChannel;
DeModulator = comm.QPSKDemodulator('BitOutput',true);
BitError = comm.ErrorRate;
ConvEncoder=comm.ConvolutionalEncoder(...

'TerminationMethod','Terminated');
Viterbi=comm.ViterbiDecoder('InputFormat','Hard',...

64 Understanding LTE with MATLAB®

'TerminationMethod','Terminated');
end
%% Constants
FRM=2048;
M=4; k=log2(M); codeRate=1/2;
snr = EbNo + 10*log10(k) + 10*log10(codeRate);
AWGN.EbNo=snr;
%% Processsing loop modeling transmitter, channel model and receiver
numErrs = 0; numBits = 0;results=zeros(3,1);
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Random bits generator
encoded = ConvEncoder.step(u); % Convolutional encoder
mod_sig = Modulator.step(encoded); % QPSK Modulator
% Channel
rx_sig = AWGN.step(mod_sig); % AWGN channel
% Receiver
demod = DeModulator.step(rx_sig); % QPSK Demodulator
decoded = Viterbi.step(demod); % Viterbi decoder
y = decoded(1:FRM); % Compute output bits
results = BitError.step(u, y); % Update BER
numErrs = results(2);
numBits = results(3);

end
%% Clean up & collect results
ber = results(1); bits= results(3);
reset(BitError);

By running this function within BERTool, we can gauge the performance of hard-decision
Viterbi decoding and compare it with the upper-bound theoretical results. Examining the
results in Figure 3.7, we can see that the simulated BER curve falls below the theoretical
upper-bound values, which is consistent with our expectations. These results indicate that in
order to arrive at a better performance we need to improve our decoding algorithm.

3.12.4 Soft-Decision Viterbi Decoding

In this iteration, we improve BER performance results by using a soft-decision decoding algo-
rithm. In soft-decision decoding, the demodulator maps the received signal to log-likelihood
ratios. These probability measures are based on the logarithm of the likelihood that the
correct data are received instead of corrupted data. When log-likelihood ratios are provided
as the input to the Viterbi decoder, the BER performance of the decoder is improved. An
algorithm can be made to perform soft-decision Viterbi decoding by changing a few demod-
ulator and Viterbi-decoder System-object parameters. The following MATLAB function
(chap3_ex04_qpsk_viterbi_soft) has been updated to use soft-decision Viterbi decoding.

MATLAB® for Communications System Design 65

Figure 3.7 Performance with hard-decision Viterbi decoding: QPSK modulation with AWGN
channel

Algorithm

MATLAB function

function [ber, bits]=chap3_ex04_qpsk_viterbi_soft(EbNo, maxNumErrs, maxNumBits)
%% Initializations
persistent Modulator AWGN DeModulator BitError ConvEncoder Viterbi Quantizer
if isempty(Modulator)

Modulator = comm.QPSKModulator('BitInput',true);
AWGN = comm.AWGNChannel;
DeModulator = comm.QPSKDemodulator('BitOutput',true,...

'DecisionMethod','Log-likelihood ratio',...
'VarianceSource', 'Input port');

BitError = comm.ErrorRate;
ConvEncoder=comm.ConvolutionalEncoder(...

'TerminationMethod','Terminated');
Viterbi=comm.ViterbiDecoder(...

'InputFormat','Soft',...
'SoftInputWordLength', 4,...
'OutputDataType', 'double',...
'TerminationMethod','Terminated');

Quantizer=dsp.ScalarQuantizerEncoder(...
'Partitioning', 'Unbounded',...

66 Understanding LTE with MATLAB®

'BoundaryPoints', -7:7,...
'OutputIndexDataType','uint8');

end
%% Constants
FRM=2048;
M=4; k=log2(M); codeRate=1/2;
snr = EbNo + 10*log10(k) + 10*log10(codeRate);
noise_var = 10.^(-snr/10);
AWGN.EbNo=snr;
%% Processsing loop modeling transmitter, channel model and receiver
numErrs = 0; numBits = 0;results=zeros(3,1);
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Random bits generator
encoded = ConvEncoder.step(u); % Convolutional encoder
mod_sig = Modulator.step(encoded); % QPSK Modulator
% Channel
rx_sig = AWGN.step(mod_sig); % AWGN channel
% Receiver

demod = DeModulator.step(rx_sig, noise_var); % Soft-decision QPSK Demodulator
llr = Quantizer.step(-demod); % Quantize Log-Likelihood Ratios
decoded = Viterbi.step(llr); % Viterbi decoder with LLRs
y = decoded(1:FRM); % Compute output bits
results = BitError.step(u, y); % Update BER
numErrs = results(2);
numBits = results(3);

end
%% Clean up & collect results
ber = results(1); bits= results(3);
reset(BitError);

Theoretically, we expect a 2 dB improvement in the results, and that is exactly what is shown
by the simulated curves in Figure 3.8. Next we examine turbo coding to see whether it can offer
any improvements to BER results.

3.12.5 Turbo Coding

Turbo codes substantially improve BER performance over soft-decision Viterbi decod-
ing. Turbo coding uses two convolutional encoders in parallel at the transmitter and two
A Posteriori Probability (APP) decoders in series at the receiver. This example uses a rate 1/3
turbo coder. For each input bit, the output has one systematic bit and two parity bits, for a
total of three bits.
The followingMATLAB function has been updated to use turbo encoders and decoders. Note

that turbo decoding is an iterative iteration, where performance improves as more iterations
are gone through. In this example, we have chosen six as the number of iterations the decoder
performs.

MATLAB® for Communications System Design 67

Figure 3.8 Performance with soft-decision Viterbi decoding: QPSK modulation with AWGN
channel

Algorithm

MATLAB function

function [ber, bits]=chap5_ex05_qpsk_turbo(EbNo, maxNumErrs, maxNumBits)
%% Constants
FRM=2048;
Trellis=poly2trellis(4, [13 15], 13);
Indices=randperm(FRM);
M=4;k=log2(M);
R= FRM/(3* FRM + 4*3);
snr = EbNo + 10*log10(k) + 10*log10(R);
noise_var = 10.^(-snr/10);
%% Initializations
persistent Modulator AWGN DeModulator BitError TurboEncoder TurboDecoder
if isempty(Modulator)

Modulator = comm.QPSKModulator('BitInput',true);
AWGN = comm.AWGNChannel;
DeModulator = comm.QPSKDemodulator('BitOutput',true,...

'DecisionMethod','Log-likelihood ratio',...
'VarianceSource', 'Input port');

BitError = comm.ErrorRate;
TurboEncoder=comm.TurboEncoder(...

'TrellisStructure',Trellis,...

68 Understanding LTE with MATLAB®

'InterleaverIndices',Indices);
TurboDecoder=comm.TurboDecoder(...

'TrellisStructure',Trellis,...
'InterleaverIndices',Indices,...
'NumIterations',6);

end
%% Processsing loop modeling transmitter, channel model and receiver
AWGN.EbNo=snr;
numErrs = 0; numBits = 0;results=zeros(3,1);
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Random bits generator
encoded = TurboEncoder.step(u); % Turbo Encoder
mod_sig = Modulator.step(encoded); % QPSK Modulator
% Channel
rx_sig = AWGN.step(mod_sig); % AWGN channel
% Receiver

demod = DeModulator.step(rx_sig, noise_var); % Soft-decision QPSK Demodulator
decoded = TurboDecoder.step(-demod); % Turbo Decoder
y = decoded(1:FRM); % Compute output bits
results = BitError.step(u, y); % Update BER
numErrs = results(2);
numBits = results(3);

end
%% Clean up & collect results
ber = results(1); bits= results(3);
reset(BitError);

Figure 3.9 illustrates the results for turbo coding in QPSK modulation under an AWGN
channel. Note that at 1 dB we have a BER value that occurs at 5 dB for hard-decision and
at 3 dB for soft-decision decoding. This clearly indicates the superiority of the turbo-coding
algorithm. Bear in mind that this performance gain comes at the cost of an increase in com-
putational complexity. Our turbo decoder went through iterative decoding six times to arrive
at this performance. We will study this compromise between performance and complexity for
turbo decoders in later chapters.

3.13 Chapter Summary

MATLAB, Simulink, and their toolboxes provide capabilities that can be used to model, sim-
ulate, assess the performance of, and eventually generate and implement code for communi-
cation systems. For modeling and simulation, we can use algorithmic building blocks from
the Communications System Toolbox, either as System objects or as Simulink blocks. Many
aspects of PHY processing of mobile standards can be modeled and simulated more efficiently
in MATLAB because instead of focusing on creating building blocks, such as modulators and
coders, we can focus on introducingmore advanced functionality to a systemmodel. Of special

MATLAB® for Communications System Design 69

Figure 3.9 Performance with turbo coding: QPSK modulation with AWGN channel

interest are the System objects of the Communications System Toolbox. System objects are
modeling and simulation components that are designed to be self-documented, easy-to-use,
and custom-designed for the modeling of block-based streaming systems.
When simulating complex systems, we need to access various acceleration techniques. These

techniques help us process larger sets of test data and obtain statistically correct assessments in
reasonable simulation times. MATLAB toolboxes such as the Parallel Processing Toolbox and
MATLAB Coder can speed up simulations. Finally, in order to implement a design in software
or hardware we can use code-generation products to gain access to the exact implementation
detail via automatic C or HDL code generation.

References

[1] MathWorks Documentation Center, http://www.mathworks.com/help/MATLAB/random-number-genera-
tion.html (accessed 16 August 2013).

[2] MathWorks DSP System Toolbox, http://www.mathworks.com/products/dsp-system (accessed 16 August
2013).

[3] MathWorks Communications System Toolbox, http://www.mathworks.com/products/communications
(accessed 16 August 2013).

[4] MathWorks Phased Array System Toolbox, http://www.mathworks.com/products/phased-array (accessed 16
August 2013).

[5] MathWorks Computer Vision System Toolbox, http://www.mathworks.com/products/computer-vision (acc-
essed 16 August 2013).

[6] MathWorks Simulink, http://www.mathworks.com/products/simulink (accessed 16 August 2013).

70 Understanding LTE with MATLAB®

[7] MathWorks Parallel Computing Toolbox, http://www.mathworks.com/products/parallel-computing
(accessed 16 August 2013).

[8] MathWorks Fixed-Point Designer, http://www.mathworks.com/products/fixed-point-designer (accessed 16
August 2013).

[9] MathWorks MATLAB Coder, http://www.mathworks.com/help/coder/index.html (accessed 16 August
2013).

[10] MathWorks HDL Coder, http://www.mathworks.com/products/hdl-coder (accessed 16 August 2013).
[11] MathWorks HDL Verifier, http://www.mathworks.com/products/hdl-verifier (accessed 16 August 2013).

4
Modulation and Coding

The LTE (Long Term Evolution) downlink PHY (Physical Layer) chain can be viewed as the
combination of processing applied to the Downlink Shared Channel (DLSCH) and Physical
Downlink Shared Channel (PDSCH). DLSCH processing is also known as Downlink Trans-
port Channel (TrCH) processing. It includes steps involving Cyclic Redundancy Check (CRC)
code attachment, data subblock processing, channel coding based on turbo coders, rate match-
ing, Hybrid Automatic Repeat Request (HARQ) processing, and the reconstruction of code-
words. The codewords are inputs for the PDSCH processing, which involves scrambling, mod-
ulation, multi-antenna Multiple Input Multiple Output (MIMO) processing, time–frequency
resource mapping, and Orthogonal Frequency Division Multiplexing (OFDM) transmission.
We have subdivided the components of this two-step DLSCH and PDSCH processing chain
into three segments, which are discussed in the next three chapters.
In this chapter, we examine the modulation and coding schemes used in the LTE standard.

These include all the combined DLSCH and PDSCH processing steps, excluding the MIMO
and OFDM operations. Discussion regarding OFDM and MIMO is presented in the next two
chapters. First, wewill examine the first couple of operations performed in PDSCH processing,
including scrambling and modulation. Then we will examine TrCH processing, comprising a
series of operations that map logical channels and user bit payload to codewords, which are
passed to the shared physical channel.
We will create MATLAB® programs that completely specify the TrCH processing in the

transmitter and the receiver. We will use the MATLAB functions to study the effects of differ-
ent modulation schemes and different coding rates on the Bit Error Rate (BER) performance
with an AdditiveWhite Gaussian Noise (AWGN) channel model. These operations completely
specify how user data bits are processed to produce the input symbols for the subsequent
MIMO and OFDM functional blocks for transmission. Details of MIMO and OFDM are then
examined in the next two chapters.

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

72 Understanding LTE with MATLAB®

4.1 Modulation Schemes of LTE

The modulation schemes used in the LTE standard include QPSK (Quadrature Phase Shift
Keying), 16QAM (Quadrature Amplitude Modulation), and 64QAM. Figure 4.1 shows the
constellation diagrams of these three modulation schemes.
In the case of QPSKmodulation, each modulation symbol can have one of four different val-

ues, which are mapped to four different positions in the constellation diagram. QPSK needs 2
bits to encode each of its four different modulation symbols. The 16QAMmodulation involves
using 16 different signaling choices and thus utilizes 4 bits of information to encode each mod-
ulation symbol. The 64QAM modulation involves 64 different possible signaling values and
thus requires 6 bits to represent a single modulation symbol.
The availability of multiple modulation schemes is instrumental in implementing adaptive

modulation based on channel conditions. When the radio link is relatively clean – that is,
the Signal-to-Noise Ratio (SNR) is relatively high – we can use modulation schemes of
denser constellations, such as 64QAM. In such a case, sending a single symbol results in the
transmission of 6 bits and therefore can increase our throughput. However, as the channel
becomes noisier, we should resort to using modulation schemes with more intersymbol sepa-
ration, such as QPSK. This in turn will reduce the number of bits per sample and reduce the
throughput.

0

0

QPSK

QAM16

QAM64

0.5

0.5

−0.5

−0.5

−1.5
−1.5

1.5
Scatter Plot

Scatter Plot

1

1

−1

0 0.5−0.5−1.5 1−1

−1

0

0 0.5

0.5

−0.5

−0.5

−1.5 1.5
−1.5

1.5
Scatter Plot

1

1

−1

−1

0

0.5

−0.5

−1.5

1.5

1

−1

Figure 4.1 Constellation diagrams of QPSK, 16QAM, and 64QAM

Modulation and Coding 73

Table 4.1 Mapping for an LTE QPSK modulator

Payload bit pattern (2 bits) Modulated symbol

In-phase (I) Quadrature (Q)

00 1∕√2 1∕√2

01 1∕√2 −1∕√2

10 −1∕√2 1∕√2

11 −1∕√2 −1∕√2

Table 4.2 Mapping for an LTE 16QAM modulator

Payload bit pattern (4 bits) Modulated symbol

In-phase (I) Quadrature (Q)

0000 1∕√10 1∕√10

0001 1∕√10 3∕√10

0010 3∕√10 1∕√10

0011 3∕√10 3∕√10

0100 1∕√10 −1∕√10

0101 1∕√10 −3∕√10

0110 3∕√10 −1∕√10

0111 3∕√10 −3∕√10

1000 −1∕√10 1∕√10

1001 −1∕√10 3∕√10

1010 −3∕√10 1∕√10

1011 −3∕√10 3∕√10

1100 −1∕√10 −1∕√10

1101 −1∕√10 −3∕√10

1110 −3∕√10 −1∕√10

1111 −3∕√10 −3∕√10

The LTE modulation mappers, which specify how the modulation symbols are assigned
to each bit sequence, are shown in Table 4.1 for QPSK and in Table 4.2 for 16QAM. Due
to its large size, we refer the reader to Reference [1] for the standard document on 64QAM
modulation mapping.
We note that the mapping of bits to symbols is based on neither a typical binary nor a gray-

coded method. Rather, the LTE specification defines a custom constellation mapping. LTE also
defines modulation symbols in such a way that the average signal power is normalized to unity.

4.1.1 MATLAB Examples

As the first step in modeling the LTE downlink processing chain, we start with the LTE mod-
ulation schemes. The following two MATLAB functions show how you can easily implement
the LTE modulation and demodulation algorithms, with all their specifications, using System
objects of the Communications System Toolbox.

74 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function y=Modulator(u, Mode)
%% Initialization
persistent QPSK QAM16 QAM64
if isempty(QPSK)

QPSK = comm.PSKModulator(4, 'BitInput', true, ...
'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...
'CustomSymbolMapping', [0 2 3 1]);

QAM16 = comm.RectangularQAMModulator(16, 'BitInput',true,...
'NormalizationMethod','Average power',
'SymbolMapping', 'Custom', ...
'CustomSymbolMapping',
[11 10 14 15 9 8 12 13 1 0 4 5 3 2 6 7]);

QAM64 = comm.RectangularQAMModulator(64, 'BitInput',true,...
'NormalizationMethod','Average power',
'SymbolMapping', 'Custom',
'CustomSymbolMapping',
[47 46 42 43 59 58 62 63 45 44 40 41 ...
57 56 60 61 37 36 32 33 49 48 52 53 39
38 34 35 51 50 54 55 7 6 2 3 19 18 22 23 5
4 0 1 17 16 20 21 13 12 8 9 25 24 28 29 15
14 10 11 27 26 30 31]);

end
%% Processing
switch Mode

case 1
y=step(QPSK, u);

case 2
y=step(QAM16, u);

case 3
y=step(QAM64, u);

end

The Modulator function has two input arguments: the input bit stream (u) and a parameter
representing the modulation mode (Mode). As its output, the function computes the modulated
symbols. The function implements the three different types of modulator used in the LTE
standard. For example, in the case of QPSK, we use a comm.PSKModulator System object
and set its modulation order to 4. Similarly, in the case of 16QAM and 64QAM we use the
comm.RectangulatQAMModulator System objects and set their modulation orders to 16 and
64, respectively. Depending on the value of the modulation mode, we process the input bits to
generate the modulated symbols as the output.
To ensure that the System object exactly matches what the LTE standard specifies, we can

set other properties:

Modulation and Coding 75

1. We can set BitInput= true. This means that the modulator inputs are interpreted as a vector
of bit values. For example, in case of a QPSK modulator since every 2 bits are mapped to
one modulation symbol, the size of the output vector is half that of the input vector.

2. We can set PhaseOffset= pi/4. This means that the modulated symbols correspond to four
points in the complex plane with unity length, whose angles are chosen from the following
set: [3𝜋/4, 𝜋/4, −𝜋/4, −3𝜋/4].

3. Using the CustomSymbolMapping property, we can ensure that the bit patterns specified
in LTE result in corresponding output symbols.

Note that the LTE, like other mobile standards, does not make any recommendations con-
cerning the operations performed in the receiver. Hence, all the receiver specifications pre-
sented in this book can be considered typical “inverse” operations of operations specified in
the transmitter. These proposed inverse operations represent best efforts to recover the esti-
mate of the transmitted bits. Although not specified in the standard, it is necessary to include
these receiver-side inverse operations in order to evaluate the accuracy and performance of the
system.
As demodulation is the inverse operation for modulation, we now present some typical

approaches to demodulation. In the Demodulator function, we use the same three modula-
tion types used in LTE, and depending on the modulation mode, we process the input symbols
to generate the demodulated output. As discussed in the previous section, demodulation can be
based on either hard-decision decoding or soft-decision decoding. In hard-decision decoding,
the input symbols of a demodulator are mapped to estimated bits, whereas in soft-decision
decoding the output is a vector of log-likelihood ratios (LLRs).
The function DemodulatorHard.m shows a demodulation implementation that employs

hard-decision decoding. The function takes as inputs the received modulated symbols (u) and
the modulation mode (Mode). The function output comprises the demodulated bits.

Algorithm

MATLAB function

function y=DemodulatorHard(u, Mode)
%% Initialization
persistent QPSK QAM16 QAM64
if isempty(QPSK)

QPSK = comm.PSKDemodulator(...
'ModulationOrder', 4, ...
'BitOutput', true, ...
'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...
'CustomSymbolMapping', [0 2 3 1]);

QAM16 = comm.RectangularQAMDemodulator(...
'ModulationOrder', 16, ...
'BitOutput', true, ...
'NormalizationMethod', 'Average power', 'SymbolMapping', 'Custom', ...
'CustomSymbolMapping', [11 10 14 15 9 8 12 13 1 0 4 5 3 2 6 7]);

76 Understanding LTE with MATLAB®

QAM64 = comm.RectangularQAMDemodulator(...
'ModulationOrder', 64, ...
'BitOutput', true, ...
'NormalizationMethod', 'Average power', 'SymbolMapping', 'Custom', ...
'CustomSymbolMapping', ...
[47 46 42 43 59 58 62 63 45 44 40 41 57 56 60 61 37 ...
36 32 33 49 48 52 53 39 38 34 35 51 50 54 55 7 6 2 3 ...
19 18 22 23 5 4 0 1 17 16 20 21 13 12 8 9 25 24 28 29 ...
15 14 10 11 27 26 30 31]);

end
%% Processing
switch Mode

case 1
y=QPSK.step(u);

case 2
y=QAM16.step(u);

case 3
y=QAM64.step(u);

otherwise
error('Invalid Modulation Mode. Use {1,2, or 3}');

end

The functionDemodulatorSoft.m employs soft-decision decoding to perform demodulation.
The function has three input arguments: the received modulated symbol stream (u), the esti-
mate of the noise variance in the current subframe (NoiseVar), and a parameter representing
the modulation mode (Mode). As its output, the function computes the LLRs. Examining the
differences between the functions, we can see that by setting a couple of properties in the
demodulator System objects, including the property called theDecisionMethod, we can imple-
ment soft-decision demodulation.

Algorithm

MATLAB function

function y=DemodulatorSoft(u, Mode, NoiseVar)
%% Initialization
persistent QPSK QAM16 QAM64
if isempty(QPSK)

QPSK = comm.PSKDemodulator(...
'ModulationOrder', 4, ...
'BitOutput', true, ...
'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...
'CustomSymbolMapping', [0 2 3 1],...
'DecisionMethod', 'Approximate log-likelihood ratio', ...
'VarianceSource', 'Input port');

Modulation and Coding 77

QAM16 = comm.RectangularQAMDemodulator(...
'ModulationOrder', 16, ...
'BitOutput', true, ...
'NormalizationMethod', 'Average power', 'SymbolMapping', 'Custom', ...
'CustomSymbolMapping', [11 10 14 15 9 8 12 13 1 0 4 5 3 2 6 7],...
'DecisionMethod', 'Approximate log-likelihood ratio', ...
'VarianceSource', 'Input port');

QAM64 = comm.RectangularQAMDemodulator(...
'ModulationOrder', 64, ...
'BitOutput', true, ...
'NormalizationMethod', 'Average power', 'SymbolMapping', 'Custom', ...
'CustomSymbolMapping', ...
[47 46 42 43 59 58 62 63 45 44 40 41 57 56 60 61 37 36 32 33 ...
49 48 52 53 39 38 34 35 51 50 54 55 7 6 2 3 19 18 22 23 5 4 0 1 ...
17 16 20 21 13 12 8 9 25 24 28 29 15 14 10 11 27 26 30 31],...
'DecisionMethod', 'Approximate log-likelihood ratio', ...
'VarianceSource', 'Input port');

end
%% Processing
switch Mode

case 1
y=step(QPSK, u, NoiseVar);

case 2
y=step(QAM16,u, NoiseVar);

case 3
y=step(QAM64, u, NoiseVar);

otherwise
error('Invalid Modulation Mode. Use {1,2, or 3}');

end

4.1.2 BER Measurements

The motivation for using multiple modulation methods in LTE is to provide higher data rates
within a given transmission bandwidth. The bandwidth utilization is expressed in bits/s/Hz.
Compared to the QPSK, the bandwidth utilization of 16QAM and 64QAM is two and three
times higher, respectively. However, higher-order modulation schemes are subject to reduced
robustness to channel noise. Compared to the QPSK, modulation schemes such as 16QAM or
64QAM require a higher value for Eb/N0 at the receiver for a given bit error probability.
The following MATLAB functions illustrate the first in a series of functions that will even-

tually implement a realistic transceiver for the LTE PHYmodeling in MATLAB.We start with
this simple system, which is composed of a modulator, a demodulator, and an AWGN channel,
and which computes the BER as a function of the Eb/N0 ratio. By running this function with
a series of Eb/N0 values and changing the ModulationMode parameter, we can visualize the
relationship between modulation order and robustness to channel noise.

78 Understanding LTE with MATLAB®

The first function, chap4_ex01.m, uses a demodulator based on hard-decision demodulation,
while the second function, chap4_ex02.m, is based on soft-decision decoding. The elements
that are common in these two functions, which represent patterns of the series of functions to
come, are as follows:

• Signature and input–output arguments
• Size of user payload (input to the PHY) (specified with a parameter (FRM) denoting the

number of input bits in one frame of data)
• Stopping criteria
• Transmitter, channel model, receiver, and measurement sections
• Computation of BER at the end of the simulation.

Algorithm

MATLAB function

function [ber, numBits]=chap4_ex01(EbNo, maxNumErrs, maxNumBits)
%% Constants
FRM=2400; % Size of bit frame
%% Modulation Mode
% ModulationMode=1; % QPSK
% ModulationMode=2; % QAM16
ModulationMode=3; % QAM64
k=2*ModulationMode; % Number of bits per modulation symbol
snr = EbNo + 10*log10(k);
%% Processing loop: transmitter, channel model and receiver
numErrs = 0;
numBits = 0;
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Randomly generated input bits
t0 = Modulator(u, ModulationMode); % Modulator
% Channel
c0 = AWGNChannel(t0, snr); % AWGN channel
% Receiver
r0 = DemodulatorHard(c0, ModulationMode); % Demodulator, Hard-decision
y = r0(1:FRM); % Recover output bits
% Measurements
numErrs = numErrs + sum(ỹ=u); % Update number of bit errors
numBits = numBits + FRM; % Update number of bits processed

end
%% Clean up & collect results
ber = numErrs/numBits; % Compute Bit Error Rate (BER)

In order to attain a certain quality of transmission – that is, for a given bit error rate – the
E/N value required becomes progressively higher as we move from QPSK to 16QAM and
64QAM modulation. This suggests that lower-order modulation schemes such as QPSK are
used in channels with a high degree of degradation in order to lower the probability of error, at

Modulation and Coding 79

Figure 4.2 Bit error rate as a function of Eb/N0:QPSK, 16QAM, and 64QAM

the cost of running at lower data rates. Higher-order modulation schemes such as 64QAM are
employed in cleaner channels and can provide a boost in the data rate. The results captured in
Figure 4.2 were obtained by running the chap4_ex01.m function with different values of E/N
and different modulation-mode parameters. The results compare the theoretical and simulation
BER curves for modulation schemes used in the LTE standard.
In Chapter 7, we will discuss various methods available to the scheduler for changing the

choice of modulation scheme in each scheduling interval based on channel conditions. So far,
we have only discussed modulation schemes and have not added coding and scrambling to
the mix. Next we will introduce bit-level scrambling, its motivation, and its implementation
in MATLAB. Then we will introduce error-correction coding based on turbo coding and an
error-detection mechanism represented by CRC-detection processing.

4.2 Bit-Level Scrambling

In LTE downlink processing, the codeword bits generated as the outputs of the channel coding
operation are scrambled by a bit-level scrambling sequence. Different scrambling sequences
are used in neighboring cells to ensure that the interference is randomized and that transmis-
sions from different cells are separated prior to decoding. In order to achieve this, data bits are
scrambled with a sequence that is unique to each cell by initializing the sequence generators
in the cell based on the PHY cell identity. Bit-level scrambling is applied to all LTE TrCHs
and to the downlink control channels.

80 Understanding LTE with MATLAB®

Scrambling is composed of two parts: pseudo-random sequence generation and bit-level
multiplication. The pseudo-random sequences are generated by a Gold sequence with the
length set to 31. The output sequence is defined as the output of an exclusive-or operation
applied to a specified pair of sequences. The polynomials specifying this pair of sequences are
as follows:

p1(x) = x31 + x3 + 1

p2(x) = x31 + x3 + x2 + x + 1 (4.1)

The initialization value of the first sequence is specifiedwith a unit impulse function of length
31. The initialization value for the second random sequence depends on such parameters as the
cell identity, number of codewords, and subframe index. Finally, the bit-level multiplication is
implemented as an exclusive-or operation between the input bits and the Gold sequence bits.
The output of the scrambler is a vector with the same size as the input codeword.
In the receiver, the descrambling operation inverts the operations performed by the scrambler.

The same pseudo-random sequence generator is used. However, there is a difference between
bit-level scrambling and bit-level descrambling. Descrambling operations can be implemented
in one of two ways. If, prior to the descrambling operation, a hard-decision demodulation
is performed, the input to the scrambler is represented by bits. In this case, an exclusive-or
operation between the input bits and the Gold-sequence bits will generate the descrambler
output. On the other hand, if a soft-decision demodulation is performed prior to descrambling,
the input signal is no longer composed of bits but rather of LLRs. In that case, descrambling
is performed as a multiplication operation between the input log-likelihood values and Gold-
sequence bits transformed to coefficient values. A zero-valued Gold-sequence bit is mapped
to 1 and a 1-valued bit is mapped to −1.

4.2.1 MATLAB Examples

The following two MATLAB functions show how you can implement the LTE scrambling
and descrambling operations with components of the Communications System Toolbox. The
Scrambler function has two input arguments: the input bit stream (u) and a parameter repre-
senting the subframe index in the current frame (nS). As its output, the function computes the
scrambled version of the input bit stream.
In the Scrambler function, we first create a Gold Sequence Generator System object.We then

assign various properties of the Gold sequence object based on exact specifications of the LTE
standard. Both the first and second polynomials are set to MATLAB expressions representing
the coefficients specified by the standard. The initialization of the first polynomial is carried out
with a specified constant vector. The initialization of the second polynomial happens at the start
of each subframe and is specified by a variable called c_init. The value of this variable depends
on such parameters as the cell identity, the number of codewords, and the subframe index.
Finally, the scrambling output is obtained by multiplying each input sample with samples of
the Gold sequence generator. Since the input signal to the scrambler is made up of the output
bits of the channel coder, the multiplication is implemented as an exclusive-or operation.

Modulation and Coding 81

Algorithm

MATLAB function

function y = Scrambler(u, nS)
% Downlink scrambling
persistent hSeqGen hInt2Bit
if isempty(hSeqGen)

maxG=43200;
hSeqGen = comm.GoldSequence('FirstPolynomial',[1 zeros(1, 27) 1 0 0 1],...

'FirstInitialConditions', [zeros(1, 30) 1], ...
'SecondPolynomial', [1 zeros(1, 27) 1 1 1 1],...
'SecondInitialConditionsSource', 'Input port',...
'Shift', 1600,...
'VariableSizeOutput', true,...
'MaximumOutputSize', [maxG 1]);

hInt2Bit = comm.IntegerToBit('BitsPerInteger', 31);
end
% Parameters to compute initial condition
RNTI = 1;
NcellID = 0;
q =0;
% Initial conditions
c_init = RNTI*(2^14) + q*(2^13) + floor(nS/2)*(2^9) + NcellID;

% Convert initial condition to binary vector
iniStates = step(hInt2Bit, c_init);

% Generate the scrambling sequence
nSamp = size(u, 1);
seq = step(hSeqGen, iniStates, nSamp);
seq2=zeros(size(u));
seq2(:)=seq(1:numel(u),1);

% Scramble input with the scrambling sequence
y = xor(u, seq2);

In the Descrambler function, we use the same Gold sequence generator to invert the scram-
bling operation. The descrambler initialization is synchronized with that of the scrambler.
Since operations in the receiver, including descrambling, are not specified in the standard, we
can develop two different descramblers. The difference lies in whether or not the preceding
demodulator operation, which generates the input to the descrambler, is based on soft-decision
or hard-decision decoding. The DescramlerSoft function operates on the LLR outputs of the
demodulator, converting the Gold-sequence bits into bipolar values of either 1 or−1 and imple-
menting descrambling as a multiplication of demodulator outputs and bipolar sequence values.

82 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function y = DescramblerSoft(u, nS)
% Downlink descrambling
persistent hSeqGen hInt2Bit;
if isempty(hSeqGen)

maxG=43200;
hSeqGen = comm.GoldSequence('FirstPolynomial',[1 zeros(1, 27) 1 0 0 1],...

'FirstInitialConditions', [zeros(1, 30) 1], ...
'SecondPolynomial', [1 zeros(1, 27) 1 1 1 1],...
'SecondInitialConditionsSource', 'Input port',...
'Shift', 1600,...
'VariableSizeOutput', true,...
'MaximumOutputSize', [maxG 1]);

hInt2Bit = comm.IntegerToBit('BitsPerInteger', 31);
end
% Parameters to compute initial condition
RNTI = 1;
NcellID = 0;
q=0;
% Initial conditions
c_init = RNTI*(2^14) + q*(2^13) + floor(nS/2)*(2^9) + NcellID;
% Convert to binary vector
iniStates = step(hInt2Bit, c_init);
% Generate scrambling sequence
nSamp = size(u, 1);
seq = step(hSeqGen, iniStates, nSamp);
seq2=zeros(size(u));
seq2(:)=seq(1:numel(u),1);
% If descrambler inputs are log-likelihood ratios (LLRs) then
% Convert sequence to a bipolar format
seq2 = 1-2.*seq2;
% Descramble
y = u.*seq2;

The DescramblerHard function assumes that the demodulator output generates input values
to the descrambler based on hard-decision decoding. The function operates on the bit-stream
outputs of the demodulator and implements descrambling with the MATLAB exclusive-or
operation (xor) applied to the demodulator outputs and Gold-sequence values.

Modulation and Coding 83

Algorithm

MATLAB function

function y = DescramblerHard(u, nS)
% Downlink descrambling
persistent hSeqGen hInt2Bit;
if isempty(hSeqGen)

maxG=43200;
hSeqGen = comm.GoldSequence('FirstPolynomial',[1 zeros(1, 27) 1 0 0 1],...

'FirstInitialConditions', [zeros(1, 30) 1], ...
'SecondPolynomial', [1 zeros(1, 27) 1 1 1 1],...
'SecondInitialConditionsSource', 'Input port',...
'Shift', 1600,...
'VariableSizeOutput', true,...
'MaximumOutputSize', [maxG 1]);

hInt2Bit = comm.IntegerToBit('BitsPerInteger', 31);
end
% Parameters to compute initial condition
RNTI = 1;
NcellID = 0;
q=0;
% Initial conditions
c_init = RNTI*(2^14) + q*(2^13) + floor(nS/2)*(2^9) + NcellID;
% Convert to binary vector
iniStates = step(hInt2Bit, c_init);
% Generate scrambling sequence
nSamp = size(u, 1);
seq = step(hSeqGen, iniStates, nSamp);
% Descramble
y = xor(u(:,1), seq(:,1));

4.2.2 BER Measurements

The following illustrate the second in our series of functions that eventually implement a real-
istic transceiver for the LTE PHY modeling in MATLAB. In this example, chap4_ex02.m, we
add the scrambling operation before modulation and follow the demodulation with descram-
bling.We use soft-decision demodulation and the corresponding descrambling function, which
operates on soft-decision outputs. To compare the output with the input bits, we convert soft-
decision values to bit values.

84 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function [ber, numBits]=chap4_ex02(EbNo, maxNumErrs, maxNumBits)
%% Constants
FRM=2400; % Size of bit frame
%% Modulation Mode
% ModulationMode=1; % QPSK
% ModulationMode=2; % QAM16
ModulationMode=2; % QAM64
k=2*ModulationMode; % Number of bits per modulation symbol
snr = EbNo + 10*log10(k);
noiseVar = 10.^(0.1.*(-snr)); % Compute noise variance
%% Processing loop: transmitter, channel model and receiver
numErrs = 0;
numBits = 0;
nS=0;
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Randomly generated input bits
t0 = Scrambler(u, nS); % Scrambler
t1 = Modulator(t0, ModulationMode); % Modulator
% Channel
c0 = AWGNChannel(t1, snr); % AWGN channel
% Receiver
r0 = DemodulatorSoft(c0, ModulationMode, noiseVar); % Demodulator
r1 = DescramblerSoft(r0, nS); % Descrambler
y = 0.5*(1-sign(r1)); % Recover output bits
% Measurements
numErrs = numErrs + sum(ỹ=u); % Update number of bit errors
numBits = numBits + FRM; % Update number of bits processed
% Manage slot number with each subframe processed
nS = nS + 2;
nS = mod(nS, 20);

end
%% Clean up & collect results
ber = numErrs/numBits; % Compute Bit Error Rate (BER)

Since a scrambling operation does not affect the sensitivity to the channel noise, the results
obtained earlier by running the chap4_ex01.m function in Figure 4.2 are obtained again
by running the chap4_ex02.m function with different values of E/N and modulation-mode
parameters.

Modulation and Coding 85

Table 4.3 Channel-coding schemes for various components of the
transport channel (TrCH)

Transport channel (TrCH) Coding scheme Coding rate

DL-SCH Turbo coding 1/3

UL-SCH

PCH

MCH

BCH Tail biting 1/3

Convolutional coding

4.3 Channel Coding

So far we have discussed modulation and scrambling operations performed in physical chan-
nel processing. Now we will combine TrCH processing – that is, channel coding – with
modulation and scrambling. We will introduce error-correction coding based on turbo coding
and an error-detection mechanism represented by CRC detection. Table 4.3 summarizes the
channel-coding schemes of various TrCHs.Most physical channels are subject to turbo coding,
with the exception of the Broadcast Channel (BCH), which is based on convolutional coding.
Turbo coding is the basis of channel coding as specified in the LTE standard. Although turbo

coding has been used in many previous standards, it has always been regarded as an optional
component alongside other convolutional coding schemes. However, in LTE turbo coding is the
driving component of the channel-coding mechanism. Based on our pedagogic approach, we
will gradually build the TrCH processing of the LTE standard, in five steps. First, we implement
a turbo-coding algorithmwith a 1/3 coding rate. Then we add the early-terminationmechanism
to the turbo decoder. This makes the computational complexity of the turbo decoder scalable.
We then introduce the rate-matching operation, which provides encoding of any given rate by
operating on the 1/3-rate turbo-coder output. We introduce functions related to the subblock
segmentation and codeword reconstruction. Finally, we put all the components together to
implement the processing chain of the TrCH processing. In this book, we omit the introduction
of MATLAB functions related to HARQ processing. HARQ processing is quite important,
as it essentially reduces the number of retransmissions and enhances performance following
transport-block error detections. This omission is in line with our stated scope, which focuses
on steady-state user-plane processing.

4.4 Turbo Coding

Turbo coders belong to a category of channel-coding algorithms known as parallel concate-
nated convolutional coding [2]. As this name would suggest, a turbo code is formed by con-
catenating two conventional encoders in parallel and separating them by an interleaver. Many

86 Understanding LTE with MATLAB®

Turbo code
interleaver

+

+ +

+

z−1 z−1 z−1

+

+ +

+

z−1 z−1 z−1
Input

Sk

P1k

P2k

Figure 4.3 Block diagram of a turbo encoder

factors led to the choice of turbo coding in LTE. The first is the near-Shannon-bound perfor-
mance of turbo coders. Given a sufficient number of iterations in turbo decoding, turbo codes
can have a BER performance far in exceeds of those of conventional convolutional coders. Fur-
thermore, they lend themselves to adaptation, due to the use of an innovative rate-matching
mechanism, which will be discussed shortly.

4.4.1 Turbo Encoders

As depicted in Figure 4.3, LTE uses turbo coding with a base rate of 1/3 as the cornerstone
of its channel-coding scheme. The LTE turbo encoder is based on a parallel concatenation of
two 8-state constituent encoders separated by an internal interleaver. The output of the turbo
encoder is composed of three streams. The bits of the first stream are usually referred to as
Systematic bits. The bits of the second and third streams – that is, the outputs of the two
constituent encoders – are usually referred to as Parity 1 and Parity 2 bit streams, respectively.
Each constituent encoder is independently terminated by tail bits. This means that for an input
block size of K bits, the output of a turbo encoder consists of three streams of length K+ 4
bits, due to trellis termination. This makes the coding rate of the turbo coder slightly less than
1/3. Since the tail bits are multiplexed at the end of each stream, the Systematic and Parity 1
and Parity 2 bit streams all are of size K+ 4.
To completely specify the turbo encoder, we need to specify the trellis structure of the

constituent encoders and the turbo code internal interleaver. The LTE interleaver is based
on a simple Quadratic Polynomial Permutation (QPP) scheme. The interleaver permutes the

Modulation and Coding 87

indices of the input bits. The relationship between the output index p(i) and the input index i
is described by the following quadratic polynomial expression:

p(i) = (f1 ⋅ i + f2 ⋅ i
2)mod(k) (4.2)

where K is the size of the input block and f1 and f2 are constants that depend on the value of
K. The LTE allows 188 different values for the input block size K. The smallest block size
is 40 and largest is 6144. These block sizes and the corresponding f1 and f2 constants are
summarized in Reference [3].
The LTE turbo coder is a contention-free coder that uses a QPP interleaver, which substan-

tially improves the turbo code performance by streamlining the memory access in interleaving
operation. The trellis structure of the constituent encoder is described by the two following
polynomials:

G0(z) = 1 + z−2 + z−3

G1(z) = 1 + z−1 + z−3 (4.3)

This describes a 1/3 turbo encoder with four states and with a trellis structure at each con-
stituent encoder represented by both feed-forward and feedback connection polynomials, with
octave values of 13 and 15, respectively.

4.4.2 Turbo Decoders

In the receiver, the turbo decoder inverts the operations performed by the turbo encoder. A
turbo decoder is based on the use of two A Posteriori Probability (APP) decoders and two
interleavers in a feedback loop. The same trellis structure found in the turbo encoder is used
in the APP decoder, as is the same interleaver. The difference is that turbo decoding is an
iterative operation. The performance and the computational complexity of a turbo decoder
directly relate to the number of iterations performed.
At the receiver, the turbo decoder performs the inverse operation of a turbo encoder. By

processing its input signal, which is the output of a demodulator and descrambler, the turbo
decoder will recover the best estimate of the TrCH transmitted bits. Note that the turbo decoder
input needs to be expressed in LLRs. As we saw earlier, LLRs are generated by the demodu-
lator if soft-decision demodulation is performed.

4.4.3 MATLAB Examples

The following two MATLAB functions show implementations of the LTE turbo encoders and
decoders with all their specifications, using System objects of the Communications System
Toolbox. In the TurboEncoder function, we use a comm.TurboEncoder System objects and set
the trellis structure and the interleaver properties to implement the functionality as specified in
the LTE standard. By calling the step method of the System object, we process the input bits
to generate the turbo-encoded bits as the output.

88 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function y=TurboEncoder(u, intrlvrIndices)
%#codegen
persistent Turbo
if isempty(Turbo)

Turbo = comm.TurboEncoder('TrellisStructure', poly2trellis(4, [13 15], 13), ...
'InterleaverIndicesSource','Input port');

end
y=step(Turbo, u, intrlvrIndices);

Similarly, the TurboDecoder function operates on its first input signal (u), which is the LLR
output of the demodulator and descrambler. The turbo decoder will recover the best estimate of
the transmitted bits. The function also takes as inputs the interleaving indices (intrlvrIndices)
and the maximum number of iterations used in the decoder (maxIter).

Algorithm

MATLAB function

function y=TurboDecoder(u, intrlvrIndices, maxIter)
%#codegen
persistent Turbo
if isempty(Turbo)

Turbo = comm.TurboDecoder('TrellisStructure', poly2trellis(4, [13 15], 13),...
'InterleaverIndicesSource','Input port', ...

'NumIterations', maxIter);
end
y=step(Turbo, u, intrlvrIndices);

To set the trellis structure, we use the ploy2trellis function of the Communications System
Toolbox. This function transforms the encoder connection polynomials to a trellis structure. As
the LTE trellis structure has both feed-forward and feedback connection polynomials, we first
build a binary-number representation of the polynomials and then convert the binary represen-
tation into an octal representation. From examining the block diagram of the turbo encoder in
Figure 4.3, we can see that this encoder has a constraint length of 4, a generator polynomial
matrix of [13 15], and a feedback connection polynomial of 13. Therefore, in order to set the
trellis structure, we need to use the poly2trellis(4, [13 15],13) function.
To construct the LTE interleaver based on the QPP scheme, we use the lteIntrlvrIndices

function. This function looks up the LTE interleaver table based on the only allowable 188
input sizes, finds the corresponding f1 and f2 constants, and computes the permutation vector
as described in the standard.

Modulation and Coding 89

Algorithm

MATLAB function

function indices = IntrlvrIndices(blkLen)
%#codegen
[f1, f2] = getf1f2(blkLen);
Idx = (0:blkLen-1).';
indices = mod(f1*Idx + f2*Idx.^2, blkLen) + 1;

The comm.TurboEncoder and comm.TurboDecoder System objects are among those that
express the algorithms based on direct MATLAB implementations. Therefore, using the MAT-
LAB edit command, we can inspect the MATLAB code that is executed every time these
System objects are used. The creation and authoring of MATLAB-based System objects is
beyond the scope of this book; for more information on this topic, the reader is referred to the
MATLAB documentation [4]. To illustrate how the MATLAB implementation matches what
we expect, we can inspect the stepimpl function of this System object.
The comm.TurboEncoder stepimpl function performs two convolutional coding operations,

first on the input signal and then on the interleaved version of the signal. It then captures the
extra samples related to trellis termination and appends them to the end of the Systematic and
Parity streams. The comm.TurboDecoder stepimpl repeats a sequence of operations, including
two APP decoders and interleavers, N times. The value of N corresponds to the maximum
number of iterations in a turbo decoder. At the end of each processing iteration, the turbo
decoder uses the results to update its best estimate.

4.4.4 BER Measurements

The performance of any turbo coder depends on the number of iterations performed in the
decoding operation. This means that for a given turbo encoder (e.g., the one specified in the
LTE standard), the BER performance becomes successively better with a greater number of
iterations. The function chap4_ex03_nIter illustrates this point by computing the BER perfor-
mance as a function of the number of iterations.

Algorithm

MATLAB function

function [ber, numBits]=chap4_ex03_nIter(EbNo, maxNumErrs, maxNumBits, nIter)
%% Constants
FRM=2432; % Size of bit frame
Indices = lteIntrlvrIndices(FRM);
M=4;k=log2(M);
R= FRM/(3* FRM + 4*3);
snr = EbNo + 10*log10(k) + 10*log10(R);
noiseVar = 10.^(-snr/10);

90 Understanding LTE with MATLAB®

ModulationMode=1; % QPSK
%% Processing loop modeling transmitter, channel model and receiver
numErrs = 0; numBits = 0; nS=0;
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Randomly generated input bits
t0 = TurboEncoder(u, Indices); % Turbo Encoder
t1 = Scrambler(t0, nS); % Scrambler
t2 = Modulator(t1, ModulationMode); % Modulator
% Channel
c0 = AWGNChannel(t2, snr); % AWGN channel
% Receiver
r0 = DemodulatorSoft(c0, ModulationMode, noiseVar); % Demodulator
r1 = DescramblerSoft(r0, nS); % Descrambler
y = TurboDecoder(-r1, Indices, nIter); % Turbo Decoder
% Measurements
numErrs = numErrs + sum(ỹ=u); % Update number of bit errors
numBits = numBits + FRM; % Update number of bits processed
% Manage slot number with each subframe processed
nS = nS + 2; nS = mod(nS, 20);

end
%% Clean up & collect results
ber = numErrs/numBits; % Compute Bit Error Rate (BER)

To compare the performance of a turbo coder with that of a traditional convolutional coder,
we also run a function called chap4_ex03_viterbi.m, which uses a 1/3-rate convolutional coder,
a Viterbi decoder, and soft-decision demodulation.

Algorithm

MATLAB function

function [ber, numBits]=chap4_ex03_viterbi(EbNo, maxNumErrs, maxNumBits)
%% Constants
FRM=2432; % Size of bit frame
M=4;k=log2(M);
R= FRM/(3* (FRM+6));
snr = EbNo + 10*log10(k) + 10*log10(R);
noiseVar = 10.^(-snr/10);
ModulationMode=1; % QPSK
%% Processing loop modeling transmitter, channel model and receiver
numErrs = 0; numBits = 0; nS=0;
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Randomly generated input bits
t0 = ConvolutionalEncoder(u); % Convolutional Encoder

Modulation and Coding 91

t1 = Scrambler(t0, nS); % Scrambler
t2 = Modulator(t1, ModulationMode); % Modulator
% Channel
c0 = AWGNChannel(t2, snr); % AWGN channel
% Receiver
r0 = DemodulatorSoft(c0, ModulationMode, noiseVar); % Demodulator
r1 = DescramblerSoft(r0, nS); % Descrambler
r2 = ViterbiDecoder(r1); % Viterbi Deocder
y=r2(1:FRM);
% Measurements
numErrs = numErrs + sum(ỹ=u); % Update number of bit errors
numBits = numBits + FRM; % Update number of bits processed
% Manage slot number with each subframe processed
nS = nS + 2; nS = mod(nS, 20);

end
%% Clean up & collect results
ber = numErrs/numBits; % Compute Bit Error Rate (BER)

Figure 4.4 compares the BER performance of a turbo decoder when one, three, or five
iterations of turbo decoding are used with that of a typical Viterbi decoder with the same
coding rate. As we increase the number of iterations from one to three and then to five, we

BER performance: Turbo & Viterbi coders as a function of SNR

Viterbi 1/3 soft
Turbo 1/3 Interations = 1
Turbo 1/3 Interations = 3
Turbo 1/3 Interations = 5

0
10−5

10−4

10−3

10−2

10−1

100

0.5 1 1.5

SNR (dB)

B
E

R

2 2.5 3

Figure 4.4 Performance of turbo coders as a function of number of iterations

92 Understanding LTE with MATLAB®

see that the shape of the BER curve reflects the near-optimum quality of a turbo decoder.
The curve shows a steep slope after a certain value of E/N. For example, with five as the
maximum number of iterations, the LTE turbo decoder combined with QPSK and a soft-
decision demodulator becomes capable of reaching a BER value of 2e−4 with an SNR value
of 1.25 dB.
This profile of performance for turbo coding can explain why turbo coding has been selected

as the mandatory channel-coding mechanism for user data in the LTE standard.
By executing the following testbench (chap4_ex03_nIter), we can measure the transceiver

computation time as a function of number of iterations. The computation time is an estimate
of the computational complexity of turbo encoding and decoding operations.

Algorithm

MATLAB script

%% Computation time of turbo coder
%% as a function of number of iterations
EbNo=1;
maxNumErrs=1e6;
maxNumBits=1e6;
for nIter=1:6

clear functions
tic;
ber=chap4_ex03_nIter(EbNo, maxNumErrs, maxNumBits , nIter);
toc;

end

Table 4.4 summarizes the results. As expected, the complexity and thus the time it takes to
complete the decoding operations is proportional to the number of iterations.
To see what function contributes most to the complexity of the transceiver we have developed

so far (chap4_ex03_nIter), we execute the following profiling script.

Table 4.4 Transceiver computation time as
a function of number of iterations

Maximum number of iterations Elapsed
in turbo coding time (s)

1 5.83

2 8.54

3 11.27

4 13.66

5 16.41

6 18.96

Modulation and Coding 93

Algorithm

MATLAB script

%% Profiling the turbo coder system model
EbNo=1;
maxNumErrs=1e6;
maxNumBits=1e6;
profile on
ber=chap4_ex03_nIter(EbNo, maxNumErrs, maxNumBits , 1);
profile viewer

The execution times for each line of the system model are summarized in the profiling report
shown in Figure 4.5.
The result shows that performing turbo decoding with a fixed value of iterations takes about

86% of the entire system simulation time. The turbo decoder can thus be regarded as one of
the bottlenecks of the system. In order to overcome this problem, the LTE standard provides a
mechanism in the LTE encoder that enables early termination of turbo decodingwithout having
a severe effect on the performance of the turbo coding. This early-termination mechanism is
discussed in the next section.

4.5 Early-Termination Mechanism

The number of iterations performed in a turbo decoder is one of its main characteristics. In
implementing an efficient turbo decoder, we face a clear tradeoff. On one hand, the accuracy
and performance of the turbo decoder directly relates to its number of iterations. The more
iterations, the more accurate the results. On the other hand, the computational complexity of
a turbo decoder is also proportional to its number of iterations.

Figure 4.5 Profiling results for a system model, showing the turbo decoder to be the bottleneck

94 Understanding LTE with MATLAB®

LTE specification allows for an effective way of resolving this tradeoff by devising an early
termination. This mechanism is integrated with the turbo encoder. By appending a CRC-
checking syndrome to the input of the turbo encoder, we can detect the presence or absence of
any bit errors at the end of the iteration in the turbo decoder. Instead of following through with
a fixed number of decoding iterations, we now have the option of stopping the decoding early
when the CRC check indicates that no errors are detected. This very simple solution man-
ages to reduce the computational complexity of a turbo decoder substantially without severely
penalizing its performance.

4.5.1 MATLAB Examples

The following MATLAB function (TurboDecoder_crc) shows an implementation of the LTE
turbo decoder that examines the CRC bits at the end of the input frame in order to optionally
terminate the decoding operations before the maximum number of iterations is performed.
As we can see, in this function we use the LTETurboDecoder System object instead of the
comm.TurboDecoder System object.

Algorithm

MATLAB function

function [y, flag, iters]=TurboDecoder_crc(u, intrlvrIndices)
%#codegen
MAXITER=6;
persistent Turbo
if isempty(Turbo)

Turbo = commLTETurboDecoder('InterleaverIndicesSource', 'Input port', ...
'MaximumIterations', MAXITER);

end
[y, flag, iters] = step(Turbo, u, intrlvrIndices);

In the LTETurboDecoder, similar operations are performed to those in the regular turbo
decoder. However, at the end of each decoding iteration the last 24 samples of the output that
correspond to the CRC bits are examined for error detection. If no errors are detected, we
branch out of the loop and terminate the turbo decoding operation. In this case, although the
maximum number of iterations has not been executed, an early termination can occur. If we
detect errors in the CRC bits, we continue the operations and enter the next decoding iteration
until either no more errors are detected in the iteration or we reach the maximum allowable
number of iterations.

Modulation and Coding 95

The followingMATLAB function (CbCRCGenerator) adds the 24-bit CRC syndrome to the
end of the transport block before turbo encoding is performed.

Algorithm

MATLAB function

function y = CbCRCGenerator(u)
%#codegen
persistent hTBCRCGen
if isempty(hTBCRCGen)

hTBCRCGen = comm.CRCGenerator('Polynomial',[1 1 zeros(1, 16) 1 1 0 0 0 1 1]);
end
% Transport block CRC generation
y = step(hTBCRCGen, u);

The following MATLAB function (CbCRCDetector) extracts the 24-bit CRC syndrome to
the end of the transport block after turbo decoding is performed.

Algorithm

MATLAB function

function y = CbCRCDetector(u)
%#codegen
persistent hTBCRC
if isempty(hTBCRC)

hTBCRC = comm.CRCDetector('Polynomial', [1 1 zeros(1, 16) 1 1 0 0 0 1 1]);
end
% Transport block CRC generation
y = step(hTBCRC, u);

4.5.2 BER Measurements

To examine the effectiveness of the early termination algorithm, we now compare two imple-
mentations of turbo decoding with and without CRC-based early termination. The follow-
ing function (chap4_ex04) performs a combination of CRC generation, turbo coding, scram-
bling, andmodulation and their inverse operations without implementing the early-termination
mechanism.

96 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function [ber, numBits]=chap4_ex04(EbNo, maxNumErrs, maxNumBits)
%% Constants
FRM=2432-24; % Size of bit frame
Kplus=FRM+24;
Indices = lteIntrlvrIndices(Kplus);
ModulationMode=1;
k=2*ModulationMode;
maxIter=6;
CodingRate=Kplus/(3*Kplus+12);
snr = EbNo + 10*log10(k) + 10*log10(CodingRate);
noiseVar = 10.^(-snr/10);
%% Processing loop modeling transmitter, channel model and receiver
numErrs = 0; numBits = 0; nS=0;
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Randomly generated input bits
data= CbCRCGenerator(u); % Code block CRC generator
t0 = TurboEncoder(data, Indices); % Turbo Encoder
t1 = Scrambler(t0, nS); % Scrambler
t2 = Modulator(t1, ModulationMode); % Modulator
% Channel
c0 = AWGNChannel(t2, snr); % AWGN channel
% Receiver
r0 = DemodulatorSoft(c0, ModulationMode, noiseVar); % Demodulator
r1 = DescramblerSoft(r0, nS); % Descrambler
r2 = TurboDecoder(-r1, Indices, maxIter); % Turbo Decoder
y = CbCRCDetector(r2); % Code block CRC detector
% Measurements
numErrs = numErrs + sum(ỹ=u); % Update number of bit errors
numBits = numBits + FRM; % Update number of bits processed
% Manage slot number with each subframe processed
nS = nS + 2; nS = mod(nS, 20);

end
%% Clean up & collect results
ber = numErrs/numBits; % Compute Bit Error Rate (BER)

The following function (chap4_ex04_crc) performs the same transceiver while implement-
ing the early-termination mechanism. In the case of algorithm-deploying early termination,
we record the actual number of iterations in each subframe and then compute a histogram.

Modulation and Coding 97

Algorithm

MATLAB function

function [ber, numBits, itersHist]=chap6_ex04_crc(EbNo, maxNumErrs, maxNumBits)
%% Constants
FRM=2432-24; % Size of bit frame
Kplus=FRM+24;
Indices = lteIntrlvrIndices(Kplus);
ModulationMode=1;
k=2*ModulationMode;
maxIter=6;
CodingRate=Kplus/(3*Kplus+12);
snr = EbNo + 10*log10(k) + 10*log10(CodingRate);
noiseVar = 10.^(-snr/10);
Hist=dsp.Histogram('LowerLimit', 1, 'UpperLimit', maxIter, 'NumBins', maxIter,
'RunningHistogram', true);
%% Processing loop modeling transmitter, channel model and receiver
numErrs = 0; numBits = 0; nS=0;
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Randomly generated input bits
data= CbCRCGenerator(u); % Transport block CRC code
t0 = TurboEncoder(data, Indices); % Turbo Encoder
t1 = Scrambler(t0, nS); % Scrambler
t2 = Modulator(t1, ModulationMode); % Modulator
% Channel
c0 = AWGNChannel(t2, snr); % AWGN channel
% Receiver
r0 = DemodulatorSoft(c0, ModulationMode, noiseVar); % Demodulator
r1 = DescramblerSoft(r0, nS); % Descrambler
[y, ̃, iters] = TurboDecoder_crc(-r1, Indices); % Turbo Decoder
% Measurements
numErrs = numErrs + sum(ỹ=u); % Update number of bit errors
numBits = numBits + FRM; % Update number of bits processed
itersHist = step(Hist, iters); % Update histogram

of iteration numbers
% Manage slot number with each subframe processed
nS = nS + 2; nS = mod(nS, 20);

end
%% Clean up & collect results
ber = numErrs/numBits; % Compute Bit Error Rate (BER)

98 Understanding LTE with MATLAB®

10−5

10−6

10−7

10−4

10−3

10−2

10−1

100

B
E

R

0 0.2 0.4 0.6 0.8 1 1.2 1.4

SNR (dB)

BER performance: Turbo coding as a function of SNR

Fixed number of decding iterations = 6
Variable decoding iterations based on CRC

Figure 4.6 Comparison of BER results for cases of turbo coding with and without CRC-based early
terminations

The BER results in Figure 4.6 indicate that we get similar BER performance for the range of
SNR values with early termination (trace in red) and without early termination (trace in blue).

4.5.3 Timing Measurements

In this experiment, we compare the execution times of a transceiver that employs turbo decod-
ing without a CRC-based early-stopping mechanism (chap4_ex04.m) with those of one that
does employ a CRC-based early-stopping mechanism (chap4_ex04_crc.m). The experiment is
performed by calling the following MATLAB testbench.

Algorithm

MATLAB script

EbNo=1; maxNumErrs=1e7; maxNumBits=1e7;
tic; [a,b]=chap4_ex04(EbNo,maxNumErrs, maxNumBits); toc;
tic; [a,b]=chap4_ex04_crc(EbNo,maxNumErrs, maxNumBits); toc;

Modulation and Coding 99

Figure 4.7 Typical saving in execution time with early-termination turbo decoding

The first line of the script forces both transceiver functions to process 10 million bits per call
for a given Eb/N0 value of 1 dB. The second line uses the MATLAB functions tic and toc to
obtain the elapsed time for an algorithm without early termination. The third line records the
elapsed time for an algorithm with early termination.
The results printed in the MATLAB command line are shown in Figure 4.7. It takes

considerably less time to process the same number of input frames with early termination
(131.27 seconds) than it does without early termination (178.77 seconds).

4.6 Rate Matching

So far we have only considered a turbo coding operation with a base coding rate of 1/3. Rate
matching is instrumental in the implementation of adaptive coding, an important feature of
modern communications standards. It helps augment the throughput based in the channel con-
ditions. In low-distortion channels, we can code the data with coding rates near unity, which
reduces the number of bits transmitted for forward error coding. On the other hand, in degraded
channels we can use smaller coding rates and increase the number of error-correction bits.
In channel coding with rate matching, we start with a constant 1/3-rate turbo coder and use

rate matching to arrive at any desired rate by repeating or puncturing. If a rate lower than 1/3
is requested, we repeat the turbo coder output bits. For rates higher than 1/3, we puncture or
remove some of the turbo coder output bits. The puncturing of the code is not the result of
simple subsampling but rather is based on an interleaving method. This method is shown to
preserve the hamming distances of the resulting higher-rate code [2].
Rate matching is composed of:

• Subblock interleaving
• Parity-bit interlacing
• Bit pruning
• Rate-based bit selection and transmission.

The first operation in rate matching is the subblock interleaving, based on a simple rectan-
gular interleaver. By using a circular buffer concept in rate matching, both the puncturing and
the repeating operations that are necessary to increase or decrease (respectively) the rate to the
desired level are simply implemented by bit selection operating on a circular buffer. Finally,

100 Understanding LTE with MATLAB®

by concatenating codeblocks, the encoded bits become ready for transfer to the PDSCH for
processing.

4.6.1 MATLAB Examples

Staying true to our pedagogic approach of moving from simple to more complex, we will first
study rate matching before going on to introduce all the details of transport block channel
coding in the LTE standard. This MATLAB function implements the three features of rate
matching as specified in the LTE standard: subblock interleaving, Parity bit interlacing, and
rate matching with a circular buffer bit selection.
This MATLAB function shows the sequence of interleaving, interlacing, and bit-selection

operations that defines the LTE rate-marching algorithm. The input of the rate marcher is the
output of a 1/3 turbo encoder. So, for an input block of size K, the input to the rate marcher has
a size of 3(K+ 4), comprising three streams of Systematic and two Parity streams. First, we
subdivide each of the three streams into 32 bit sections and interleave each of these sections.
Since each stream may not be divisible by 32, we add dummy bits to the beginnings of the
streams, such that the resulting vector can be subdivided into some integer number of 32 bits.
The subblock interleavings used for Systematic and Parity 1 bits are the same, but the subblock
interleaved for Parity 2 bits is different.
We then create an output vector composed of dummy padded Systematic bits and the inter-

lacing of dummy padded Parity 1 and Parity 2 bits. Finally, by removing the dummy bits, we
generate the circular buffer used for the rate-necking operation. The last step in rate matching
is a bit selection, where the dummy bits in the circular buffer are removed and the first few
bits are selected. The ratio of selected bits to the input length of the turbo encoder is the new
rate after rate matching.

Algorithm

MATLAB function

function y= RateMatcher(in, Kplus, Rate)
% Rate matching per coded block, with and without the bit selection.
D = Kplus+4;
if numel(in)̃=3*D, error('Kplus (2nd argument) times 3 must be size of input 1.');end
% Parameters
colTcSb = 32;
rowTcSb = ceil(D/colTcSb);
Kpi = colTcSb * rowTcSb;
Nd = Kpi - D;
% Bit streams
d0 = in(1:3:end); % systematic
d1 = in(2:3:end); % parity 1st
d2 = in(3:3:end); % parity 2nd
i0=(1:D)';
Index=indexGenerator(i0,colTcSb, rowTcSb, Nd);
Index2=indexGenerator2(i0,colTcSb, rowTcSb, Nd);

Modulation and Coding 101

% Sub-block interleaving - per stream
v0 = subBlkInterl(d0,Index);
v1 = subBlkInterl(d1,Index);
v2 = subBlkInterl(d2,Index2);
vpre=[v1,v2].';
v12=vpre(:);
% Concat 0, interleave 1, 2 sub-blk streams
% Bit collection
wk = zeros(numel(in), 1);
wk(1:D) = remove_dummy_bits(v0);
wk(D+1:end) = remove_dummy_bits(v12);
% Apply rate matching
N=ceil(D/Rate);
y=wk(1:N);
end
function v = indexGenerator(d, colTcSb, rowTcSb, Nd)
% Sub-block interleaving - for d0 and d1 streams only
colPermPat = [0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30,...

1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31];
% For 1 and 2nd streams only
y = [NaN*ones(Nd, 1); d]; % null (NaN) filling
inpMat = reshape(y, colTcSb, rowTcSb).';
permInpMat = inpMat(:, colPermPat+1);
v = permInpMat(:);
end
function v = indexGenerator2(d, colTcSb, rowTcSb, Nd)
% Sub-block interleaving - for d2 stream only
colPermPat = [0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30,...

1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31];
pi = zeros(colTcSb*rowTcSb, 1);
for i = 1 : length(pi)

pi(i) = colPermPat(floor((i-1)/rowTcSb)+1) + colTcSb*(mod(i-1, rowTcSb)) + 1;
end
% For 3rd stream only
y = [NaN*ones(Nd, 1); d]; % null (NaN) filling
inpMat = reshape(y, colTcSb, rowTcSb).';
ytemp = inpMat.';
y = ytemp(:);
v = y(pi);
end
function out = remove_dummy_bits(wk)
%UNTITLED5 Summary of this function goes here
%out = wk(find(̃isnan(wk)));
out=wk(isfinite(wk));
end
function out=subBlkInterl(d0,Index)
out=zeros(size(Index));
IndexG=find(̃isnan(Index)==1);
IndexB=find(isnan(Index)==1);

102 Understanding LTE with MATLAB®

out(IndexG)=d0(Index(IndexG));
Nd=numel(IndexB);
out(IndexB)=nan*ones(Nd,1);
end

In the RateDematcher function we perform the inverse operations to those in the rate match-
ing. We create a vector composed of dummy padded Systematic and Parity bits, place the
available samples of the input vectors in the vector, and by de-interlacing and de-interleaving
create the right number of LLR samples to become inputs to the 1/3 turbo decoder.

Algorithm

MATLAB function

function out = RateDematcher(in, Kplus)
% Undoes the Rate matching per coded block.
%#codegen

% Parameters
colTcSb = 32;
D = Kplus+4;
rowTcSb = ceil(D/colTcSb);
Kpi = colTcSb * rowTcSb;
Nd = Kpi - D;

tmp=zeros(3*D,1);
tmp(1:numel(in))=in;

% no bit selection - assume full buffer passed in
i0=(1:D)’;
Index= indexGenerator(i0,colTcSb, rowTcSb, Nd);
Index2= indexGenerator2(i0,colTcSb, rowTcSb, Nd);
Indexpre=[Index,Index2+D].’;
Index12=Indexpre(:);

% Bit streams
tmp0=tmp(1:D);
tmp12=tmp(D+1:end);
v0 = subBlkDeInterl(tmp0, Index);
d12=subBlkDeInterl(tmp12, Index12);
v1=d12(1:D);
v2=d12(D+(1:D));

Modulation and Coding 103

% Interleave 1, 2, 3 sub-blk streams - for turbo decoding
temp = [v0 v1 v2].’;
out = temp(:);
end

function v = indexGenerator(d, colTcSb, rowTcSb, Nd)
% Sub-block interleaving - for d0 and d1 streams only

colPermPat = [0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30,...
1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31];

% For 1 and 2nd streams only
y = [NaN*ones(Nd, 1); d]; % null (NaN) filling
inpMat = reshape(y, colTcSb, rowTcSb).’;
permInpMat = inpMat(:, colPermPat+1);
v = permInpMat(:);

end

function v = indexGenerator2(d, colTcSb, rowTcSb, Nd)
% Sub-block interleaving - for d2 stream only

colPermPat = [0, 16, 8, 24, 4, 20, 12, 28, 2, 18, 10, 26, 6, 22, 14, 30,...
1, 17, 9, 25, 5, 21, 13, 29, 3, 19, 11, 27, 7, 23, 15, 31];

pi = zeros(colTcSb*rowTcSb, 1);
for i = 1 : length(pi)

pi(i) = colPermPat(floor((i-1)/rowTcSb)+1) + colTcSb*(mod(i-1, rowTcSb)) + 1;
end

% For 3rd stream only
y = [NaN*ones(Nd, 1); d]; % null (NaN) filling
inpMat = reshape(y, colTcSb, rowTcSb).’;
ytemp = inpMat.’;
y = ytemp(:);
v = y(pi);

end

function out=subBlkDeInterl(in,Index)
out=zeros(size(in));
IndexG=find(̃isnan(Index)==1);
IndexOut=Index(IndexG);
out(IndexOut)=in;
end

104 Understanding LTE with MATLAB®

4.6.2 BER Measurements

We will now examine the effects of using a coding rate other than 1/3 for the turbo coding
algorithm. The function chap6_ex05_crc implements the transceiver algorithm that performs
a combination of CRC generation, turbo coding, scrambling, and modulation and their inverse
operations, while implementing the early-termination mechanism and applying rate-matching
operations.

Algorithm

MATLAB function

function [ber, numBits, itersHist]=chap6_ex05_crc(EbNo, maxNumErrs, maxNumBits)
%% Constants
FRM=2432-24; % Size of bit frame
Kplus=FRM+24;
Indices = lteIntrlvrIndices(Kplus);
ModulationMode=1;
k=2*ModulationMode;
CodingRate=1/2;
snr = EbNo + 10*log10(k) + 10*log10(CodingRate);
noiseVar = 10.^(-snr/10);
Hist=dsp.Histogram('LowerLimit', 1, 'UpperLimit', maxIter, 'NumBins', maxIter,
'RunningHistogram', true);
%% Processing loop modeling transmitter, channel model and receiver
numErrs = 0; numBits = 0; nS=0;
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Randomly generated input bits
data= CbCRCGenerator(u); % Transport block CRC code
t0 = TurboEncoder(data, Indices); % Turbo Encoder
t1= RateMatcher(t0, Kplus, CodingRate); % Rate Matcher
t2 = Scrambler(t1, nS); % Scrambler
t3 = Modulator(t2, ModulationMode); % Modulator
% Channel
c0 = AWGNChannel(t3, snr); % AWGN channel
% Receiver
r0 = DemodulatorSoft(c0, ModulationMode, noiseVar); % Demodulator
r1 = DescramblerSoft(r0, nS); % Descrambler
r2 = RateDematcher(r1, Kplus); % Rate Matcher
[y, ̃, iters] = TurboDecoder_crc(-r2, Indices); % Turbo Decoder
% Measurements
numErrs = numErrs + sum(ỹ=u); % Update number of bit errors
numBits = numBits + FRM; % Update number of bits processed
itersHist = step(Hist, iters); % Update histogram

of iteration numbers

Modulation and Coding 105

% Manage slot number with each subframe processed
nS = nS + 2; nS = mod(nS, 20);

end
%% Clean up & collect results
ber = numErrs/numBits; % Compute Bit Error Rate (BER)

By adding the rate-matching operation after the turbo encoder and the rate-dematching oper-
ation after the decoder we can simulate the effects of using any coding rate higher than 1/3. Of
course, lower coding rates are used in transmission scenarios dealing with cleaner channels,
where less error correction is desirable.
By modifying the variable CodingRate in the function, we activate the rate-matching opera-

tions and can examine the BER performance as a function of SNR for multiple values of target
coding rates. The results in Figure 4.8 show that, as expected, the performance of a 1/3-rate
transceiver is superior to that of the 1/2 transceiver.

4.7 Codeblock Segmentation

In LTE, a transport block connects the MAC layer and the PHY. The transport block usu-
ally contains a large amount of data bits, which are transmitted at the same time. The first
set of operations performed on a transport block is channel coding, which is applied to each

0

10−4

10−5

10−3

10−2

10−1

100

0.2 0.4 0.6

Eb/No

B
E

R

Effect of coding rate on BER performance - Number of
iterations = 6

Rate third turbo coding
Rate half turbo coding

0.8 1 1.2 1.4

Figure 4.8 Effect of rate matching on turbo coding BER performance

106 Understanding LTE with MATLAB®

codeblock independently. If the input frame to the turbo encoder exceeds the maximum size,
the transport block is usually divided into multiple smaller blocks known as codeblocks. Since
the internal interleaver of the turbo encoder is only defined for 188 input block sizes, the sizes
of these codeblocks need to match the set of codeblock sizes supported by the turbo coder. A
combination of codeblock CRC attachment, turbo coding, and rate matching is then applied
to each codeblock independently.

4.7.1 MATLAB Examples

In the following segmentation function we search for the best subblock size to satisfy two
properties: (i) it is one among 188 valid block sizes; and (ii) it is an exact integer multiple of
the subblock size. The number of subblocks contained in a codeblock is known as parameter C
and the size of each subblock is known as Kplus.We also need to compute a parameter E for the
codeword. The output of channel coding is known as the codeword; the size of the codeword
is the product of C subblocks and the output size per subblock E. The total codeword size is
determined by the scheduler, depending on the number of available resources. The effective
coding rate is then the ratio of codeword size to subblock size.

Algorithm

MATLAB function

function [C, Kplus] = CblkSegParams(tbLen)
%#codegen
%% Code block segmentation
blkSize = tbLen + 24;
maxCBlkLen = 6144;
if (blkSize <= maxCBlkLen)

C = 1; % number of code blocks
b = blkSize; % total bits

else
L = 24;
C = ceil(blkSize/(maxCBlkLen-L));
b = blkSize + C*L;

end

% Values of K from table 5.1.3-3
validK = [40:8:512 528:16:1024 1056:32:2048 2112:64:6144].’;
% First segment size
temp = find(validK >= b/C);
Kplus = validK(temp(1), 1); % minimum K

The following MATLAB function calculates the sizes of subblocks and determines how
many are processed in parallel to reconstitute the channel coding outputs. First we divide the
total number of codeword bits by the number of subblocks. For each subblock, we ensure

Modulation and Coding 107

that the number of output bits is divisible by the number of modulation bits and the resulting
number of multi-antenna layers.

Algorithm

MATLAB function

function E = CbBitSelection(C, G, Nl, Qm)
%#codegen
% Bit selection parameters
% G = total number of output bits
% Nl Number of layers a TB is mapped to (Rel10)
% Qm modulation bits
Gprime = G/(Nl*Qm);
gamma = mod(Gprime, C);
E=zeros(C,1);
% Rate matching with bit selection
for cbIdx=1:C

if ((cbIdx-1) <= (C-1-gamma))
E(cbIdx) = Nl*Qm*floor(Gprime/C);

else
E(cbIdx) = Nl*Qm*ceil(Gprime/C);

end
end

In the receiver, in order to correctly perform the inverse of matching operations, we
need the parameters C and Kplus (the number of subblocks and the size of each subblock,
respectively).

4.8 LTE Transport-Channel Processing

Figure 4.9 shows a block diagram of TrCH processing. Five functional components character-
ize transport block processing:

• Transport-block CRC attachment
• Codeblock segmentation and codeblock CRC attachment
• Turbo coding based on a 1/3 rate
• Rate matching to handle any requested coding rates
• Codeblock concatenation.

4.8.1 MATLAB Examples

In the following MATLAB function, we need to distinguish between the case where the trans-
port contains only a single codeblock and the cases where it contains more than one codeblock,
since in the first case we do not need to apply the CRC attachment to the codeblock as the
transport block already contains a CRC attachment.

108 Understanding LTE with MATLAB®

Transport
block

payload
bits

CRC attachment
DLSCH
processing

Subblock
segmentation

Channel coding
(turbo encoder)

Rate matching

Codeword
reconstruction

PDSCH
codeword

bits

Figure 4.9 Structure of transport-channel processing

Algorithm

MATLAB function

function [out, Kplus, C] = TbChannelCoding(in, prmLTE)
% Transport block channel coding
%#codegen
inLen = size(in, 1);
[C, ̃, Kplus] = CblkSegParams(inLen-24);
intrlvrIndices = lteIntrlvrIndices(Kplus);
G=prmLTE.maxG;
E_CB=CbBitSelection(C, G, prmLTE.NumLayers, prmLTE.Qm);
% Initialize output
out = false(G, 1);
% Channel coding the TB
if (C==1) % single CB, no CB CRC used

% Turbo encode
tEncCbData = TurboEncoder(in, intrlvrIndices);
% Rate matching, with bit selection
rmCbData = RateMatcher(tEncCbData, Kplus, G);
% unify code paths
out = logical(rmCbData);

else % multiple CBs in TB

Modulation and Coding 109

startIdx = 0;
for cbIdx = 1:C

% Code-block segmentation
cbData = in((1:(Kplus-24)) + (cbIdx-1)*(Kplus-24));
% Append checksum to each CB
crcCbData = CbCRCGenerator(cbData);
% Turbo encode each CB
tEncCbData = TurboEncoder(crcCbData, intrlvrIndices);
% Rate matching with bit selection
E=E_CB(cbIdx);
rmCbData = RateMatcher(tEncCbData, Kplus, E);
% Code-block concatenation
out((1:E) + startIdx) = logical(rmCbData);
startIdx = startIdx + E;

end
end

The sequence of operations performed in channel decoding can be regarded as the inverse
of those performed in channel coding, as follows:

• Iteration over each codeblock
• Rate dematching (from target rate to 1/3 rate) composed of:

– Bit selection and insertion
– Parity-bit deinterlacing
– Subblock deinterleaving
– Recovery of Systematic and Parity bits for turbo decoding

• Codeblock 1/3-rate turbo decoding with early termination based on CRC.

Here we are using CRC of the entire transport block as another early stopping criterion and as
a mechanism for updating the state of HARQ. The following MATLAB function summarizes
the operations in the TrCH decoder.

Algorithm

MATLAB function

function [decTbData, crcCbFlags, iters] = TbChannelDecoding(in, Kplus, C, prmLTE)
% Transport block channel decoding.
%#codegen
intrlvrIndices = lteIntrlvrIndices(Kplus);
% Make fixed size
G=prmLTE.maxG;
E_CB=CbBitSelection(C, G, prmLTE.NumLayers, prmLTE.Qm);
% Channel decoding the TB

110 Understanding LTE with MATLAB®

if (C==1) % single CB, no CB CRC used
% Rate dematching, with bit insertion
deRMCbData = RateDematcher(-in, Kplus)
% Turbo decode the single CB
tDecCbData =TurboDecoder(deRMCbData, intrlvrIndices, prmLTE.maxIter)
% Unify code paths
decTbData = logical(tDecCbData);

else % multiple CBs in TB
decTbData = false((Kplus-24)*C,1); % Account for CB CRC bits
startIdx = 0;
for cbIdx = 1:C

% Code-block segmentation
E=E_CB(cbIdx);
rxCbData = in(dtIdx(1:E) + startIdx);
startIdx = startIdx + E;
% Rate dematching, with bit insertion
% Flip input polarity to match decoder output bit mapping
deRMCbData = lteCbRateDematching(-rxCbData, Kplus, C, E);
% Turbo decode each CB with CRC detection
% - uses early decoder termination at the CB level
[crcDetCbData, crcCbFlags(cbIdx), iters(cbIdx)] = ...

TurboDecoder_crc(deRMCbData, intrlvrIndices);
% Check the crcCBFlag per CB. If still in error, abort further TB
% processing for remaining CBs in the TB, as the HARQ process will
% request retransmission for the whole TB.
if (̃prmLTE.fullDecode)

if (crcCbFlags(cbIdx)==1) % error
break;

end
end
% Code-block concatention
decTbData((1:(Kplus-24)) + (cbIdx-1)*(Kplus-24)) = logical(crcDetCbData);

end
end

4.8.2 BER Measurements

We now measure the bit-error rates of the LTE downlink TrCH in the presence of the AWGN
channel noise. The function chap4_ex06 combines all the TrCH processing operations with
scrambling and modulation.

Modulation and Coding 111

Algorithm

MATLAB function

function [ber, numBits]=chap4_ex06(EbNo, maxNumErrs, maxNumBits)
%% Constants
FRM=2432-24;
Kplus=FRM+24;
Indices = lteIntrlvrIndices(Kplus);
ModulationMode=1;
k=2*ModulationMode;
maxIter=6;
CodingRate=1/2;
snr = EbNo + 10*log10(k) + 10*log10(CodingRate);
noiseVar = 10.^(-snr/10);
%% Processing loop modeling transmitter, channel model and receiver
numErrs = 0; numBits = 0; nS=0;
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Randomly generated input bits
data= CbCRCGenerator(u); % Transport block CRC code
[t1, Kplus, C] = TbChannelCoding(data,Indices,maxIter); % Transport

Channel encoding
t2 = Scrambler(t1, nS); % Scrambler
t3 = Modulator(t2, ModulationMode); % Modulator
% Channel
c0 = AWGNChannel(t3, snr); % AWGN channel
% Receiver
r0 = DemodulatorSoft(c0, ModulationMode, noiseVar); % Demodulator
r1 = DescramblerSoft(r0, nS); % Descrambler
[r2,̃,̃] = TbChannelDecoding(r1, Kplus, C, Indices,maxIter); % Transport

Channel decoding
y = CbCRCDetector(r2); % Code block CRC detector
% Measurements
numErrs = numErrs + sum(ỹ=u); % Update number of bit errors
numBits = numBits + FRM; % Update number of bits processed
% Manage slot number with each subframe processed
nS = nS + 2; nS = mod(nS, 20);

end
%% Clean up & collect results
ber = numErrs/numBits; % Compute Bit Error Rate (BER)

112 Understanding LTE with MATLAB®

Transport channel BER performance; Coding Rate = 1/2

0

no. iterations = 1
no. iterations = 2
no. iterations = 3
no. iterations = 4
no. iterations = 5
no. iterations = 6

0.5 1 1.5

SNR (dB)

2

10−5

10−6

10−7

10−4

10−3

10−2

10−1

100

B
E

R

Figure 4.10 BER performance of DLSCH and QPSK as a function of Eb/N0 and the number of
decoding operations

By executing this function with a range of SNR values, we can verify that the combination
of processing applied to the DLSCH and PDSCH without OFDM and MIMO operations is
implemented properly. Figure 4.10 illustrates the BER performance of the transceiver. In this
experiment, we use rate matching with a coding rate of 1/2 and a QPSK modulator and repeat
the operations for a range of values for a maximum number of iterations from one to six. As
expected, by providing more decoding iterations we obtain progressively better performance
results. This again shows the critical role that early termination can play in making the DLSCH
processing specified in the LTE standard more realizable.

4.9 Chapter Summary

So far we have studied the forward error-correction scheme employed in the LTE standard
based on a simple channel model (AWGN). The LTE standard usesAWGNenvironment propa-
gation for static performance measurement. No fading or multipaths exist for this propagation
model and it does not take into account the frequency response of real channels. Most real
channels add to the transmitted signal various forms of fading and other correlated distortions.
These fading profiles introduce intersymbol interference, whichmust be compensated by using
equalization.
We observe that the performance of iterative turbo channel coding depends on the number of

iterations used. This motivates the discussion regarding simulation acceleration in Chapter 9.

Modulation and Coding 113

We also note that studying the performance in an AWGN channel ignores real channel models
and the effects of multipath fading. This motivates the discussions in Chapters 5 and 6 on how
to combat multipath fading using OFDM and Single-Carrier Frequency Division Multiplexing
(SC-FDM) with frequency-domain equalizers.

References

[1] 3GPP (2009) Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and Channel Coding. TS
36.212.

[2] Proakis, J. and Salehi, M. (2007) Digital Communications, 5th edn, McGraw-Hill Education, New York.
[3] 3GPP (2011) Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation

Version 10.0.0. TS 36.211, January 2011.
[4] Online: http://www.mathworks.com/help/comm/ug/define-basic-system-objects-1.html (last accessed

September 30, 2013).

5
OFDM

So far we have considered the modulation, scrambling, and coding specifications of the LTE
standard and have used a simplistic channel model (Additive White Gaussian Noise, AWGN)
to undertake performance evaluations. Understanding of Orthogonal Frequency DivisionMul-
tiplexing (OFDM), which is the fundamental air interface in the standard, necessitates under-
standing and modeling of more sophisticated channel models.
In this chapter we consider realistic channel models that take into account the dynamic

channel responses and fading conditions. Short-term fading effects such as multipath fading
and Doppler effects resulting from mobility will lead to frequency-selective channel mod-
els. OFDM and Single-Carrier Frequency Division Multiplexing (SC-FDM) multiple-access
technologies in LTE, for downlink and uplink respectively, use efficient frequency-domain
equalizers to combat frequency-selective fading and contribute to its superior spectral effi-
ciency. In this chapter wewill focus on a single-antenna configuration, while in the next chapter
we will combine Multiple Input Multiple Output (MIMO) and OFDM.
We will detail the basis of the OFDM technology and discuss OFDM frame structure and

implementation in the LTE standard. We will then discuss the time–frequency mapping of
the OFDM signal and the various resource element granularities used to adaptively exploit the
channel bandwidth, followed by the frequency-domain equalization of the OFDM signal at the
receiver. We examine Zero Forcing (ZF), MinimumMean Squared Error (MMSE), equalizers
and details of the interpolation of reference signals or pilots. Finally, we examine the perfor-
mance of a transceiver composed of components developed so far under various multipath
fading and mobility conditions specified by the standard.

5.1 Channel Modeling

Wireless channels are characterized by the availability of different paths of propagation
between transmitters and receivers. Besides the direct path between the transmitter and the
receiver, which may even not exist, other paths can be formed through reflection, diffraction,
scattering, or other propagation scenarios. By going through different paths, different versions
of the transmitted signals can be received simultaneously at the receiver. These different

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

116 Understanding LTE with MATLAB®

versions exhibit varying profiles of signal power and time delay or phase. Since these received
signals are correlated in time, an AWGN model is not the most representative channel model
for most wireless connections. Therefore, proper modeling of the characteristics of a wireless
channel is an important requirement for the design of mobile communications systems.
Channel propagation usually results in a reduced power in received signals relative to the
transmitted signal. In general, the power reductions are treated in two categories: (i) signal
attenuations or large-scale fading and (ii) fading or small-scale fading.

5.1.1 Large-Scale and Small-Scale Fading

Path loss and shadowing are among the most prominent large-scale fading effects. These large-
scale features are taken into account in design and cellular topography [1]. Small-scale fading
includes multipath fading and time dispersion due to mobility. These features are of short
duration and must be adaptively dealt with. The design of the PHY (Physical Layer) should
include techniques that effectively deal with these types of channel impairment [1].

5.1.2 Multipath fading Effects

Multipath fading is characterized by a power-delay profile comprising two components: a vec-
tor of relative delays and a vector of average power parameters. Another useful set of scalar
measures is either mean excess delay or the Root Mean Square (RMS) delay spread as the first
and second moments of relative delays. Multipath fading can be flat or frequency-selective. If
the bandwidth is larger than the inverse of the delay spread, channel frequency response will
lead to multipath fading.
In the cellular communication context, signals are received at the mobile terminal follow-

ing a direct path from the base station. Some signals will also be reflected off buildings or
other reflectors and will reach the mobile terminal with a time delay and an attenuated power.
Since the mobile receiver gets the linear combination of these signals, the net signal obtained
is essentially a convolution of input signal and the impulse response of the channel. In the
frequency domain, the frequency response of the channel includes different response patterns
at different frequencies; we thus have frequency-selective fading (Figure 5.1).
In the case of a time-dispersive channel with multipath-propagation characteristics, there

will be not only intersymbol interference within a subcarrier but also interference between

Frequency-domain equalization

Frequency-selective fading

H(ω)

1

Y(ω) = H(ω)×(ω)

y(n) = ∑ hn x(n – dn)n=0
N

G(ω)H(ω)

G(ωk) = H−1(ωk)
G(ωk) Y(ωk) ≈ X(ωk)

ω

ω

Multipath

{h1, d1}

{h0, d0}

{h2, d2}

Figure 5.1 Multipath propagation, frequency-selective fading, and frequency-domain equalization

OFDM 117

subcarriers. This is because the orthogonality between the subcarriers will be partially lost due
to the overlap of the demodulator correlation interval for one path with the symbol boundary
of another. The integration interval, used to compute the Fast Fourier Transform (FFT), will
not necessarily correspond to an integer number of periods of complex exponentials of that
path, as the modulation symbols may differ between consecutive symbol intervals.

5.1.3 Doppler Effects

For mobile systems transmitting over a broad bandwidth, such as the LTE, the predominant
channel degradation is a result of short-term fading caused by multipath propagation. We need
to account for the effects of a fading channel in order to provide an accurate evaluation of
the LTE system performance. As a result of mobile terminal movement, the profile of channel
impulse response can vary. Fast- and slow-fading channels reflect the speed of the mobile
terminal and are expressed in terms of Doppler frequency shifts [1].

5.1.4 MATLAB® Examples

We can study the effects of channel responses to a transmitted signal by using the various
channel models of the Communications System Toolbox. Rayleigh and Rician channel objects
can be used to model a single propagation path and the comm.MIMOChannel System object
can be used to study the effects of multiple antennas and multiple propagation paths. All of
these components use the delay profile and Doppler shift as parameters to model the dynamics
of a fading channel.
In order to become familiar with these objects, let us examine four types of channel sepa-

rately. The differences between these channel models relate to (i) whether or not a frequency-
flat or a frequency-selective channel is present and (ii) whether or not a frequency-dispersive
channel is present due to the Doppler shift caused by the mobility of the receiver.

5.1.4.1 Low-Mobility Flat-Fading Channels

The first type of channel is a low-mobility flat-fading channel. In this case, the delay profile
does not contain multiple shifts in time. It is characterized by a single dominant delay value
that denotes the time difference between the transmitter and the receiver. Furthermore, low
mobility leads to a Doppler shift of near zero. The following MATLAB function implements
such a channel model.

Algorithm

MATLAB function

function y = ChanModelFading(in, Chan)

% Static (No mobility) Flat Fading Channel

%#codegen

% Get simulation params

numTx=1;

118 Understanding LTE with MATLAB®

numRx=1;

chanSRate = Chan.chanSRate;

PathDelays = Chan.PathDelays;

PathGains = Chan.PathGains;

Doppler = Chan.DopplerShift;

% Initialize objects

persistent chanObj

if isempty(chanObj)

chanObj = comm.MIMOChannel(...

'SampleRate', chanSRate, ...

'MaximumDopplerShift', Doppler, ...

'PathDelays', PathDelays,...

'AveragePathGains', PathGains,...

'NumTransmitAntennas', numTx,...

'TransmitCorrelationMatrix', eye(numTx),...

'NumReceiveAntennas', numRx,...

'ReceiveCorrelationMatrix', eye(numRx),...

'PathGainsOutputPort', false,...

'NormalizePathGains', true,...

'NormalizeChannelOutputs', true);

end

y = step(chanObj, in);

In order to visualize the effect of this type of channel on a system, we add the fading channel
to a system containing coding scrambling and modulation and observe the input signal to the
demodulator. Note that by running the experiment in the followingMATLAB function, we can
observe how even a static flat-fading channel that represents a mild form of channel response
significantly degrades the performance.

Algorithm

MATLAB function

function [ber, bits] = chap5_ex01(EbNo, maxNumErrs, maxNumBits, prmLTE)

%#codegen

%% Constants

FRM=2432-24;

Kplus=FRM+24;

Indices = lteIntrlvrIndices(Kplus);

ModulationMode=1;

k=2*ModulationMode;

maxIter=6;

CodingRate=1/2;

snr = EbNo + 10*log10(k) + 10*log10(CodingRate);

noiseVar = 10.^(-snr/10);

%% Processing loop modeling transmitter, channel model and receiver

OFDM 119

numErrs = 0; numBits = 0; nS=0;

while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter

u = randi([0 1], FRM,1); % Randomly generated input bits

data= CbCRCGenerator(u); % Transport block CRC code

[t1, Kplus, C] = TbChannelCoding(data, prmLTE);

t2 = Scrambler(t1, nS); % Scrambler

t3 = Modulator(t2, ModulationMode); % Modulator

% Channel & Add AWG noise

[rxFade, ̃] = MIMOFadingChan(t3, prmLTE);

nVar = 10.^(0.1.*(-EbNo)); % assume unit sigPower

c0 = AWGNChannel2(rxFade, nVar); % AWGN channel

% Receiver

r0 = DemodulatorSoft(c0, ModulationMode, noiseVar); % Demodulator

r1 = DescramblerSoft(r0, nS); % Descrambler

r2 = RateDematcher(r1, Kplus); % Rate Matcher

r3 = TurboDecoder(-r2, Indices, maxIter); % Turbo Decoder

y = CbCRCDetector(r3); % Code block CRC detector

% Measurements

numErrs = numErrs + sum(ỹ=u); % Update number of bit errors

numBits = numBits + FRM; % Update number of bits processed

% Manage slot number with each subframe processed

nS = nS + 2; nS = mod(nS, 20);

end

%% Clean up & collect results

ber = numErrs/numBits; % Compute Bit Error Rate (BER)

Figure 5.2 shows the frequency response of the transmitted and received signals within the
transmission bandwidth. It explains why this is called a flat-fading channel, as throughout the
bandwidth at each frequency the response is faded by the same value.

5.1.4.2 High-Mobility Flat-Fading Channels

We now set a non-zero value for the Doppler shift in order to model a high-mobility flat-fading
channel. Note that the profile of the channel response is still that of flat fading, but the gain for

Figure 5.2 Low-mobility flat-fading channel

120 Understanding LTE with MATLAB®

the entire spectrum varies as a function of time. Also, the constellation of the received signal
still resembles a 64QAM (Quadrature Amplitude Modulation) modulation. However, at each
time step the constellation rotates based on the phase offset as a result of the Doppler shift.
These effects are illustrated in Figure 5.3.

5.1.4.3 Low-Mobility Frequency-Selective Channels

In this section, we examine a frequency-selective channel model that will still have a zero
Doppler shift but it will have a vector for the associated delay profile. With the vector of time
delays, we observe a gain vector of the same size. This results in a frequency-selective channel
response, as observed in Figure 5.4.

Figure 5.3 High-mobility flat-fading channel

Figure 5.4 Low-mobility frequency-selective fading

OFDM 121

Figure 5.5 High-mobility frequency-selective fading

5.1.4.4 High-Mobility Frequency-Selective Channels

Finally, by setting a non-zero value for the Doppler shift we can model a high-mobility
frequency-selective channel. As in the previous high-mobility case, we observe a varying
profile for channel gain at different frequency values. We also note that the channel responses
vary in time. Figure 5.5 illustrates the magnitude spectra of the channel response computed
over two subframes 10ms apart.

5.2 Scope

In this book, without any loss for generality, we focus on the normal Cyclic Prefix (CP) that
leads to a particular time framing (seven OFDM symbols per slot) and subcarrier spacing of
15 kHz. The MATLAB functionality is flexibly parameterized such that by changing a few
parameters, extended CP mode can be easily simulated.
In this volume we do not deal with system access procedures, startup, random access, or

handoff scenarios. We discuss the steady-state signal processing downlink transmission that
takes place once the call within a cell is already established. As such, the synchronization sig-
nals and the Broadcast Channels (BCHs) (downlink) and random access channels (uplink) will
not be elaborately discussed and the accompanyingMATLAB functions will not be developed.

5.3 Workflow

Starting with coding, modulation, and scrambling, we add channel modeling, which includes
flat or frequency-selective fading. In this chapter we discuss a single-antenna transmission
scenario (either Single Input Single Output, SISO, or Single Input Multiple Output, SIMO).

122 Understanding LTE with MATLAB®

We focus on reference-signal generation, resource-grid specification, andOFDM transmission.
Finally, we put together the testbench for the system model that implements the first mode of
downlink transmission.

5.4 OFDM and Multipath Fading

The OFDMmodulated signal is computed as the Inverse Fast Fourier Transform (IFFT) of the
resource elements associated with different subcarriers. The IFFT output can be considered
the sum of complex exponential functions known as basis functions, complex sinusoids, har-
monics, or tones of a multitone signal. Let us consider one of these tones or harmonics (i.e.,
the complex exponential associated with a particular subcarrier) as:

x(n)⌋
𝜔=kΔf = ake

j2𝜋kn∕N (5.1)

Equation 5.2 shows how a channel with an impulse response (hm) operates on the transmitted
signal x(n) to provide the received signal y(n).

y(n) =
M∑
m=0

hmx(n − dm) (5.2)

Now, due to linearity, when the OFDM signal is subject to a multipath fading channel
each of its complex exponential components is also subject to the same channel model.
Therefore, we can compute the received version of each subcarrier component of the OFDM
signal (y(n)⌋

𝜔=kΔf) as the convolution of that transmitted component and the channel impulse
response.

y(n)⌋
𝜔=kΔf =

M∑
m=0

hmx(n)|𝜔=kΔf (5.3)

The next step explains the necessity of introducing the CP to the OFDM formulation. We
can substitute the expression x(n)⌋

𝜔=kΔf = ake
j2𝜋kn∕N for the complex sinusoidal component

in Equation 5.3 if and only if the multipath delay values dm are less than or equal to the CP
length. Otherwise, with even a single delay value outside the CP range, we cross the OFDM
symbol boundary and the orthogonality between subcarrier components is lost. Now, assuming
that the delay spread is within the CP range, we can obtain the following expression for the
received subcarrier component as a function of the transmitted subcarrier component:

y(n)⌋
𝜔=kΔf =

M∑
m=0

hmake
j2𝜋k(n−dm)∕N (5.4)

After some algebraic simplifications, the output can be expressed as:

y(n)⌋
𝜔=kΔf = ake

j2𝜋kn
N

M∑
m=0

hme
− j2𝜋kdm

N (5.5)

Note that the last expression,
∑M

m=0 hme
− j2𝜋kdm

N , is not a function of the time index n but rather
can be viewed as a gain that is a function of the subcarrier index k and is applied to complex

exponential component. By defining this gain asHk =
∑M

m=0 hme
− j2𝜋kdm

N and substituting it into
Equation 5.5, we obtain the following expression for the received OFDM signal component:

y(n)⌋
𝜔=kΔf = Hkake

j2𝜋kn
N (5.6)

OFDM 123

Now we look at OFDM operations at the receiver. Note that after removing the CP, the
first operation in the receiver is to compute the Fourier transform, as defined by the following
expression:

Y(𝜔) =
N∑
n=0

y(n)e−j2𝜋𝜔n∕N (5.7)

When we the express the received signal based on its Fourier formulation, y(n) =
1
N

∑N
k=1 Y(𝜔)ej2𝜋kn∕N , all inner product terms for the frequencies other than the subcarrier

vanish due to the orthogonality of the IFFT basis functions. The only non-zero term that
determines the Fourier transform of the received signal at the subcarrier belongs to the
received subcarrier component; that is:

Y(𝜔)⌋
𝜔=kΔf =

1
N

N∑
n=0

y(n)⌋
𝜔=kΔf e

−j2𝜋𝜔kn∕N (5.8)

By substituting the expression for the received OFDM signal component, we obtain the
following:

Y(𝜔)⌋
𝜔=kΔf =

1
N

N∑
n=0

Hkake
j2𝜋kΔfn∕Ne−

j2𝜋kΔfn
N (5.9)

Simplification of this expression results in an intuitive formula for the received signal at a
given subcarrier component:

Y(𝜔)⌋
𝜔=kΔf = Hkak (5.10)

This expression indicates that the received signal at any subcarrier is the product of the trans-
mitted symbol ak and the multipath gain Hk. This simple expression is the basis for defining
frequency-domain equalization using the pilot signals.

5.5 OFDM and Channel-Response Estimation

Each transmitted signal component that is subject to the multipath fading channel will arrive
at the receiver as a scaled version of the transmitted signal. The gain is characterized by the
channel response. Pilot or reference signals can be considered known signals placed at regular
subcarriers positions. We can estimate the channel response at those subcarriers by dividing
the received version at the subcarrier by the known transmitted value. The channel response
at each particular subcarrier is then calculated as:

H(𝜔)⌋
𝜔=kΔf =

Y(𝜔)⌋
𝜔=kΔf

X(𝜔)⌋
𝜔=kΔf

H(𝜔)⌋
𝜔=kΔf =

Hkak
ak

H(𝜔)⌋
𝜔=kΔf = Hk (5.11)

Through various forms of interpolation we can now estimate the channel response not only
at known subcarriers but at all subcarriers. This enables us to perform equalization, defined as
reversing the effects of the fading channel in the frequency domain. This is more efficient than

124 Understanding LTE with MATLAB®

classical time-domain equalization techniques, which estimate the channel impulse response
and use adaptive filtering to equalize the received signals.

5.6 Frequency-Domain Equalization

One of the most important features of the OFDM is its robust and efficient treatment of multi-
path fading. OFDMcompensates for the effect of fading through a frequency-domain approach
to equalization. Instead of filtering the received signal in time with the inverse of the channel
impulse response, OFDM first constructs a frequency-domain representation of the data and
then uses reference signals to invert the frequency response of the channel.
This implies a two-step process. First, the construction of a time–frequency resource grid,

where data are aligned with subcarriers in the frequency domain before a series of OFDM
symbols is generated in time. This step is also known as the resource element mapping. The
types of signal that form the LTE downlink resource grid include the following:

• User data (Physical Downlink Shared Channel, PDSCH)
• Cell-Specific Reference (CSR) signals (otherwise known as pilots)
• Primary Synchronization Signals (PSSs) and Secondary Synchronization Signals (SSSs)
• Physical Broadcast Channels (PBCHs)
• Physical Downlink Control Channels (PDCCHs).

Second, we take the vector of resource elements as input and generate the OFDM symbols.
This process involves performing an IFFT operation to generate the OFDM modulated signal
and a CP insertion. The use of CP enables the receiver to sample each OFDM symbol for
exactly one period in the time domain. The availability of CP helps mitigate the effects of
intersymbol interference when the channel delay spread is less than the length of the CP.
Before OFDM signal generation, we need to generate the resource grid based on either

a type-1 or a type-2 frame structure. Since we are showcasing Frequency Division Duplex
(FDD) duplexing throughout this book, we will use type 1 here. Next we will show how to
generate relevant signals to form the resource grid and how to create the OFDM symbols for
transmission.

5.7 LTE Resource Grid

Understanding the time–frequency representation of data, organized as the resource grid, is
a key step in understanding the LTE transmission scheme. The resource grid is essentially a
matrix whose elements are the modulated symbols computed as the outputs of the modulation
mapper. In its 2D representation, the y-axis of the grid represents the subcarriers aligned along
the frequency dimension and the x-axis represents the OFDM symbols aligned along the time
dimension [2].
The placement of data within the resource grid is quite important and reveals some of the

design parameters of the LTE physical model. For example, the placement and resolution of
pilot signals (CSR) along both axes of the resource grid determines the accuracy of the channel-
response estimation in both time and frequency. Similarly, placing the PDCCH control-channel

OFDM 125

information at the beginning of each subframe helps the receiver decipher important processing
parameters (such as the type of modulator and the MIMO mode used) before the system starts
decoding the user data in the subframe.
The details involved in placing data within the resource grid can only be understood within

the context of time framing and the way in which LTE defines a frame, a subframe, and a slot.
Each LTE frame has a duration of 10ms and is composed of ten 1ms subframes marked by
indices 0 to 9. Each subframe is subdivided into two slots of 0.5ms duration, with each slot
comprising seven OFDM symbols if a normal CP is used and six if an extended CP is used.
The placement of each modulated data type (user data, CSR, DCI, PSS, SSS, and BCH)

into the resource grid follows a particular structure in both time and frequency. This structure
depends on three parameters: the subcarrier (y-axis) index, the OFDM symbol (x-axis) index,
and the index of the 1ms subframe within a 10ms frame. All subframes within a frame contain
three types of data: user data (PDSCH), pilot CSRs, and downlink control data (PDCCH). The
PSS and SSS are only available in subframes 0 and 5 at specific OFDM symbol indices (SSS
at fifth symbol and PSS at sixth symbol) and specific subcarrier indices (72 subcarriers around
the center of the resource grid). The PBCH is located only within subframe 0 at specific OFDM
symbol indices (extending from the seventh to the tenth symbol) and specific subcarrier indices
(72 subcarriers around the center of the resource grid). Figure 5.6 illustrates the placement of
different modulated data, based on the signal types, within the resource grid.

5.8 Configuring the Resource Grid

Let us discuss the size and composition of the resource grid and how it is updated every sub-
frame. Throughout this book, we process the LTE transceiver (transmitter, channel model, and
receiver) one subframe at a time. Since the length of each subframe is 1ms, processing one
second of data involves processing 1000 iterations of the transceiver.

Subframe 0

Slot 0 Slot 1 Slot 2 Slot 3

… …

Slot 10 Slot 11 Slot 16 Slot 17 Slot 18 Slot 19

Subframe 1 Subframe 5 Subframe 6 Subframe 9

PDSCH

CSR

SSS

PSS

BCH

PDCCH

Figure 5.6 LTE resource grid content – entire grid view – featuring six types of signal

126 Understanding LTE with MATLAB®

In each subframe, the size of the resource grid (Ntotal = the total number of symbols that fill
up the grid) is a function of the following four parameters:

⎧⎪⎨⎪⎩

Nrb Number of resource blocks in resource grid
Nsc Number of subcarriers in resource blocks
Nsym Number of symbols per slot
Nslot Number of slots per subframe

The total resource grid size is the product of the number of rows (total number of subcarriers)
and number of columns (total number of OFDM symbols per subframe). The total number of
subcarriers is the product of the number of resource blocks (Nrb) and number of subcarriers
per resource block (Nsc). The total number of OFDM symbols per subframe is the product of
the number of symbols per slot (Nsym) and number of slots per subframe (Nslot).

Ntotal = Nrb ⋅ Nsc × Nsym ⋅ Nslot (5.12)

The number of slots per subframe (Nslot) is a constant value of 2. The number of symbols per
slot (Nsym) depends on whether a normal or an extended CP is used. As throughout this book
we will be using a normal CP, the number of symbols per slot will have a constant value of 7.
The number of subcarriers per resource block (Nsc) also depends on CP type; if we assume a
normal CP, it has a constant value of 12. Therefore, the resource grid size completely depends
on the number of resource blocks, which is a direct function of the bandwidth.
As discussed in the last section, the resource elements come from six types of data source:

user data, CSR, DCI, PSS, SSS, and BCH. Some of these sources are available in all subframes
of a frame (user data, CSR, DCI), some are only available in subframes 0 and 5 (PSS and
SSS), and some are only available in subframe 0 (BCH). Since the total number of symbols in
a resource grid is constant, in each frame we must compute the amount of user data in three
different ways:

1. For subframe 0: Where all the sources of data are present.
2. For subframe 5: Where besides user data, CSR, DCI, PSS, and SSS are present.
3. All other subframes {1, 2, 3, 4, 6, 7, 8, 9}: Where besides user data, only CSR and DCI

symbols are present.

Figure 5.7 illustrates the relative locations of six different types of data within the resource
grid and focuses on six resource blocks in the center of the grid, where PSS, SSS, and BCH
are available in select subframes.

5.8.1 CSR Symbols

In addition, CSRs are placed throughout each resource block in each subframe with a specific
pattern of time and frequency separations. In the single-antenna configuration, LTE specifies
two CSR symbols per resource block in each of the four OFDM symbols {0, 5, 7, 12} in any
subframe. In OFDM symbols 0 and 7, the starting indices are the first subcarrier, whereas
in symbolks 5 and 12 the starting index is the fourth subcarrier. The separation between two
CSR symbols in the frequency domain is six subcarriers. There are a total ofNCSR = 8Nrb CSR
symbols available in the resource grid.

OFDM 127

Subframe 0 Subframe 1 Subframe 5

Subframes
{6,7,8,9}
similar to

subframe 1

DC subcarrier

…

Subframes
{2,3,4}

similar to
subframe 1

DC subcarrier

…

Subframe 6 Subframe 9

User data CSR PDCCH SSS PSS BCH

Figure 5.7 LTE resource grid content – focused on eight resource blocks around the center (DC
subcarrier) – featuring six different types of data

5.8.2 DCI Symbols

The DCI is placed within the first N OFDM symbols in each subframe, where N is either 1, 2,
or 3. The DCI carries the content of the PDCCH, PCFICH (Physical Control Format Indicator
Channel), and PHICH (Physical Hybrid ARQ Indicator Channel), and together these occupy
all the resource elements of the first and possibly the second and third OFDM symbols in each
subframe, with the exception of the CSR data, which are distributed along the first OFDM
symbol of each subframe. The size of the DCI per subframe is NDCI = Nrb(10 + 12(N − 1)).
In this chapter we will not generate and fill in the DCI in the resource grid; we will discuss the
DCI in some detail in Chapter 7.

5.8.3 BCH Symbols

The PBCH is located within subframe 0 and occupies six central resource blocks from the
seventh to the tenth OFDM symbol. Since the seventh OFDM symbol includes CSR symbols,
its BCH has a size of only 60 (72− 2× 6), whereas in the next three symbols the size is 72.
The total BCH size for the whole frame is NBCH 60+ 3× 72= 276.

128 Understanding LTE with MATLAB®

5.8.4 Synchronization Symbols

Both the PSS and the SSS are placed within the six resource blocks centered on the DC sub-
carrier. The PSS occupies the sixth OFDM symbol and the SSS occupies the fifth symbol in
subframes 0 and 5. Since there is no overlap with CSR signals in these symbols, the total num-
ber for each of the synchronization signals is NPSS = NSSS = 72 per subframe, and since two
subframes per frame contain synchronization signals, the total is 144 for the frame.

5.8.5 User-Data Symbols

The total amount of data in the resource grid depends on the number of resource blocks or
essentially on the bandwidth. The resource elements come from six types of data source (user
data, CSR, DCI, PSS, SSS, and BCH). Therefore, if the bandwidth is constant the resource
grid size is constant and is the sum of all these constituents:

Ntotal = Nuser data + NCSR + NDCI + NPSS + NSSS + NBCH (5.13)

The presence or absence of BCH or synchronization signals in a subframe depends on the
subframe index. As a result, the size of the user data in a subframe also depends on the subframe
index in the following way:

1. For subframe 0: Where all sources of data are present,

Nuser data = Ntotal − (NCSR + NDCI + NPSS + NSSS + NBCH) (5.14)

2. For subframe 5: Where besides user data, CSR, DCI, PSS, and SSS are present,

Nuser data = Ntotal − (NCSR + NDCI + NPSS + NSSS) (5.15)

3. For all other subframes {1, 2, 3, 4, 6, 7, 8, 9}: Where besides user data, only CSR and
DCI symbols are present,

Nuser data = Ntotal − (NCSR + NDCI) (5.16)

The following MATLAB function performs calculations highlighted above and sets some
of the parameters of the PDSCH. The function takes three parameters as its input argument:
the channel bandwidth (chanBW), the number of OFDM symbols dedicated to the control
channel in each subframe (contReg), and the modulation type used (modType). It computes
many parameters used in PDSCH processing, including the details of the resource grid.

Algorithm

MATLAB function

function p= prmsPDSCH(chanBW, contReg, modType, varargin)

% Returns parameter structures for LTE PDSCH simulation.

%

% Assumes a FDD, normal cyclic prefix, full-bandwidth, single-user

% SISO or SIMO downlink transmission.

%% PDSCH parameters

OFDM 129

switch chanBW

case 1 % 1.4 MHz

BW = 1.4e6; N = 128; cpLen0 = 10; cpLenR = 9;

Nrb = 6; chanSRate = 1.92e6;

case 2 % 3 MHz

BW = 3e6; N = 256; cpLen0 = 20; cpLenR = 18;

Nrb = 15; chanSRate = 3.84e6;

case 3 % 5 MHz

BW = 5e6; N = 512; cpLen0 = 40; cpLenR = 36;

Nrb = 25; chanSRate = 7.68e6;

case 4 % 10 MHz

BW = 10e6; N = 1024; cpLen0 = 80; cpLenR = 72;

Nrb = 50; chanSRate = 15.36e6;

case 5 % 15 MHz

BW = 15e6; N = 1536; cpLen0 = 120; cpLenR = 108;

Nrb = 75; chanSRate = 23.04e6;

case 6 % 20 MHz

BW = 20e6; N = 2048; cpLen0 = 160; cpLenR = 144;

Nrb = 100; chanSRate = 30.72e6;

end

p.BW = BW; % Channel bandwidth

p.N = N; % NFFT

p.cpLen0 = cpLen0; % Cyclic prefix length for 1st symbol

p.cpLenR = cpLenR; % Cyclic prefix length for remaining

p.Nrb = Nrb; % Number of resource blocks

p.chanSRate = chanSRate; % Channel sampling rate

p.contReg = contReg;

if nargin > 3, numTx=varargin{4};else numTx=1;end

if nargin > 4, numRx=varargin{5};else numRx=1;end

p.numTx = numTx;

p.numRx = numRx;

p.numLayers = 1;

p.numCodeWords = 1;

% For Normal cyclic prefix, FDD mode

p.deltaF = 15e3; % subcarrier spacing

p.Nrb_sc = 12; % no. of subcarriers per resource block

p.Ndl_symb = 7; % no. of OFDM symbols in a slot

% Actual PDSCH bits calculation - accounting for PDCCH, PBCH, PSS, SSS

numResources = (p.Nrb*p.Nrb_sc)*(p.Ndl_symb*2);

numCSRRE = 2*2*2 * p.Nrb; % CSR, RE per OFDMsym/slot/subframe per RB

numContRE = (10 + 12*(p.contReg-1))*p.Nrb;

numBCHRE = 60+72+72+72; % removing the CSR present in 1st symbol

numSSSRE=72;

numPSSRE=72;

numDataRE=zeros(3,1);

% Account for BCH, PSS, SSS and PDCCH for subframe 0

numDataRE(1)=numResources-numCSRRE-numContRE-numSSSRE - numPSSRE-

numBCHRE;

% Account for PSS, SSS and PDCCH for subframe 5

130 Understanding LTE with MATLAB®

numDataRE(2)=numResources-numCSRRE-numContRE-numSSSRE - numPSSRE;

% Account for PDCCH only in all other subframes

numDataRE(3)=numResources-numCSRRE-numContRE;

% Maximum data resources - with no extra overheads (only CSR + data)

p.numResources=numResources;

p.numCSRResources = numCSRRE;

p.numContRE = numContRE;

p.numBCHRE = numBCHRE;

p.numSSSRE=numSSSRE;

p.numPSSRE=numPSSRE;

p.numDataRE=numDataRE;

p.numDataResources = p.numResources - p.numCSRResources;

% Modulation types , bits per symbol, number of layers per codeword

Qm = 2 * modType;

p.Qm = Qm;

p.numLayPerCW = p.numLayers/p.numCodeWords;

% Maximum data bits - with no extra overheads (only CSR + data)

p.numDataBits = p.numDataResources*Qm*p.numLayPerCW;

numPDSCHBits =numDataRE*Qm*p.numLayPerCW;

p.numPDSCHBits = numPDSCHBits;

p.maxG = max(numPDSCHBits);

In this chapter we omit the generation of DCI, BCH, and synchronization signals. Instead
we focus on computing the content of CSR and user-data signals to fill up the resource grid
and use OFDM transmission to model transmission mode 1 of the LTE standard.

5.9 Generating Reference Signals

To ensure that the transmitter and receiver can generate the same CSR reference sequence,
LTE uses a Gold sequence that is initialized based on parameters that are available at both the
transmitter and the receiver. These parameters include the cell identity number (NcellID), the
subframe index (nS), the slot index (i), and the index of OFDM symbols containing the CSR
in the slot (IIdx).
The function has two input arguments: the subframe index (nS) and the number of transmit

antennas (numTx). As we are only modeling the single-antenna case in this chapter, the sec-
ond parameter is set to a value of 1. As a convenience, we will use the same function in the
following chapter, where multiple antennas are present. Based on the Gold sequence and for
all available antenna ports, the function will generate the number of CSR values needed to
provide a channel estimation. The output variable y is a matrix whose size is equal to the prod-
uct of the number of rows and the number of columns. The number of rows is the maximum
number of CSR signals in the resource grid and the number of columns is the number of trans-
mit antennas. The following MATLAB function shows how each element of the CSR signal
is generated.

OFDM 131

Algorithm

MATLAB function

function y = CSRgenerator(nS, numTx)

% LTE Cell-Specific Reference signal generation.

% Section 6.10.1 of 3GPP TS 36.211 v10.0.0.

% Generate the whole set per OFDM symbol, for 2 OFDM symbols per slot,

% for 2 slots per subframe, per antenna port (numTx).

% This fcn accounts for the per antenna port sequence generation, while

% the actual mapping to resource elements is done in the Resource mapper.

%#codegen

persistent hSeqGen;

persistent hInt2Bit;

% Assumed parameters

NcellID = 0; % One of possible 504 values

Ncp = 1; % for normal CP, or 0 for Extended CP

NmaxDL_RB = 100; % largest downlink bandwidth configuration, in resource blocks

y = complex(zeros(NmaxDL_RB*2, 2, 2, numTx));

l = [0; 4]; % OFDM symbol idx in a slot for common first antenna port

% Buffer for sequence per OFDM symbol

seq = zeros(size(y,1)*2, 1); % *2 for complex outputs

if isempty(hSeqGen)

hSeqGen = comm.GoldSequence('FirstPolynomial',[1 zeros(1, 27) 1 0 0 1],...

'FirstInitialConditions', [zeros(1, 30) 1], ...

'SecondPolynomial', [1 zeros(1, 27) 1 1 1 1],...

'SecondInitialConditionsSource', 'Input port',...

'Shift', 1600,...

'SamplesPerFrame', length(seq));

hInt2Bit = comm.IntegerToBit('BitsPerInteger', 31);

end

% Generate the common first antenna port sequences

for i = 1:2 % slot wise

for lIdx = 1:2 % symbol wise

c_init = (2^10)*(7*((nS+i-1)+1)+l(lIdx)+1)*(2*NcellID+1) + 2*NcellID + Ncp;

% Convert to binary vector

iniStates = step(hInt2Bit, c_init);

% Scrambling sequence - as per Section 7.2, 36.211

seq = step(hSeqGen, iniStates);

% Store the common first antenna port sequences

y(:, lIdx, i, 1) = (1/sqrt(2))*complex(1-2.*seq(1:2:end), 1-2.*seq(2:2:end));

end

end

% Copy the duplicate set for second antenna port, if exists

if (numTx>1)

y(:, :, :, 2) = y(:, :, :, 1);

end

132 Understanding LTE with MATLAB®

% Also generate the sequence for l=1 index for numTx = 4

if (numTx>2)

for i = 1:2 % slot wise

% l = 1

c_init = (2^10)*(7*((nS+i-1)+1)+1+1)*(2*NcellID+1) + 2*NcellID + Ncp;

% Convert to binary vector

iniStates = step(hInt2Bit, c_init);

% Scrambling sequence - as per Section 7.2, 36.211

seq = step(hSeqGen, iniStates);

% Store the third antenna port sequences

y(:, 1, i, 3) = (1/sqrt(2))*complex(1-2.*seq(1:2:end), 1-2.*seq(2:2:end));

end

% Copy the duplicate set for fourth antenna port

y(:, 1, :, 4) = y(:, 1, :, 3);

end

5.10 Resource Element Mapping

In this section we detail the resource element mapping that places the components of the
resource grid in the locations specified in the standard. Mapping is performed essentially by
creating indices to the resource grid matrix and placing various information types within the
grid. The illustrations of three different types of resource block given in Figures 5.8–5.10
help visualize formulations for these indices. Depending on which subframe is in use, we pop-
ulate the BCH, PSS, and SSS in either subframe 0 or subframe 5 of the six central resource

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 5.8 Resource element mapping: all resource blocks in subframes 1, 2, 3, 4, 6, 7, 8, and
9+ noncentral resource blocks of subframes 0 and 5. Includes DCI, CSR, and user data

OFDM 133

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 5.9 Resource element mapping: central resource blocks of subframe 5. Includes PSS, SSS,
DCI, CSR, and user data

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 5.10 Resource element mapping: central resource blocks of subframe 0. Includes BCH, PSS,
SSS, DCI, CSR, and user data

blocks around the DC subcarrier. The CSRs are placed in symbols 0 and 5 of each slot, with a
frequency-domain separation of six subcarriers.
The following MATLAB function shows resource element mapping. Since MATLAB uses

a 1-based indexing notation, we generate indices for various elements in the matrix starting
from 1 instead of 0, as specified by the standard. The function takes as input the user data (in),
CSR signal (csr), subframe index (nS), and parameters of the PDSCH captured in a structure
called prmLTE. Depending on the availability of BCH, SSS, PSS, and DCI, the function may
take on additional inputs. The output variable y is the resource grid matrix. The 2D grid matrix
has a number of rows equal to the number of subcarriers and number of columns, totalling 14
(two slots each containing seven OFDM symbols).

134 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function y = REmapper_1Tx(in, csr, nS, prmLTE, varargin)

%#codegen

switch nargin

case 4, pdcch=[];pss=[];sss=[];bch=[];

case 5, pdcch=varargin{1};pss=[];sss=[];bch=[];

case 6, pdcch=varargin{1};pss=varargin{2};sss=[];bch=[];

case 7, pdcch=varargin{1};pss=varargin{2};sss=varargin{3};bch=[];

case 8, pdcch=varargin{1};pss=varargin{2};sss=varargin{3};bch=varargin{4};

otherwise

error('REMapper has 4 to 8 arguments!');

end

% NcellID = 0; % One of possible 504 values

% numTx = 1; % prmLTE.numTx;

% Get input params

Nrb = prmLTE.Nrb; % either of {6, }

Nrb_sc = prmLTE.Nrb_sc; % 12 for normal mode

Ndl_symb = prmLTE.Ndl_symb; % 7 for normal mode

numContSymb = prmLTE.contReg; % either {1, 2, 3}

% Initialize output buffer

y = complex(zeros(Nrb*Nrb_sc, Ndl_symb*2));

%% Specify resource grid location indices for CSR, PDCCH, PDSCH, PBCH, PSS, SSS

%% 1st: Indices for CSR pilot symbols

lenOFDM = Nrb*Nrb_sc;

idx = 1:lenOFDM;

idx_csr0 = 1:6:lenOFDM; % More general starting point = 1+mod(NcellID, 6);

idx_csr4 = 4:6:lenOFDM; % More general starting point = 1+mod(3+NcellID, 6);

idx_csr =[idx_csr0, 4*lenOFDM+idx_csr4, 7*lenOFDM+idx_csr0,

11*lenOFDM+idx_csr4];

%% 2nd: Indices for PDCCH control data symbols

ContREs=numContSymb*lenOFDM;

idx_dci=1:ContREs;

idx_pdcch = ExpungeFrom(idx_dci,idx_csr0);

%% 3rd: Indices for PDSCH and PDSCH data in OFDM symbols where pilots

are present

idx_data0= ExpungeFrom(idx,idx_csr0);

idx_data4 = ExpungeFrom(idx,idx_csr4);

%% Handle 3 types of subframes differently

switch nS

%% 4th: Indices for BCH, PSS, SSS are only found in specific subframes 0 and 5

% These symbols share the same 6 center sub-carrier locations (idx_ctr)

% and differ in OFDM symbol number.

case 0 % Subframe 0

% PBCH, PSS, SSS are available + CSR, PDCCH, PDSCH

idx_6rbs = (1:72);

OFDM 135

idx_ctr = 0.5* lenOFDM - 36 + idx_6rbs ;

idx_SSS = 5* lenOFDM + idx_ctr;

idx_PSS = 6* lenOFDM + idx_ctr;

idx_ctr0 = ExpungeFrom(idx_ctr,idx_csr0);

idx_bch=[7*lenOFDM + idx_ctr0, 8*lenOFDM + idx_ctr, 9*lenOFDM + idx_ctr,

10*lenOFDM + idx_ctr];

idx_data5 = ExpungeFrom(idx,idx_ctr);

idx_data7 = ExpungeFrom(idx_data0,idx_ctr);

idx_data = [ContREs+1:4*lenOFDM, 4*lenOFDM+idx_data4, ...

5*lenOFDM+idx_data5, 6*lenOFDM+idx_data5, 7*lenOFDM+idx_data7,

8*lenOFDM+idx_data5, ...

9*lenOFDM+idx_data5, 10*lenOFDM+idx_data5, 11*lenOFDM+idx_data4, ...

12*lenOFDM+1:14*lenOFDM];

y(idx_csr)=csr(:); % Insert Cell-Specific Reference signal (CSR) = pilots

y(idx_data)=in; % Insert Physical Downlink Shared Channel

(PDSCH) = user data

if ̃isempty(pdcch), y(idx_pdcch)=pdcch;end

% Insert Physical Downlink Control Channel (PDCCH)

if ̃isempty(pss), y(idx_PSS)=pss;end % Insert Primary Synchronization

Signal (PSS)

if ̃isempty(sss), y(idx_SSS)=sss;end

% Insert Secondary Synchronization Signal (SSS)

if ̃isempty(bch), y(idx_bch)=bch;end % Insert Broadcast Channel data (BCH)

case 10 % Subframe 5

% PSS, SSS are available + CSR, PDCCH, PDSCH

% Primary and Secondary synchronization signals in OFDM symbols 5 and 6

idx_6rbs = (1:72);

idx_ctr = 0.5* lenOFDM - 36 + idx_6rbs ;

idx_SSS = 5* lenOFDM + idx_ctr;

idx_PSS = 6* lenOFDM + idx_ctr;

idx_data5 = ExpungeFrom(idx,idx_ctr);

idx_data = [ContREs+1:4*lenOFDM, 4*lenOFDM+idx_data4,

5*lenOFDM+idx_data5, 6*lenOFDM+idx_data5, ...

7*lenOFDM+idx_data0, 8*lenOFDM+1:11*lenOFDM, 11*lenOFDM+idx_data4, ...

12*lenOFDM+1:14*lenOFDM];

y(idx_csr)=csr(:); % Insert Cell-Specific Reference signal (CSR) = pilots

y(idx_data)=in; % Insert Physical Downlink Shared Channel

(PDSCH) = user data

if ̃isempty(pdcch), y(idx_pdcch)=pdcch;end

% Insert Physical Downlink Control Channel (PDCCH)

if ̃isempty(pss), y(idx_PSS)=pss;end % Insert Primary Synchronization Signal (PSS)

if ̃isempty(sss), y(idx_SSS)=sss;end

% Insert Secondary Synchronization Signal (SSS)

otherwise % other subframes

% Only CSR, PDCCH, PDSCH

idx_data = [ContREs+1:4*lenOFDM, 4*lenOFDM+idx_data4, ...

5*lenOFDM+1:7*lenOFDM, ...

136 Understanding LTE with MATLAB®

7*lenOFDM+idx_data0, ...

8*lenOFDM+1:11*lenOFDM, ...

11*lenOFDM+idx_data4, ...

12*lenOFDM+1:14*lenOFDM];

y(idx_csr)=csr(:); % Insert Cell-Specific Reference signal (CSR) = pilots

y(idx_data)=in; % Insert Physical Downlink Shared Channel

(PDSCH) = user data

if ̃isempty(pdcch), y(idx_pdcch)=pdcch;end

% Insert Physical Downlink Control Channel (PDCCH)

end

end

5.11 OFDM Signal Generation

OFDM signal generation operates on the resource grid. It takes the OFDM symbols (columns
of data in the resource grid matrix) one by one and performs an IFFT operation followed
by CP addition to generate the OFDM modulated signal. The following MATLAB function
shows how, prior to the IFFT operation, data are packed into the FFT buffer and reordered to
exclude the DC subcarrier. Following the IFFT operation we scale the output. The CP addition
prepends N last samples of the IFFT output to the beginning of the buffer. The value of the N
in the first OFDM symbol is different from that in all other OFDM symbols. The inputs to the
function are the resource grid (in) and the structure containing the parameters of the PDSCH
(prmLTE). CPs have different lengths across symbols in a slot. The length of the CP in the
first OFDM symbol of each slot (cpLen0) is slightly larger than the CP values in the remaining
six symbols of the slot (cpLenR). This difference is taken into account in the for loop that
computes the output signal as it serializes and appends the length of each OFDM modulated
signal to the output vector per subframe [3].
The output of the function is a 2Dmatrix: the size of the first dimension is the output per sub-

frame and the second dimension is the number of antenna ports. Since in this chapter we focus
on the single-antenna case, the output will be a column vector with a second dimension equal to
one. We do not have to modify this function when we introduce MIMO techniques in the next
chapter, as it serves single-channel and multichannel OFDM signal-generation cases equally.

Algorithm

MATLAB function

function y = OFDMTx(in, prmLTE)

%#codegen

persistent hIFFT;

if isempty(hIFFT)

hIFFT = dsp.IFFT;

end

OFDM 137

[len, numSymb, numLayers] = size(in);

% N assumes 15KHz subcarrier spacing

N = prmLTE.N;

cpLen0 = prmLTE.cpLen0;

cpLenR = prmLTE.cpLenR;

slotLen = (N*7 + cpLen0 + cpLenR*6);

subframeLen = slotLen*2;

tmp = complex(zeros(N, numSymb, numLayers));

% Pack data, add DC, and reorder

tmp(N/2-len/2+1:N/2, :, :) = in(1:len/2, :, :);

tmp(N/2+2:N/2+1+len/2, :, :) = in(len/2+1:len, :, :);

tmp = [tmp(N/2+1:N, :, :); tmp(1:N/2, :, :)];

% IFFT processing

x = step(hIFFT, tmp);

x = x.*(N/sqrt(len));

% Add cyclic prefix per OFDM symbol per antenna port

% and serialize over the subframe (equal to 2 slots)

% For a subframe of data

y = complex(zeros(subframeLen, numLayers));

for j = 1:2 % Over the two slots

% First OFDM symbol

y((j-1)*slotLen+(1:cpLen0), :) = x((N-cpLen0+1):N, (j-1)*7+1, :);

y((j-1)*slotLen+cpLen0+(1:N), :) = x(1:N, (j-1)*7+1, :);

% Next 6 OFDM symbols

for k = 1:6

y((j-1)*slotLen+cpLen0+k*N+(k-1)*cpLenR+(1:cpLenR), :) = x(N-cpLenR+1:N,

(j-1)*7+k+1, :);

y((j-1)*slotLen+cpLen0+k*N+k*cpLenR+(1:N), :) = x(1:N, (j-1)*7+k+1, :);

end

end

5.12 Channel Modeling

The following MATLAB function shows the channel model operating on the OFDM signal.
It is derived from the generic SISO channel model we developed earlier in this chapter. The
function takes as input the generated OFDM signal (in), the structure containing the parameters
of the PDSCH (prmLTE), and another structure containing parameters of the channel model
(prmMdl). Based on input parameters, it applies either a frequency-flat or frequency-selective
channel to the input signal. The output of the channel model (y) is the signal that arrives at
the receiver. The second output (yPg) is a matrix containing the channel-path gains of the
underlying fading process. This signal can be used to estimate the “ideal” channel response.
We will present details of ideal channel responses and comparisons with estimated responses
in subsequent chapters.

138 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function [y, yPg] = MIMOFadingChan(in, prmLTE, prmMdl)

% MIMOFadingChan

%#codegen

% Get simulation params

numTx = prmLTE.numTx;

numRx = prmLTE.numRx;

chanMdl = prmMdl.chanMdl;

chanSRate = prmLTE.chanSRate;

corrLvl = prmMdl.corrLevel;

switch chanMdl

case 'flat-low-mobility',

PathDelays = 0*(1/chanSRate);

PathGains = 0;

Doppler=0;

ChannelType =1;

case 'flat-high-mobility',

PathDelays = 0*(1/chanSRate);

PathGains = 0;

Doppler=70;

ChannelType =1;

case 'frequency-selective-low-mobility',

PathDelays = [0 10 20 30 100]*(1/chanSRate);

PathGains = [0 -3 -6 -8 -17.2];

Doppler=0;

ChannelType =1;

case 'frequency-selective-high-mobility',

PathDelays = [0 10 20 30 100]*(1/chanSRate);

PathGains = [0 -3 -6 -8 -17.2];

Doppler=70;

ChannelType =1;

case 'EPA 0Hz'

PathDelays = [0 30 70 90 110 190 410]*1e-9;

PathGains = [0 -1 -2 -3 -8 -17.2 -20.8];

Doppler=0;

ChannelType =1;

otherwise

ChannelType =2;

AntConfig=char([48+numTx,'x',48+numRx]);

end

% Initialize objects

persistent chanObj;

if isempty(chanObj)

if ChannelType ==1

OFDM 139

chanObj = comm.MIMOChannel('SampleRate', chanSRate, ...

'MaximumDopplerShift', Doppler, ...

'PathDelays', PathDelays,...

'AveragePathGains', PathGains,...

'RandomStream', 'mt19937ar with seed',...

'Seed', 100,...

'NumTransmitAntennas', numTx,...

'TransmitCorrelationMatrix', eye(numTx),...

'NumReceiveAntennas', numRx,...

'ReceiveCorrelationMatrix', eye(numRx),...

'PathGainsOutputPort', true,...

'NormalizePathGains', true,...

'NormalizeChannelOutputs', true);

else

chanObj = comm.LTEMIMOChannel('SampleRate', chanSRate, ...

'Profile', chanMdl, ...

'AntennaConfiguration', AntConfig, ...

'CorrelationLevel', corrLvl,...

'RandomStream', 'mt19937ar with seed',...

'Seed', 100,...

'PathGainsOutputPort', true);

end

end

[y, yPg] = step(chanObj, in);

Besides the fading channel, the simulation also requires the addition of the AWGN channel.
The following function illustrates the AWGN channel used throughout this book. It applies an
AWGN to its first input signal (u), based on the value of the noise power (noiseVar) given as
its second input argument.

Algorithm

MATLAB function

function y = AWGNChannel(u, noiseVar)

%% Initialization

persistent AWGN

if isempty(AWGN)

AWGN = comm.AWGNChannel('NoiseMethod', 'Variance', ...

'VarianceSource', 'Input port');

end

y = step(AWGN, u, noiseVar);

end

140 Understanding LTE with MATLAB®

5.13 OFDM Receiver

At the OFDM receiver we perform the inverse operations to those at the transmitter. First the
CP is removed and an FFT operation is performed to recover the received data and reference
signals at each subcarrier. Different FFT lengths are used based on the channel bandwidth.
Through a combination of scaling, reordering, DC subcarrier removal, and unpacking, the
received modulated symbols are placed in the same order in which they were placed into the
resource grid at the transmitter. The followingMATLAB function shows the sequence of oper-
ations performed in the OFDM receiver. The inputs are the receiver input signal (in) and the
structure containing the parameters of the PDSCH (prmLTE). The output is the resource grid
recovered at the receiver.

Algorithm

MATLAB function

function y = OFDMRx(in, prmLTE)

%#codegen

persistent hFFT;

if isempty(hFFT)

hFFT = dsp.FFT;

end

% For a subframe of data

numDataTones = prmLTE.Nrb*prmLTE.Nrb_sc;

numSymb = prmLTE.Ndl_symb*2;

[̃, numLayers] = size(in);

% N assumes 15KHz subcarrier spacing, else N = 4096

N = prmLTE.N;

cpLen0 = prmLTE.cpLen0;

cpLenR = prmLTE.cpLenR;

slotLen = (N*7 + cpLen0 + cpLenR*6);

tmp = complex(zeros(N, numSymb, numLayers));

% Remove CP - unequal lengths over a slot

for j = 1:2 % over two slots

% First OFDM symbol

tmp(:, (j-1)*7+1, :) = in((j-1)*slotLen+cpLen0 + (1:N), :);

% Next 6 OFDM symbols

for k = 1:6

tmp(:, (j-1)*7+k+1, :) = in((j-1)*slotLen+cpLen0+k*N+k*cpLenR + (1:N), :);

end

end

% FFT processing

x = step(hFFT, tmp);

x = x./(N/sqrt(numDataTones));

% For a subframe of data

y = complex(zeros(numDataTones, numSymb, numLayers));

% Reorder, remove DC, Unpack data

OFDM 141

x = [x(N/2+1:N, :, :); x(1:N/2, :, :)];

y(1:(numDataTones/2), :, :) = x(N/2-numDataTones/2+1:N/2, :, :);

y(numDataTones/2+1:numDataTones, :, :) = x(N/2+2:N/2+1+numDataTones/2, :, :);

end

5.14 Resource Element Demapping

Resource element demapping inverts the operations of resource grid mapping. The follow-
ing MATLAB function illustrates how the reference signal and data are extracted from the
recovered resource grid at the receiver. The function has three input arguments: the received
resource grid (in), the index of the subframe (nS), and the PDSCH parameter set. The function
outputs extracted user data (data), the indices to the user data (idx_data), the CSR signals (csr),
and optionally the DCI (pdcch), PSS and SSS (pss, sss), and BCH (bch) signals. As different
subframes contain different content, the second input subframe index parameter (nS) enables
the function to separate the correct data. The same algorithm used in the resource-mapping
function is used here to generate indices in the demapping function.

Algorithm

MATLAB function

function [data, csr, idx_data, pdcch, pss, sss, bch] = REdemapper_1Tx(in, nS, prmLTE)

%#codegen

% NcellID = 0; % One of possible 504 values

% numTx = 1; % prmLTE.numTx;

% Get input params

Nrb = prmLTE.Nrb; % either of {6, }

Nrb_sc = prmLTE.Nrb_sc; % 12 for normal mode

numContSymb = prmLTE.contReg; % either {1, 2, 3}

%% Specify resource grid location indices for CSR, PDCCH, PDSCH, PBCH, PSS, SSS

%% 1st: Indices for CSR pilot symbols

lenOFDM = Nrb*Nrb_sc;

idx = 1:lenOFDM;

idx_csr0 = 1:6:lenOFDM; % More general starting point = 1+mod(NcellID, 6);

idx_csr4 = 4:6:lenOFDM; % More general starting point = 1+mod(3+NcellID, 6);

idx_csr =[idx_csr0, 4*lenOFDM+idx_csr4, 7*lenOFDM+idx_csr0, 11*lenOFDM+idx_csr4];

%% 2nd: Indices for PDCCH control data symbols

ContREs=numContSymb*lenOFDM;

idx_dci=1:ContREs;

idx_pdcch = ExpungeFrom(idx_dci,idx_csr0);

%% 3rd: Indices for PDSCH and PDSCH data in OFDM symbols where pilots are present

idx_data0= ExpungeFrom(idx,idx_csr0);

idx_data4 = ExpungeFrom(idx,idx_csr4);

%% Handle 3 types of subframes differently

pss=complex(zeros(72,1));

sss=complex(zeros(72,1));

142 Understanding LTE with MATLAB®

bch=complex(zeros(72*4,1));

switch nS

%% 4th: Indices for BCH, PSS, SSS are only found in specific subframes 0 and 5

% These symbols share the same 6 center sub-carrier locations (idx_ctr)

% and differ in OFDM symbol number.

case 0 % Subframe 0

% PBCH, PSS, SSS are available + CSR, PDCCH, PDSCH

idx_6rbs = (1:72);

idx_ctr = 0.5* lenOFDM - 36 + idx_6rbs ;

idx_SSS = 5* lenOFDM + idx_ctr;

idx_PSS = 6* lenOFDM + idx_ctr;

idx_ctr0 = ExpungeFrom(idx_ctr,idx_csr0);

idx_bch=[7*lenOFDM + idx_ctr0, 8*lenOFDM + idx_ctr, 9*lenOFDM + idx_ctr,

10*lenOFDM + idx_ctr];

idx_data5 = ExpungeFrom(idx,idx_ctr);

idx_data7 = ExpungeFrom(idx_data0,idx_ctr);

idx_data = [ContREs+1:4*lenOFDM, 4*lenOFDM+idx_data4, ...

5*lenOFDM+idx_data5, 6*lenOFDM+idx_data5, 7*lenOFDM+idx_data7,

8*lenOFDM+idx_data5, ...

9*lenOFDM+idx_data5, 10*lenOFDM+idx_data5, 11*lenOFDM+idx_data4, ...

12*lenOFDM+1:14*lenOFDM];

pss=in(idx_PSS).'; % Primary Synchronization Signal (PSS)

sss=in(idx_SSS).'; % Secondary Synchronization Signal (SSS)

bch=in(idx_bch).'; % Broadcast Channel data (BCH)

case 10 % Subframe 5

% PSS, SSS are available + CSR, PDCCH, PDSCH

% Primary and Secondary synchronization signals in OFDM symbols 5 and 6

idx_6rbs = (1:72);

idx_ctr = 0.5* lenOFDM - 36 + idx_6rbs ;

idx_SSS = 5* lenOFDM + idx_ctr;

idx_PSS = 6* lenOFDM + idx_ctr;

idx_data5 = ExpungeFrom(idx,idx_ctr);

idx_data = [ContREs+1:4*lenOFDM, 4*lenOFDM+idx_data4,

5*lenOFDM+idx_data5, 6*lenOFDM+idx_data5, ...

7*lenOFDM+idx_data0, 8*lenOFDM+1:11*lenOFDM, 11*lenOFDM+idx_data4, ...

12*lenOFDM+1:14*lenOFDM];

pss=in(idx_PSS).'; % Primary Synchronization Signal (PSS)

sss=in(idx_SSS).'; % Secondary Synchronization Signal (SSS)

otherwise % other subframes

% Only CSR, PDCCH, PDSCH

idx_data = [ContREs+1:4*lenOFDM, 4*lenOFDM+idx_data4, ...

5*lenOFDM+1:7*lenOFDM, ...

7*lenOFDM+idx_data0, ...

8*lenOFDM+1:11*lenOFDM, ...

11*lenOFDM+idx_data4, ...

12*lenOFDM+1:14*lenOFDM];

end

OFDM 143

data=in(idx_data).'; % Physical Downlink Shared Channel (PDSCH) = user data

csr=in(idx_csr).'; % Cell-Specific Reference signal (CSR) = pilots

pdcch = in(idx_pdcch).'; % Physical Downlink Control Channel (PDCCH)

end

5.15 Channel Estimation

Channel estimation is performed by examining known reference symbols, also referred to as
pilots, inserted at regular intervals within the OFDM time–frequency grid. Using known ref-
erence symbols, the receiver can estimate the channel response at the subcarriers where the
reference symbols were transmitted. The reference symbols should have a sufficiently high
density in both the time and the frequency domains. If so, with appropriate expansion opera-
tions we can provide estimates for the entire time–frequency grid.
The following MATLAB function performs channel estimation for a single-antenna trans-

mission. The inputs to the function are the structure containing the parameters of the PDSCH
(prmLTE), the received resource grid (Rx), the CSR (Ref), and the bandwidth expansion mode
(Mode). After reshaping the received version of the resource grid, the received signals are
aligned with the corresponding pilot elements stored in the CSR.We then compute an estimate
of the channel-response matrix (hD) by simply dividing the received pilots by the transmitted
reference signals. Following computation of the channel-response matrix over the resource
elements that align with CSR signals, we perform a full-bandwidth expansion. Based on a
subset of reference signals in the resource grid, we perform expansion by averaging or inter-
polating to generate the channel-response estimate for the entire resource grid; that is, at each
subcarrier and each OFDM symbol in a subframe.

Algorithm

MATLAB function

function hD = ChanEstimate_1Tx(prmLTE, Rx, Ref, Mode)

%#codegen

Nrb = prmLTE.Nrb; % Number of resource blocks

Nrb_sc = prmLTE.Nrb_sc; % 12 for normal mode

Ndl_symb = prmLTE.Ndl_symb; % 7 for normal mode

% Assume same number of Tx and Rx antennas = 1

% Initialize output buffer

hD = complex(zeros(Nrb*Nrb_sc, Ndl_symb*2));

% Estimate channel based on CSR - per antenna port

csrRx = reshape(Rx, numel(Rx)/4, 4); % Align received pilots with reference pilots

hp = csrRx./Ref; % Just divide received pilot by reference pilot

% to obtain channel response at pilot locations

% Now use some form of averaging/interpolation/repeating to

% compute channel response for the whole grid

% Choose one of 3 estimation methods "average" or "interpolate" or "hybrid"

switch Mode

case 'average'

144 Understanding LTE with MATLAB®

hD=gridResponse_averageSubframe(hp, Nrb, Nrb_sc, Ndl_symb);

case 'interpolate'

hD=gridResponse_interpolate(hp, Nrb, Nrb_sc, Ndl_symb);

otherwise

error('Choose the right mode for function ChanEstimate.');

end

end

Typical interpolation algorithms involve interpolation between subcarriers in the frequency
domain in OFDM symbols that contain CSR signals (subframes 0, 5, 7, and 12). Having com-
puted the channel response over all subcarriers of these particular symbols, we can interpolate
in time to find the channel response across the whole grid. The following MATLAB function
(gridResponse_interpolate) performs this type of expansion algorithm based on interpolation.

Algorithm

MATLAB function

function hD=gridResponse_interpolate(hp, Nrb, Nrb_sc, Ndl_symb)

% Interpolate among subcarriers in each OFDM symbol

% containing CSR (Symbols 1,5,8,12)

% The interpolation assumes NCellID = 0.

% Then interpolate between OFDM symbols

hD = complex(zeros(Nrb*Nrb_sc, Ndl_symb*2));

N=size(hp,2);

Separation=6;

Edges=[0,5;3,2;0,5;3,2];

Symbol=[1,5,8,12];

% First: Compute channel response over all resource elements of OFDM symbols 0,4,7,11

for n=1:N

Edge=Edges(n,:);

y = InterpolateCsr(hp(:,n), Separation, Edge);

hD(:,Symbol(n))=y;

end

% Second: Interpolate between OFDM symbols {0,4} {4,7}, {7, 11}, {11, 13}

for m=[2, 3, 4, 6, 7]

alpha=0.25*(m-1);

beta=1-alpha;

hD(:,m) = beta*hD(:,1) + alpha*hD(:, 5);

hD(:,m+7) =beta*hD(:,8) + alpha*hD(:,12);

end

Typical averaging algorithms interpolate between subcarriers in the frequency domain in
OFDM symbols that contain CSR signals (subframes 0, 5, 7, and 12). First we combine the
CSR signals from the first two OFDM symbols (subframes 0 and 5). Instead of a separation of

OFDM 145

six subcarriers between CSR signals, this produces a separation of three subcarriers. Then we
interpolate the values along the frequency axis. Finally, we apply the same channel response
to all of the OFDM symbols of the slot or subframe to find the channel response of the whole
grid. The following MATLAB function (gridResponse_averageSubframe) performs this type
of expansion algorithm based on averaging and interpolation.

Algorithm

MATLAB function

function hD=gridResponse_averageSubframe(hp, Nrb, Nrb_sc, Ndl_symb)

% Average over the two same Freq subcarriers, and then interpolate between

% them - get all estimates and then repeat over all columns (symbols).

% The interpolation assumes NCellID = 0.

% Time average two pilots over the slots, then interpolate (F)

% between the 4 averaged values, repeat for all symbols in subframe

h1_a1 = mean([hp(:, 1), hp(:, 3)],2);

h1_a2 = mean([hp(:, 2), hp(:, 4)],2);

h1_a_mat = [h1_a1 h1_a2].';

h1_a = h1_a_mat(:);

h1_all = complex(zeros(length(h1_a)*3,1));

for i = 1:length(h1_a)-1

delta = (h1_a(i+1)-h1_a(i))/3;

h1_all((i-1)*3+1) = h1_a(i);

h1_all((i-1)*3+2) = h1_a(i)+delta;

h1_all((i-1)*3+3) = h1_a(i)+2*delta;

end

% fill the last three - use the last delta

h1_all(end-2) = h1_a(end);

h1_all(end-1) = h1_a(end)+delta;

h1_all(end) = h1_a(end)+2*delta;

% Compute the channel response over the whole grid by repeating

hD = h1_all(1:Nrb*Nrb_sc, ones(1, Ndl_symb*2));

end

5.16 Equalizer Gain Computation

A frequency-domain equalizer computes a gain for application to all received resource ele-
ments at each subcarrier. Different algorithms can be used for frequency-domain equalization.
The simplest is the ZF algorithm, in which the gain is found as a ratio of the transmitted
resource element to the estimated channel at each subcarrier. Amore sophisticated algorithm is
theMMSE estimation, which relies onmore detailed knowledge of the channel time/frequency
characteristics and computes the gain as amodified ratio that takes into account the effect of the
uncorrelated channel noise. After the equalizer gain is found, the best estimate of the resource
element is the product of the received resource element and the equalizer gain. The following
MATLAB function implements both a ZF and an MMSE equalizer and lets the user choose
between them based on an equalization mode.

146 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function [out, Eq] = Equalizer(in, hD, nVar, EqMode)

%#codegen

switch EqMode

case 1,

Eq = (conj(hD))./((conj(hD).*hD)); % Zero forcing

case 2,

Eq = (conj(hD))./((conj(hD).*hD)+nVar); % MMSE

otherwise,

error('Two equalization mode vaible: Zero forcing or MMSE');

end

out=in.*Eq;

5.17 Visualizing the Channel

Visualizing various signals can help us to verify whether an OFDM transmission is imple-
mented properly. In OFDM, each modulated symbol is transmitted on one subcarrier (in fre-
quency) of a single OFDM symbol (in time). This enables us to directly observe the effects
of fading on the transmitted symbols before and after channel processing. In the following
MATLAB function, we showcase a Spectrum Analyzer System object from the DSP System
Toolbox that enables us to efficiently look at the spectrum of the data at the transmitter and
the receiver. The function input variables txSig and rxSig represent the OFDM modulated sig-
nals before and after channel modeling, respectively. The input variable yRec represents the
user data after equalization. By visualizing these three variables with the Spectrum Analyzer
we observe the effects of the channel model on the transmitted signal and the effect of chan-
nel estimation and equalization on recovery of a best estimate of the transmitted signal in the
receiver. We also use a Constellation Diagram System object from the Communications Sys-
tem Toolbox to observe the effect of the fading channel on the modulated symbols before and
after equalization.

Algorithm

MATLAB function

function zVisualize(prmLTE, txSig, rxSig, yRec, dataRx, csr, nS)

% Constellation Scopes & Spectral Analyzers

persistent hScope1 hScope2 hSpecAnalyzer

if isempty(hSpecAnalyzer)

% Constellation Diagrams

hScope1 = comm.ConstellationDiagram('SymbolsToDisplay',...

prmLTE.numDataResources, 'ShowReferenceConstellation', false,...

'YLimits', [-2 2], 'XLimits', [-2 2], 'Position', ...

figposition([5 60 20 25]), 'Name', 'Before Equalizer');

hScope2 = comm.ConstellationDiagram('SymbolsToDisplay',...

OFDM 147

prmLTE.numDataResources, 'ShowReferenceConstellation', false,...

'YLimits', [-2 2], 'XLimits', [-2 2], 'Position', ...

figposition([6 61 20 25]), 'Name', 'After Equalizer');

% Spectrum Scope

hSpecAnalyzer = dsp.SpectrumAnalyzer('SampleRate', prmLTE.chanSRate, ...

'SpectrumType', 'Power density', 'PowerUnits', 'dBW', ...

'RBWSource', 'Property', 'RBW', 15000,...

'FrequencySpan', 'Span and center frequency',...

'Span', prmLTE.BW, 'CenterFrequency', 0,...

'FFTLengthSource', 'Property', 'FFTLength', prmLTE.N,...

'Title', 'Transmitted & Received Signal Spectrum', 'YLimits', [-110 -60],...

'YLabel', 'PSD');

end

% Update Spectrum scope

% Received signal after equalization

yRecGrid = REmapper_1Tx(yRec, csr, nS, prmLTE);

yRecGridSig = lteOFDMTx(yRecGrid, prmLTE);

% Take certain symbols off a subframe only

step(hSpecAnalyzer, ...

[SymbSpec(txSig, prmLTE), SymbSpec(rxSig, prmLTE),

SymbSpec(yRecGridSig, prmLTE)]);

% Update Constellation Scope

if (nS̃=0 && nS̃=10)

step(hScope1, dataRx(:, 1));

step(hScope2, yRec(:, 1));

end

end

% Helper function

function y = SymbSpec(in, prmLTE)

N = prmLTE.N;

cpLenR = prmLTE.cpLen0;

y = complex(zeros(N+cpLenR, 1));

% Use the first Tx/Rx antenna of the input for the display

y(:,1) = in(end-(N+cpLenR)+1:end, 1);

end

5.18 Downlink Transmission Mode 1

In this section we will put together a model of downlink transmission mode 1 of the LTE
standard with the functions we have developed in the last two chapters. Mode 1 is based on a
single-antenna transmission. We will build two variants of this mode:

1. The SISO case: Where only one antenna is available, both at the transmitter and at the
receiver.

2. The SIMO case: Where we use a single transmitter antenna but multiple receiver antennas,
in order to exploit the benefits of receive diversity.

148 Understanding LTE with MATLAB®

Throughout this book, each of our PHY signal processing models includes a transmitter, a
channel model, and a receiver. In this section, transmitter processing includes both Downlink
Shared Channel (DLSCH) and PDSCH operations. Channel modeling involves the combina-
tion of a fading channel and an AWGN channel. The receiver inverts the operations of the
DLSCH and the PDSCH.
The unit of simulation is a subframe. As user data are generated and processed in every

subframe, we keep track of subframe indexing in order to perform appropriate operations at
different subframe indices. Incrementation of the subframe index proceeds until a full frame
is processed. At this point, the subframe index is reset. This process is repeated for multiple
frames until the simulation stopping criteria are met. In simulating both variants of LTE mode
1, the operations are subdivided into two sections:

1. A MATLAB function: Contains all the operations in the transmitter, channel model, and
receiver for a single subframe of data.

2. A MATLAB script: Initializes and sets up all the parameters of DLSCH, PDSCH, and
channel model, then iterates through multiple subframes and computes the Bit Error Rate
(BER) measures, stopping when a maximum number of errors are found or a maximum
number of bits are processed.

5.18.1 The SISO Case

The followingMATLAB function contains the operations in the transceiver (transmitter, chan-
nel model, and receiver) for the SISO case. The signal processing chain in the transmitter is a
combination of DLSCH and PDSCH, as follows:

• Generation of payload data for a single subframe (a transport block).
• DLSCH processing, including: transport block Cyclic Redundancy Check (CRC) attach-

ment, codeblock segmentation and CRC attachment, turbo coding based on a 1/3-rate code,
rate matching, and codeblock concatenation to generate a codeword input to the PDSCH.

• PDSCH processing, including: scrambling of codeword bits, modulation of scrambled bits,
mapping of complex-valued modulation symbols to the resource elements forming the
resource grid on a single antenna port, generation of OFDM signal for transmission.

The channel modeling includes a combination of fading channel and AWGN channel. The
receiver operation, which inverts the PDSCH operations, includes the following: the OFDM
signal receiver generating the resource grid, resource-element demapping to separate the CSR
signal from the user data, channel estimation, and frequency-domain equalization based on the
CSR signal and soft-decision demodulation and descrambling.
Finally, the inverse operations of the DLSCH are performed, including: codeblock segmen-

tation, rate dematching, and turbo decoding with an early stopping option based on CRC
detection. The receiver output variable data_out and the transmitter input transport block vari-
able dataIn are provided as the first two output arguments of the function. Alongside these
variables, a few others are included as outputs to enhance the task of examining the system
performance. We will discuss some of the qualitative and quantitative measures of perfor-
mance shortly.

OFDM 149

Algorithm

MATLAB function

function [dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr]...

= commlteSISO_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl)

%% TX

% Generate payload

dataIn = genPayload(nS, prmLTEDLSCH.TBLenVec);

% Transport block CRC generation

tbCrcOut1 =CRCgenerator(dataIn);

% Channel coding includes - CB segmentation, turbo coding, rate matching,

% bit selection, CB concatenation - per codeword

[data, Kplus1, C1] = lteTbChannelCoding(tbCrcOut1, nS, prmLTEDLSCH, prmLTEPDSCH);

%Scramble codeword

scramOut = lteScramble(data, nS, 0, prmLTEPDSCH.maxG);

% Modulate

modOut = Modulator(scramOut, prmLTEPDSCH.modType);

% Generate Cell-Specific Reference (CSR) signals

csr = CSRgenerator(nS, prmLTEPDSCH.numTx);

% Resource grid filling

E=8*prmLTEPDSCH.Nrb;

csr_ref=reshape(csr(1:E),2*prmLTEPDSCH.Nrb,4);

txGrid = REmapper_1Tx(modOut, csr_ref, nS, prmLTEPDSCH);

% OFDM transmitter

txSig = OFDMTx(txGrid, prmLTEPDSCH);

%% Channel

% SISO Fading channel

[rxFade, chPathG] = MIMOFadingChan(txSig, prmLTEPDSCH, prmMdl);

idealhD = lteIdChEst(prmLTEPDSCH, prmMdl, chPathG, nS);

% Add AWG noise

nVar = 10.^(0.1.*(-snrdB));

rxSig = AWGNChannel(rxFade, nVar);

%% RX

% OFDM Rx

rxGrid = OFDMRx(rxSig, prmLTEPDSCH);

% updated for numLayers -> numTx

[dataRx, csrRx, idx_data] = REdemapper_1Tx(rxGrid, nS, prmLTEPDSCH);

% MIMO channel estimation

if prmMdl.chEstOn

chEst = ChanEstimate_1Tx(prmLTEPDSCH, csrRx, csr_ref, 'interpolate');

hD=chEst(idx_data).';

else

hD = idealhD;

end

% Frequency-domain equalizer

yRec = Equalizer(dataRx, hD, nVar, prmLTEPDSCH.Eqmode);

% Demodulate

150 Understanding LTE with MATLAB®

demodOut = DemodulatorSoft(yRec, prmLTEPDSCH.modType, nVar);

% Descramble both received codewords

rxCW = lteDescramble(demodOut, nS, 0, prmLTEPDSCH.maxG);

% Channel decoding includes - CB segmentation, turbo decoding, rate dematching

[decTbData1, ̃,̃] = lteTbChannelDecoding(nS, rxCW, Kplus1, C1, prmLTEDLSCH,

prmLTEPDSCH);

% Transport block CRC detection

[dataOut, ̃] = CRCdetector(decTbData1);

end

5.18.1.1 Structure of the Transceiver Model

The following MATLAB script calls the SISO transceiver function just described. First it
calls an initialization routine (commlteSISO_initialize), which sets all the relevant DLSCH
and PDSCH and channel model parameters into three MATLAB structures (prmLTEDLSCH,
prmLTEPDSCH, prmMdl). Then it sets up a while loop that performs subframe processing
iterations. Before the while loop, it initializes the subframe index (nS) and ensures that the
index resets when a frame of data (10ms) has been processed. It also contains the criteria for
stopping the simulation (maximum number of bits processed or maximum number of errors
found). This script also compares the input and output bits in order to compute the BER and
calls a visualization function to illustrate the channel response and modulation constellation
before and after equalization.

Algorithm

MATLAB script: commlteSISO

% Script for SISO LTE (mode 1)

% Single codeword transmission only,

clear all

clear functions

disp('Simulating the LTE Mode 1: Single Tx and Rx antrenna');

%% Set simulation parametrs & initialize parameter structures

commlteSISO_params;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteSISO_initialize(chanBW,

contReg, modType, Eqmode,...

cRate,maxIter, fullDecode, chanMdl, corrLvl, chEstOn, maxNumErrs, maxNumBits);

clear chanBW contReg numTx numRx modType Eqmode cRate maxIter fullDecode

chanMdl corrLvl chEstOn maxNumErrs maxNumBits;

%%

hPBer = comm.ErrorRate;

iter=numel(prmMdl.snrdBs);

snrdB=prmMdl.snrdBs(iter);

maxNumErrs=prmMdl.maxNumErrs(iter);

maxNumBits=prmMdl.maxNumBits(iter);

%% Simulation loop

OFDM 151

nS = 0; % Slot number, one of [0:2:18]

Measures = zeros(3,1); %initialize BER output

while ((Measures(2)< maxNumErrs) && (Measures(3) < maxNumBits))

[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr] = ...

commlteSISO_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);

% Calculate bit errors

Measures = step(hPBer, dataIn, dataOut);

% Visualize constellations and spectrum

if visualsOn, zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);end;

% Update subframe number

nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;

end

disp(Measures);

The following initialization function sets critical simulation parameters. As we are simulat-
ing the SISO case, it sets the number of transmit and receive antennas to one. To set PDSCH
parameters, the function allows the user to choose a particular bandwidth (chanBW) from
among six supported, the number of OFDM symbols occupying the control region (contReg),
one of three modulation types (modType), and the type of equalization algorithm used. To set
the DLSCH parameter, the function takes as input parameters the coding rate (cRate), the max-
imum number of iterations used in the turbo decoder (maxIter), and whether or not a full turbo
decoding or early stopping is used within the turbo decoder (fullDecode). Finally, the func-
tion sets parameters controlling the channel model, including the type of channel mode used
(chanMdl), the level of correlation between consecutive antenna ports (corrLvl), and whether
or not estimated or ideal channel estimation is used (chEstOn).

Algorithm

MATLAB function

function [prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteSISO_initialize(chanBW,

contReg, modType, Eqmode,...

cRate,maxIter, fullDecode, chanMdl, corrLvl, chEstOn,

maxNumErrs, maxNumBits)

% Create the parameter structures

% PDSCH and DLSCH

prmLTEPDSCH = prmsPDSCH(chanBW, contReg, modType);

prmLTEPDSCH.Eqmode=Eqmode;

prmLTEPDSCH.modType=modType;

prmLTEDLSCH = prmsDLSCH(cRate,maxIter, fullDecode, prmLTEPDSCH);

% Channel parameters

prmMdl.chanMdl = chanMdl;

prmMdl.corrLevel = corrLvl;

prmMdl.chEstOn = chEstOn;

switch modType

152 Understanding LTE with MATLAB®

case 1

snrdBs=[0:4:8, 9:12];

case 2

snrdBs=[0:4:12, 13:16];

otherwise

snrdBs=0:4:24;

end

prmMdl.snrdBs=snrdBs;

prmMdl.maxNumBits=maxNumBits*ones(size(snrdBs));

prmMdl.maxNumErrs=maxNumErrs*ones(size(snrdBs));

5.18.1.2 Verifying Transceiver Performance

By executing the MATLAB script of the SISO transceiver model (commlteSISO) we can look
at various signals in order to assess the performance of the system. To run the model script, we
need first to set parameters related to various components of the model. The following script
(commlteSISO_params) sets relevant parameters, including setting the modulation type to a
16QAM modulator.

Algorithm

MATLAB script

% PDSCH

numTx = 1; % Number of transmit antennas

numRx = 1; % Number of receive antennas

chanBW = 4; % Index to chanel bandwidth used [1,....6]

contReg = 1; % No. of OFDM symbols dedictaed to control information [1,...,3]

modType = 2; % Modulation type [1, 2, 3] for ['QPSK,'16QAM','64QAM']

% DLSCH

cRate = 1/3; % Rate matching target coding rate

maxIter = 6; % Maximum number of turbo decoding terations

fullDecode = 0; % Whether "full" or "early stopping" turbo decoding is performed

% Channel model

chanMdl = 'frequency-selective-high-mobility';

corrLvl = 'Low';

% Simulation parametrs

Eqmode = 2; % Type of equalizer used [1,2] for ['ZF', 'MMSE']

chEstOn = 1; % Whether channel estimation is done or ideal channel model used

maxNumErrs = 5e7; % Maximum number of errors found before simulation stops

maxNumBits = 5e7; % Maximum number of bits processed before simulation stops

visualsOn = 1; % Whether to visualize channel response and constellations

For example, to examine the effects of equalization, we can visualize the constellation dia-
gram of the user data recovered at the receiver before and after equalization. The MATLAB

OFDM 153

variables dataRx and yRec are provided as output arguments of the commlteSISO_stepMAT-
LAB function in order to enable visualization. Figure 5.11 illustrates the constellation dia-
grams, showing that the equalizer can compensate for the effects of fading channel (plot on
the left) and results in a constellation that more closely resembles the constellation of the
16QAM modulator used in this experiment (plot on the right).
To examine the effectiveness of theOFDM receiver in combating the effects ofmultipath fad-

ing, we can look at the power spectral density of the transmitted signal and the received signals
before and after equalization. Output MATLAB variables (txSig, rxSig, and yRec) enable this
visualization. Figure 5.12 illustrates the spectra of the transmitted signal, the received signal
before equalization, and the received signal after equalization. The results show that while the

Figure 5.11 LTE SISO model: constellation diagram of the user data before and after equalization

Figure 5.12 LTE SISO model: spectra of transmitted and received signals before and after
equalization

154 Understanding LTE with MATLAB®

transmitted signal has a spectrum with magnitude response normalized to one, the received-
signal magnitude spectrum reflects the effects of the response to multipath fading of the chan-
nel. After equalization, the effects of the fading are mostly mitigated and the magnitude spec-
trum shows a more frequency-flat nature, which closely resembles the transmitted spectrum.

5.18.1.3 BER Measurements

In order to verify the BER performance of the transceiver, we create a testbench called comml-
teSISIO_test_timing_ber.m. This first initializes the LTE system parameters and then iterates
through a range of Signal-to-Noise Ratio (SNR) values and calls the commlteSISO_fcn func-
tion in the loop in order to compute the corresponding BER values. It also uses a combination
of MATLAB tic and toc functions to measure the time needed to complete the iterations.

Algorithm

MATLAB script: commlteSISO_test_timing_ber

% Script for SISO LTE (mode 1)

%

% Single codeword transmission only,

%

clear all

clear functions

disp('Simulating the LTE Mode 1: Single Tx and Rx antrenna');

%% Create the parameter structures

commlteSISO_params;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteSISO_initialize(chanBW,

contReg, modType, Eqmode,...

cRate,maxIter, fullDecode, chanMdl, corrLvl, chEstOn, maxNumErrs, maxNumBits);

clear chanBW contReg numTx numRx modType Eqmode cRate maxIter fullDecode

chanMdl corrLvl chEstOn maxNumErrs maxNumBits;

%%

zReport_data_rate(prmLTEPDSCH, prmLTEDLSCH);

MaxIter=numel(prmMdl.snrdBs);

ber_vector=zeros(1,MaxIter);

tic;

for n=1:MaxIter

fprintf(1,'Iteration %2d out of %2d\n', n, MaxIter);

[ber, ̃] = commlteSISO_fcn(n, prmLTEPDSCH, prmLTEDLSCH, prmMdl);

ber_vector(n)=ber;

end;

toc;

When the MATLAB script is executed, messages appear in the command prompt, including
transceiver parameters (modulation type, coding rate, channel bandwidth, antenna configura-
tion, maximum data rate), the iteration being executed, and the final tally of elapsed time.

OFDM 155

0
10−3

10−2

10−1

100

2 4 6

SNR (dB)

B
E

R

BER performance of SISO transmission mode 1 as a function of SNR

QAM16, 1/3 turbo coding, 10 MHz BW

8 10 12

Figure 5.13 BER results: SISO model

Figure 5.13 shows the BER of the transceiver as a function of the SNR value. In this example,
we process 50million bits in each of the eight iterations characterized by a single SNR value.
The transceiver uses a 16QAM modulation scheme, with a coding rate of 1/3, a system band-
width of 10MHz, and a SISO (1× 1) antenna configuration. Choosing this parameter set gives
a maximum data rate of 9.91Mbps, as reported by the function zReport_data_rate.m.

5.18.2 The SIMO Case

The SIMOmode can be regarded as a general case of the SISO mode. LTE transmission mode
1 is usually regarded as the SIMO mode of transmission. In this mode, the signal processing
chain is very similar to the SISO case, with the exception that it employs multiple (in our func-
tions either two or four) receive antennas. Using multiple antennas at the receiver allows us to
take advantage of receive diversity. Receive diversity withMaximumRatio Combining (MRC)
results in a system with better BER performance than its SISO counterpart. Modeling receive
diversity does not change the transmitter but introduces many changes to channel modeling
and receiver operations. All of these changes relate to multichannel processing.
Following transmitter operation, the fading channel processes samples from a single transmit

antenna. However, depending on the number of receive antennas, it applies channel modeling
to each link (transmitter–receiver pair) separately. The output of the fading channel is now a
multichannel matrix with a number of rows equal to the number of transmitted samples and a
number of columns equal to the number of receiver antennas. Similarly, the AWGN channel
processes the multichannel output of the fading channel and produces an output of the same
size with added white noise.

156 Understanding LTE with MATLAB®

As a multichannel received signal is now the input to the receiver, the first set of operations
performed in the receiver must be repeated across different channels (representing different
receive antennas). These include the OFDM receiver, the resource-element demapper, and the
channel estimator up to the equalizer function.
The estimated data resource elements at each receiver are now combined with a new equal-

izer to generate a best estimate for the transmitted signal. The equalizer uses either a ZF or an
MMSEmethod to equal at each antenna, but the results are combined according to MRC. This
method essentially weights and scales the contribution of each receive antenna according to its
power measure. The following MATLAB function contains the operations in the transceiver
for the SIMO case.

Algorithm

MATLAB function

function [dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr]...

= commlteSIMO_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl)

%% TX

% Generate payload

dataIn = genPayload(nS, prmLTEDLSCH.TBLenVec);

% Transport block CRC generation

tbCrcOut1 =CRCgenerator(dataIn);

% Channel coding includes – CB segmentation, turbo coding, rate matching,

% bit selection, CB concatenation – per codeword

[data, Kplus1, C1] = lteTbChannelCoding(tbCrcOut1, nS, prmLTEDLSCH, prmLTEPDSCH);

%Scramble codeword

scramOut = lteScramble(data, nS, 0, prmLTEPDSCH.maxG);

% Modulate

modOut = Modulator(scramOut, prmLTEPDSCH.modType);

% Generate Cell-Specific Reference (CSR) signals

csr = CSRgenerator(nS, prmLTEPDSCH.numTx);

% Resource grid filling

E=8*prmLTEPDSCH.Nrb;

csr_ref=reshape(csr(1:E),2*prmLTEPDSCH.Nrb,4);

txGrid = Remapper_1Tx(modOut, csr_ref, nS, prmLTEPDSCH);

% OFDM transmitter

txSig = OFDMTx(txGrid, prmLTEPDSCH);

%% Channel

% SISO Fading channel

numRx=prmLTEPDSCH.numRx;

[rxFade, chPathG] = MIMOFadingChan(txSig, prmLTEPDSCH, prmMdl);

idealhD = lteIdChEst(prmLTEPDSCH, prmMdl, chPathG, nS);

% Add AWG noise

nVar = 10.^(0.1.*(-snrdB));

rxSig = AWGNChannel(rxFade, nVar);

%% RX

% OFDM Rx

OFDM 157

rxGrid = OFDMRx(rxSig, prmLTEPDSCH);

% updated for numLayers -> numTx

[dataRx, csrRx, idx_data] = Redemapper_1Tx(rxGrid, nS, prmLTEPDSCH);

% MIMO channel estimation

if prmMdl.chEstOn

chEst = ChanEstimate_1Tx(prmLTEPDSCH, csrRx, csr_ref, 'interpolate');

hD=complex(zeros(numel(idx_data),numRx));

for n=1:numRx

tmp=chEst(:,:,n);

hD(:,n)=tmp(idx_data).';

end

else

hD = idealhD;

end

% Frequency-domain equalizer

% Based on Maximum-Combining Ratio (MCR)

yRec = Equalizer_simo(dataRx, hD, nVar, prmLTEPDSCH.Eqmode);

% Demodulate

demodOut = DemodulatorSoft(yRec, prmLTEPDSCH.modType, nVar);

% Descramble both received codewords

rxCW = lteDescramble(demodOut, nS, 0, prmLTEPDSCH.maxG);

% Channel decoding includes – CB segmentation, turbo decoding, rate dematching

[decTbData1, ̃,̃] = lteTbChannelDecoding(nS, rxCW, Kplus1, C1, prmLTEDLSCH,

prmLTEPDSCH);

% Transport block CRC detection

[dataOut, ̃] = CRCdetector(decTbData1);

end

5.18.2.1 Modified Functions

The modifications needed to enable the SIMO mode affect the following three functions.
Redemapper_1Tx now supports multichannel processing by iterating through receive anten-

nas in a for loop in order to extract data, CSR, and other signals separately in each.

Algorithm

MATLAB function

function [data, csr, idx_data, pdcch, pss, sss, bch] = Redemapper_1Tx(in, nS, prmLTE)

%#codegen

% NcellID = 0; % One of possible 504 values

% numTx = 1; % prmLTE.numTx;

% Get input params

numRx=prmLTE.numRx; % number of receive antennas

Nrb = prmLTE.Nrb; % either of {6,...,1}

158 Understanding LTE with MATLAB®

Nrb_sc = prmLTE.Nrb_sc; % 12 for normal mode

numContSymb = prmLTE.contReg; % either {1, 2, 3}

Npss= prmLTE.numPSSRE;

Nsss=prmLTE.numSSSRE;

Nbch=prmLTE.numBCHRE;

Ncsr=prmLTE.numCSRResources;

Ndci=prmLTE.numContRE;

%% Specify resource grid location indices for CSR, PDCCH, PDSCH, PBCH, PSS, SSS

%% 1st: Indices for CSR pilot symbols

lenOFDM = Nrb*Nrb_sc;

idx = 1:lenOFDM;

idx_csr0 = 1:6:lenOFDM; % More general starting point = 1+mod(NcellID, 6);

idx_csr4 = 4:6:lenOFDM; % More general starting point = 1+mod(3+NcellID, 6);

idx_csr =[idx_csr0, 4*lenOFDM+idx_csr4, 7*lenOFDM+idx_csr0, 11*lenOFDM+idx_csr4];

%% 2nd: Indices for PDCCH control data symbols

ContREs=numContSymb*lenOFDM;

idx_dci=1:ContREs;

idx_pdcch = ExpungeFrom(idx_dci,idx_csr0);

%% 3rd: Indices for PDSCH and PDSCH data in OFDM symbols where pilots are present

idx_data0= ExpungeFrom(idx,idx_csr0);

idx_data4 = ExpungeFrom(idx,idx_csr4);

switch nS

%% 4th: Indices for BCH, PSS, SSS are only found in specific subframes 0 and 5

% These symbols share the same 6 center sub-carrier locations (idx_ctr)

% and differ in OFDM symbol number.

Case 0 % Subframe 0

% PBCH, PSS, SSS are available + CSR, PDCCH, PDSCH

idx_6rbs = (1:72);

idx_ctr = 0.5* lenOFDM – 36 + idx_6rbs ;

idx_SSS = 5* lenOFDM + idx_ctr;

idx_PSS = 6* lenOFDM + idx_ctr;

idx_ctr0 = ExpungeFrom(idx_ctr,idx_csr0);

idx_bch=[7*lenOFDM + idx_ctr0, 8*lenOFDM + idx_ctr, 9*lenOFDM + idx_ctr,

10*lenOFDM + idx_ctr];

idx_data5 = ExpungeFrom(idx,idx_ctr);

idx_data7 = ExpungeFrom(idx_data0,idx_ctr);

idx_data = [ContREs+1:4*lenOFDM, 4*lenOFDM+idx_data4, ...

5*lenOFDM+idx_data5, 6*lenOFDM+idx_data5, 7*lenOFDM+idx_data7,

8*lenOFDM+idx_data5, ...

9*lenOFDM+idx_data5, 10*lenOFDM+idx_data5, 11*lenOFDM+idx_data4, ...

12*lenOFDM+1:14*lenOFDM];

case 10 % Subframe 5

% PSS, SSS are available + CSR, PDCCH, PDSCH

% Primary and Secondary synchronization signals in OFDM symbols 5 and 6

idx_6rbs = (1:72);

idx_ctr = 0.5* lenOFDM – 36 + idx_6rbs ;

idx_SSS = 5* lenOFDM + idx_ctr;

idx_PSS = 6* lenOFDM + idx_ctr;

idx_data5 = ExpungeFrom(idx,idx_ctr);

OFDM 159

idx_data = [ContREs+1:4*lenOFDM, 4*lenOFDM+idx_data4, 5*lenOFDM+idx_data5,

6*lenOFDM+idx_data5, ...

7*lenOFDM+idx_data0, 8*lenOFDM+1:11*lenOFDM, 11*lenOFDM+idx_data4, ...

12*lenOFDM+1:14*lenOFDM];

otherwise % other subframes

% Only CSR, PDCCH, PDSCH

idx_data = [ContREs+1:4*lenOFDM, 4*lenOFDM+idx_data4, ...

5*lenOFDM+1:7*lenOFDM, ...

7*lenOFDM+idx_data0, ...

8*lenOFDM+1:11*lenOFDM, ...

11*lenOFDM+idx_data4, ...

12*lenOFDM+1:14*lenOFDM];

end

%% Handle 3 types of subframes differently

pss=complex(zeros(Npss,numRx));

sss=complex(zeros(Nsss,numRx));

bch=complex(zeros(Nbch,numRx));

data=complex(zeros(numel(idx_data),numRx));

csr=complex(zeros(Ncsr,numRx));

pdcch = complex(zeros(Ndci,numRx));

for n=1:numRx

tmp=in(:,:,n);

data(:,n)=tmp(idx_data.'); % Physical Downlink Shared Channel (PDSCH) = user data

csr(:,n)=tmp(idx_csr.'); % Cell-Specific Reference signal (CSR) = pilots

pdcch(:,n) = tmp(idx_pdcch.'); % Physical Downlink Control Channel (PDCCH)

if nS==0

pss(:,n)=tmp(idx_PSS.'); % Primary Synchronization Signal (PSS)

sss(:,n)=tmp(idx_SSS.'); % Secondary Synchronization Signal (SSS)

bch(:,n)=tmp(idx_bch.'); % Broadcast Channel data (BCH)

elseif nS==10

pss(:,n)=tmp(idx_PSS.'); % Primary Synchronization Signal (PSS)

sss(:,n)=tmp(idx_SSS.'); % Secondary Synchronization Signal (SSS)

end

end

The updated function ChanEstimate_1Tx now supports multichannel processing by repeat-
ing the process of resource-grid generation based on CSR signals across multiple antennas.

Algorithm

MATLAB function

function hD = ChanEstimate_1Tx(prmLTE, Rx, Ref, Mode)

%#codegen

Nrb = prmLTE.Nrb; % Number of resource blocks

Nrb_sc = prmLTE.Nrb_sc; % 12 for normal mode

Ndl_symb = prmLTE.Ndl_symb; % 7 for normal mode

160 Understanding LTE with MATLAB®

numRx = prmLTE.numRx;

% Assume same number of Tx and Rx antennas = 1

% Initialize output buffer

hD = complex(zeros(Nrb*Nrb_sc, Ndl_symb*2,numRx));

% Estimate channel based on CSR – per antenna port

csrRx = reshape(Rx, numel(Rx)/(4*numRx), 4, numRx); % Align received pilots with refer-

ence pilots

for n=1:numRx

hp= csrRx(:,:,n)./Ref; % Just divide received pilot by reference pilot

% to obtain channel response at pilot locations

% Now use some form of averaging/interpolation/repeating to

% compute channel response for the whole grid

% Choose one of 3 estimation methods "average" or "interpolate" or "hybrid"

switch Mode

case 'average'

tmp=gridResponse_averageSubframe(hp, Nrb, Nrb_sc, Ndl_symb);

case 'interpolate'

tmp=gridResponse_interpolate(hp, Nrb, Nrb_sc, Ndl_symb);

otherwise

error('Choose the right mode for function ChanEstimate.');

end

hD(:,:,n)=tmp;

end

Unlike the frequency-domain equalizer of the SISO mode, the equalizer in the SIMO mode
must combine contributions from multiple channels. The new equalizer (Equalizer_simo)
employs theMRCmethod to generate a best estimate of the resource element at the receiver [4].

Algorithm

MATLAB function

function [y, num, denum] = Equalizer_simo(in, hD, nVar, prmLTE)

%#codegen

EqMode=prmLTE.Eqmode;

numTx=prmLTE.numTx;

numRx=size(hD,2);

if (numTx>1), error('Equalizer_simo: edicated to single transmit antenna case.');end

if numRx==1

switch EqMode

case 1, % Zero forcing

num = conj(hD);

denum=conj(hD).*hD;

case 2, % MMSE

num = conj(hD);

denum=conj(hD).*hD+nVar;

end

OFDM 161

else

num = conj(hD);

denum=conj(hD).*hD;

end

y = sum(in .*num,2)./sum(denum,2);

5.18.2.2 Verifying Transceiver Performance

In order to observe the effect of receive diversity on performance, we can execute the MAT-
LAB script of the SIMO transceiver model (commlteSIMO). First, we set parameters related
to various component of the model in the script (commlteSIMO_params). This is the same
script used in the SISO case, except we change the number of receive parameters from one
to four.

Algorithm

MATLAB script

% PDSCH

numTx = 1; % Number of transmit antennas

numRx = 4; % Number of receive antennas

chanBW = 4; % Index to chanel bandwidth used [1,6]

contReg = 1; % No. of OFDM symbols edicated to control information [1,...,3]

modType = 2; % Modulation type [1, 2, 3] for ['QPSK,'16QAM','64QAM']

% DLSCH

cRate = 1/3; % Rate matching target coding rate

maxIter = 6; % Maximum number of turbo decoding terations

fullDecode = 0; % Whether "full" or "early stopping" turbo decoding is performed

% Channel model

chanMdl = 'frequency-selective-high-mobility';

corrLvl = 'Low';

% Simulation parametrs

Eqmode = 2; % Type of equalizer used [1,2] for ['ZF', 'MMSE']

chEstOn = 1; % Whether channel estimation is done or ideal channel model used

maxNumErrs = 5e7; % Maximum number of errors found before simulation stops

maxNumBits = 5e7; % Maximum number of bits processed before simulation stops

visualsOn = 1; % Whether to visualize channel response and constellations

Figure 5.14 illustrates the constellation diagrams and shows how the SIMO OFDM
transceiver compensates for the multipath fading effect and rotates and scales back the
corrupted constellation (before equalization) to a constellation that can properly be demod-
ulated (after equalization). Figure 5.15 shows the power spectral density of the transmitted
and received signals before and after equalization. The results show that while the trans-
mitted signal has a power spectral magnitude that is normalized to one, the received-signal

162 Understanding LTE with MATLAB®

Figure 5.14 LTE SISO model: constellation diagram of the user data before and after equalization

Figure 5.15 LTE SIMO model: spectra of transmitted and received signals before and after
equalization

magnitude spectrum reflects the effects of the multipath fading response of the channel. After
equalization, the magnitude spectrum shows a more frequency-flat nature, which closely
resembles the transmitted spectrum.

5.18.2.3 BER Measurements

In order to verify the BER performance of the transceiver, we create a testbench called comml-
teSIMO_test_timing_ber.m. This first initializes the LTE system parameters and then iterates

OFDM 163

through a range of SNR values and calls the commlteSIMO_fcn function in the loop in order
to compute the corresponding BER values.

Algorithm

MATLAB script: commlteSIMO_test_timing_ber

% Script for SIMO LTE (mode 1)

%

% Single codeword transmission only

%

clear all

clear functions

disp('Simulating the LTE Mode 1: Single Tx and multiple Rx antrennas');

%% Set simulation parametrs & initialize parameter structures

commlteSIMO_params_ber;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteSIMO_initialize(chanBW,

contReg, modType, ...

Eqmode, numTx, numRx, cRate,maxIter, fullDecode, chanMdl, corrLvl, ...

chEstOn, maxNumErrs, maxNumBits);

clear chanBW contReg numTx numRx modType Eqmode cRate maxIter fullDecode

chanMdl corrLvl chEstOn maxNumErrs maxNumBits;

%%

zReport_data_rate(prmLTEPDSCH, prmLTEDLSCH);

MaxIter=numel(prmMdl.snrdBs);

ber_vector=zeros(1,MaxIter);

tic;

for n=1:MaxIter

fprintf(1,'Iteration %2d out of %2d\n', n, MaxIter);

[ber, ̃] = commlteSIMO_fcn(n, prmLTEPDSCH, prmLTEDLSCH, prmMdl);

ber_vector(n)=ber;

end;

toc;

semilogy(prmMdl.snrdBs, ber_vector);

title('BER - commlteSISO');xlabel('SNR (dB)');ylabel('ber');grid;

When the MATLAB script is executed, messages appear in the command prompt, including
transceiver parameters (modulation type, coding rate, channel bandwidth, antenna configura-
tion, and maximum data rate), the iteration being executed, and the final tally of elapsed time.
Figure 5.16 shows the BER of the transceiver as a function of the SNR value. In this

example, we process 50million bits in each of the eight iterations characterized by a single
SNR value. The transceiver uses a 16QAM modulation scheme, with a coding rate of 1/3,
a system bandwidth of 10MHz, and SIMO antenna configurations of 1× 4. Choosing this
parameter set leads to a maximum data rate of 9.91Mbps, as reported by the function
zReport_data_rate.m. Running all eight iterations takes about 4025 seconds to complete
without any acceleration methods.

164 Understanding LTE with MATLAB®

0
10−4

10−3

10−2

10−1

100

2 4 6

SNR (dB)

B
E

R

BER performance of SISO transmission mode 1 as a function of SNR

QAM16, 1/3 turbo coding, 10 MHz BW, 4Rx

8 10 1412

Figure 5.16 BER results: SIMO mode

5.19 Chapter Summary

In this chapter we studied the multicarrier transmission scheme used in the LTE standard.
We focused on developing the downlink transceiver based on the OFDM transmission in
MATLAB. First we examined a more realistic representation of a mobile communications
channel and introduced the multipath fading channel models. Then we presented the
functional elements of an OFDM transmission scheme, designed to combat the effects of
multipath fading.
We then reviewed the functional elements in the transmitter, including: (i) the

time–frequency representation of data leading up to the formation of a resource grid,
(ii) the inclusion of OFDM pilot signals (or reference signals) within the resource grid, and
(iii) the OFDM signal generation that uses inverse FFT to compute the transmitted data
as a time-domain signal that is completely specified in the frequency domain based on a
resource-grid representation.
We subsequently reviewed typical functional elements in the receiver, including: (i) the

OFDM receiver that computes the received resource grid, (ii) channel estimation based on
reference signals, (iii) computation of the channel response for the entire resource grid based
on interpolation of channel estimation results, and (iv) frequency-domain equalization based
on the estimated channel response, used to recover best estimates for transmitted resource
elements.
Finally, we integrated all of the functional elements to create a transceiver model in MAT-

LAB for the single-antenna downlink transmission mode of the LTE standard. Otherwise
known as LTE transmission mode 1, the transceiver handles both the SISO and SIMO down-
link transceiver operations. Through simulations, we performed both qualitative assessments

OFDM 165

and BER performance measurements. The results show that the transceiver effectively com-
bats the effects of intersymbol interference caused by multipath fading. In the next chapter we
will introduce the MIMO multi-antenna schemes, in which more than one antenna is used for
transmission.

References

[1] Y.S. Cho, J.K. Kim, W.Y. Yang, C.G. Kang, MIMO-OFDM Wireless Communications with MATLAB, John
Wiley and Sons (Asia) Pte Ltd, 2010.

[2] 3GPP (2011) Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation
Version 10.0.0. TS 36.211, January 2011.

[3] A. Ghosh, R. Ratasuk, Essentials of LTE and LTE-A, Cambridge University Press, 2011.
[4] H. Jafarkhani, Space-Time Coding; Theory and Practice, Cambridge University Press, 2005.

6
MIMO

Sofar we have studied themodulation, scrambling, coding, channel modeling, andmulticarrier
transmission schemes used in the LTE (Long Term Evolution) standard. In this chapter we
focus on its multi-antenna characteristics. The LTE and LTE-Advanced standards achieve high
maximum data rates mainly as the result of incorporating many multi-antenna or MIMO (Mul-
tiple InputMultiple Output) techniques. LTE can be regarded as aMIMO–OFDM (Orthogonal
Frequency Division Multiplexing) system, with MIMO multi-antenna configurations being
combined with the OFDM multicarrier transmission scheme.
In general, multi-antenna transmission schemes map modulated data symbols to multiple

antennas ports. In the OFDM transmission scheme, each antenna constructs the resource grid,
generates the OFDM symbols, and transmits the signal. In a MIMO–OFDM system, the
process of resource-grid mapping and OFDM modulation is repeated over multiple transmit
antennas. Depending on the MIMO mode used, this multi-antenna extension may result in a
boost in data rates or an improvement in the link quality.
In this chapter, we will first reviewMIMO algorithms of the first four transmission modes of

the LTE standard. These transmission modes exploit two main MIMO techniques: (i) transmit
diversity (techniques such as Space–Frequency Block Coding, SFBC) and (ii) spatial multi-
plexing with or without delay-diversity coding. As noted earlier, transmit diversity techniques
improve the link quality and reliability but not the data rate or spectral efficiency of a system.
On the other hand, spatial multiplexing can bring about in a substantial boost in data rates.

6.1 Definition of MIMO

“MIMO antenna processing” is often used as a general term to refer to all techniques employ-
ing multiple transmit and receive antennas. The LTE standard is based on a combination of
MIMOmulti-antenna techniques and OFDMmulticarrier techniques. Essentially, in LTE rela-
tionships between multiple transmit and receive antennas are best explained at each individual
subcarrier rather than across the entire bandwidth. Figure 6.1 illustrates transmit and receive
antenna relationships, together with the channel gains linking each antenna pair.

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

168 Understanding LTE with MATLAB®

x1

x2

x3

x4

X
→

Y
→

Y
→

= X
→

y1

y2

y3

y4

h41

h11 h41

h44

...

...

. . .

. . .

. . .

Figure 6.1 Block diagram of a MIMO transmitter, receiver, and channel

At each subcarrier, the relationship between the received and transmitted resource elements
on different antennas is expressed by a system of linear equations. In this system, the vector of
received resource elements on receive antennas results from the multiplication of the MIMO
channel matrix by the vector of transmitted resource elements on transmit antennas. As indi-
cated by theMIMO system of equations, in order to recover the best estimate of the transmitted
resource element at a given subcarrier, we need not only the vector of received resource ele-
ments but also the channel response (or the CSI, Channel State information) connecting each
pair of transmit and receive antennas.

6.2 Motivation for MIMO

Theoretically, the best way to increase data rates over a communications link is to increase
the overall received signal power for a given transmit power [1]. An effective way of increas-
ing the received power is to use additional antennas at the transmitter and/or the receiver.
This represents a class known as multi-antenna or MIMO techniques. Impressive improve-
ments in capacity and Bit Error Rates (BERs) brought about by the use of MIMO techniques
have spurred a lot of interest in multi-antenna radio systems. Along with the gains, however,
comes added computational complexity. The complexity of a MIMO technique is usually in
proportion to the number of antennas used.
Among various MIMO techniques, spatial multiplexing introduces a multi-antenna method-

ology that achieves a linear capacity growth with the number of antennas [1]. Given that typical
methods of increasing capacity such as increasing power only lead to a logarithmic improve-
ment, the promise of substantial capacity gains from the use of MIMO techniques represents
a historical step forward in wireless communications.

6.3 Types of MIMO

LTE takes extensive advantage of MIMO techniques, for example by introducing many forms
of multi-antenna technique in each of its nine downlink transmission modes. LTE-Advanced
provides multiple transmit-antenna configurations of up to eight antennas at a time.

MIMO 169

Let us examine the mathematical foundation of MIMO systems. A successful implemen-
tation of a MIMO system hinges on solving systems of linear equations at the receiver in
order to correctly recover the transmitted data. In the presence of channel degradations, the
full spectrum exhibits a frequency-selective response. At each sub-band, however, the channel
response is flatter and may be approximated by a scalar gain value. In a MIMO system, at
each subcarrier the relationship between any pair of transmitted and received symbols can be
expressed with a single gain value. This means that the relationship between multiple trans-
mitters and receivers can be expressed with a MIMO system of linear equations, which are
solved at the receiver for each and every subcarrier of the full spectrum in order to recover the
transmitted signal.
The MIMO algorithms used in the LTE standard can be subdivided into four broad cat-

egories: receiver-combining, transmit-diversity, beamforming, and spatial-multiplexing. We
will provide a short discussion of three of these techniques in this section.

6.3.1 Receiver-Combining Methods

Receiver-combining methods combine multiple versions of the transmitted signal at the
receiver to improve performance. They have been used in 3G mobile standards and WiFi and
WiMAX systems. Two types of combiningmethod can be used at the receiver:MaximumRatio
Combining (MRC) and Selection Combining (SC) [2]. In MRC, we combine the multiple
received signals (usually by averaging them) to find the most likely estimate of the transmitted
signal. In SC, we forego the extensive complexity of MRC and use only the received signal
with the highest SNR (Signal-to-Noise Ratio) to estimate the transmitted signal.

6.3.2 Transmit Diversity

In transmit diversity, redundant information is transmitted on different antennas at each sub-
carrier. In this mode, LTE does not increase the data rate but only makes the communications
link more robust. Transmit diversity belongs to a class of multi-antenna techniques known as
space–time coding. Space–time codes are capable of delivering a diversity order equal to the
product of the number of receive and transmit antennas. SFBC, a technique closely related
to Space–Time Block Coding (STBC), is the transmit-diversity technique used in the LTE
standard.

6.3.3 Spatial Multiplexing

In spatial multiplexing, the system transmits independent (nonredundant) information on dif-
ferent antennas. This mode of MIMO can substantially boost the data rate of a given com-
munications link as the data rate can increase linearly in proportion to the number of transmit
antennas. The ability to transmit independent data streams in spatial multiplexing comes with
a cost, however. Spatial multiplexing is susceptible to deficiencies in rank of the matrix repre-
senting the MIMO equation. Multiple techniques are introduced in LTE spatial multiplexing
in order to minimize the probability of these rank deficiencies occurring and to harness its
benefits.

170 Understanding LTE with MATLAB®

6.4 Scope of MIMO Coverage

In this book we focus on signal processing related to the first four modes of MIMO trans-
mission. Beamforming, used in mode 6, relates to multicast and is important for coordinated
multipoint. Multi-user MIMO (MU-MIMO), used in modes 5 and 7–9, can be best understood
as an extension of the single-user cases of modes 3 and 4. A detailed discussion of beamform-
ing methods and MU-MIMO in both downlink and uplink deserves further study in a different
volume.

6.5 MIMO Channels

MIMO channels specify the relationships between signals transmitted over multiple transmit
antennas and signals received at multiple receive antennas. The number of connection links is
equal to the product of the number of transmit antennas (numTx) and the number of receive
antennas (numRx).
In a flat-fading scenario, the relationship between any given pair of transmit and receive

antennas at any point in time is given by a scalar gain value known as the channel path gain.
The collection of these path gains specifies the channel matrixH. The dimension of the channel
matrix is equal to (numTx, numRx). A system of linear equations characterizes the relationship
between the received signal at each receive antenna, the transmitted signal at each transmit
antenna, and the channel matrix. Figure 6.2 illustrates this relationship between X(n) (the
transmitted vector at sample time n), Y(n) (the received vector at sample time n), and H(n)
(the channel matrix at sample time n) in a 2× 2 MIMO channel characterized by a flat-fading
response.

MIMO Flat Fading Channel

X
→

(n) =
ˣ2

ˣ2

H (n) =
h(n,1,1)

h(n,2,1)

h(n,1,2)

h(n,2,2)

Y
→

(n) =
y1

y2

Y
→

(n) = H (n)∗ X
→

(n)

x1(n)

y1(n)

y2(n)

x2(n)

(1,1) (1,2)

(2,1) (2,2)

Figure 6.2 A 2× 2 MIMO channel with a flat-fading response

MIMO 171

The range for the time index n is equal to n= 1, … , nSamp, where nSamp is the number
of transmitted symbols in each subframe per antenna. As a result, over a full subframe the
transmitted signal has a dimension of (nSamp, numTx), the received signal has a dimension of
(nSamp, numRx), and the channel matrix is a 3D matrix with dimensions of (nSamp, numTx,
numRx).
In a multipath fading scenario, the relationship between any given transmit and receive

antenna at any point in time is characterized by the channel-path gain vector. So each received
signal at any point in time depends on the present and past values of transmitted signals. This
necessitates the introduction of one more parameter: the number of path delays L. To compute
the received signals in a multipath case, the MIMO operations mentioned in the flat-fading
scenario must be repeated for each value of the path-delay vector.
As a result, over a full subframe the transmitted signal has a dimension of (nSamp, numTx),

the received signal has a dimension of (nSamp, numRx), but the channel matrix is a 4D matrix
with dimensions of (nSamp, L, numTx, numRx). Figure 6.3 illustrates this relationship between
the transmitted signal X(n), the received signal Y(n), and the channel matrix H(n,k) in a 2× 2
MIMO channel characterized by a multipath fading response. Here the range for the time
index n is equal to n= 1, … , nSamp, where nSamp is defined as before and the range for the
path-delay index k is equal to k= 1, … , L, where L is the number of path delays.

6.5.1 MATLAB® Implementation

We can use the comm.MIMOChannel System object to study the effects of multiple
antennas and multiple propagation paths and to implement a MIMO channel model.

MIMO Multipath Fading Channel

X
→

(n) =
ˣ2

ˣ2
Y
→

(n) =
y1

y2

H (n,k) =
h(n,k,1,1)

h(n,k,2,1)

h(n,k,1,2)

h(n,k,2,2) H(n,k)∗ X
→

(n – dk)Y
→

(n) =

x(n)↔ H (n, 0)

x(n-d1)↔ H (n, 1)

x(n-d2)↔ H (n, 2)

x1(n-d2)

x1(n-d1)

x2(n-d2)

x2(n-d1)

x1(n)

x2(n)

(1,1) (1,2)

(2,1) (2,2)

(1,1) (1,2)

(1,1)

y1(n)

y2(n)

(1,2)

(2,1) (2,2)

(2,1) (2,2)

k = 0

L

Figure 6.3 A 2× 2 MIMO channel with a multipath fading response

172 Understanding LTE with MATLAB®

The comm.MIMOChannel System object uses such parameters as number of transmit and
receive antennas, delay profile, and Doppler shift to model the dynamics of a flat- or
frequency-selective-fading MIMO channel.
The following MATLAB function shows a MIMO fading channel model that can handle

frequency-flat- or selective-fading characteristics. This function takes as input a variable (x)
that is organized as a 2D matrix. The first dimension of the matrix (nSamp) is the number
of samples processed by each transmit antenna in a subframe. The second dimension is the
number of transmit antennas (numTx). The function has two output variables. The first (y) is the
filtered version of the input variable (x), processed by the fading channel. The first dimension
of the first output signal is the same as the first dimension of the input signal (nSamp). The
second dimension is equal to the number of receive antennas (numRx). The second output
of the function is a multidimensional matrix (H) representing the channel matrix (otherwise
known as path gains). The path gains operate on the input variable (x) to generate the output
faded signal (y).

Algorithm

MATLAB function

function [y, yPg] = MIMOFadingChan(in, prmLTE, prmMdl)

% MIMOFadingChan

%#codegen

% Get simulation params

numTx = prmLTE.numTx;

numRx = prmLTE.numRx;

chanSRate = prmLTE.chanSRate;

chanMdl = prmMdl.chanMdl;

corrLvl = prmMdl.corrLevel;

PathDelays = prmMdl.PathDelays ;

PathGains = prmMdl.PathGains ;

Doppler = prmMdl.Doppler;

ChannelType = prmMdl.ChannelType ;

AntConfig = prmMdl.AntConfig;

% Initialize objects

persistent chanObj;

if isempty(chanObj)

if ChannelType ==1

chanObj = comm.MIMOChannel('SampleRate', chanSRate, ...

'MaximumDopplerShift', Doppler, ...

'PathDelays', PathDelays,...

'AveragePathGains', PathGains,...

'RandomStream', 'mt19937ar with seed',...

'Seed', 100,...

'NumTransmitAntennas', numTx,...

'TransmitCorrelationMatrix', eye(numTx),...

'NumReceiveAntennas', numRx,...

MIMO 173

'ReceiveCorrelationMatrix', eye(numRx),...

'PathGainsOutputPort', true,...

'NormalizePathGains', false,...

'NormalizeChannelOutputs', true);

else

chanObj = comm.LTEMIMOChannel('SampleRate', chanSRate, ...

'Profile', chanMdl, ...

'AntennaConfiguration', AntConfig, ...

'CorrelationLevel', corrLvl,...

'RandomStream', 'mt19937ar with seed',...

'Seed', 100,...

'PathGainsOutputPort', true);

end

end

[y, yPg] = step(chanObj, in);

In this function we use two different System objects to perform MIMO channel processing.
The comm.MIMOChannel System object is a generic model for MIMO channels. It takes such
parameters as path delay, path gains, and Doppler shift to specify the model.
The comm.LTEMIMOChannel System object is specific to LTE channel modeling and is

fully described in the next section. It takes a different set of parameters, such as antenna con-
figurations and the correlation level between transmit antennas, to compute all the necessary
channel-modeling operations. This function implements the MIMO fading profiles prescribed
in the LTE standard [3].

6.5.2 LTE-Specific Channel Models

The 3GPP (Third Generation Partnership Project) Technical Recommendation (TR) 36.104 [3]
specifies three different multipath fading channel models: the Extended Pedestrian A (EPA),
Extended Vehicular A (EVA), and Extended Typical Urban (ETU). The channel-modeling
functions used in this book explicitly take advantage of these models. We will not use the
higher-mobility profiles as the closed-loop spatial-multiplexing mode is applicable to high-
data-rate and low-mobility scenarios only. Together with the generic channel models described
earlier, these models enable us to evaluate the performance of the transceiver in various refer-
ence channel conditions.
A multipath fading channel model is specified by the combination of delay profiles and a

maximum Doppler frequency. The delay profiles of these channel models correspond to a low,
medium, and high delay spread environment, respectively and a value of 5, 70, or 300Hz will
be used as the maximum Doppler shift. Table 6.1 illustrates the delay profile of each of the
channel models expressed with excess tap delay values (in nanoseconds) and relative power
(in decibels).
In aMIMO transmission scenario, the spatial correlations between the transmit antennas and

the receiver antennas are important parameters that directly affect the overall performance.

174 Understanding LTE with MATLAB®

Table 6.1 LTE channel models (EPA, EVA, ETU): delay profiles

Channel model Excess tap delay (ns) Relative power (dB)

Extended Pedestrian
A (EPA)

[0 30 70 90 110 190 410] [0 −1 −2 −3 −8 −17.2 −20.8]

Extended Vehicular
A (EVA)

[0 30 150 310 370 710
1090 1730 2510]

[0 −1.5 −1.4 −3.6 −0.6 −9.1
−7 −12 −16.9]

Extended Typical
Urban (ETU)

[0 50 120 200 230 500
1600 2300 5000]

[−1 −1 −1 0 0 0 −3 −5 −7]

MIMO works best under maximum-scattering and multipath fading environments. Therefore,
it is desirable to minimize the correlation between various antenna ports in the transmitter
or the receiver side. This will minimize the chance of rank deficiency in the MIMO channel
matrices and boost the performance.
For example, in a 2× 2 MIMO antenna configuration, the transmitter-side (eNodeB,

enhanced Node Base station) spatial correlation matrix (Mtx) is expressed as a 2× 2 matrix
with diagonal elements equal to one and off-diagonal elements specified by a parameter (𝛼) as

Mtx =
[
1 𝛼

𝛼∗ 1

]
. Similarly, the receiver-side (UE, User Equipment) spatial correlation matrix

(Mrx) is expressed as a 2× 2 matrix specified by another parameter (𝛽) asMrx =
[
1 𝛽

𝛽∗ 1

]
. Note

that if both parameters 𝛼 and 𝛽 are real-valued we do not need to perform the conjugation.
In a 4× 4 antenna configuration, the spatial-correlation matrices of the transmitter and the

receiver side are specified in identical ways as a function of either parameter 𝛼 or parameter
𝛽. The transmitter-side (eNodeB) spatial correlation matrix (Mtx) is expressed with a 4× 4
matrix as

Mtx =

⎡⎢⎢⎢⎢⎢⎣
1 𝛼

1
9 𝛼

4
9 𝛼

𝛼
1
9 1 𝛼

1
9 𝛼

4
9

𝛼
4
9 𝛼

1
9 1 𝛼

1
9

𝛼 𝛼
4
9 𝛼

1
9 1

⎤⎥⎥⎥⎥⎥⎦
.

Three different correlation levels are defined in the LTE specification: low (actually no corre-
lation), medium, and high. These correlation levels are reflected in the values of the parameters
(𝛼 and 𝛽) specifying the correlation matrices, as illustrated in Table 6.2.

Table 6.2 LTE channel models: correlation levels and
coefficients of the spatial-correlation matrices

LTE MIMO channel 𝛼 𝛽

correlation levels

Low correlation 0 0

Medium correlation 0.3 0.9

High correlation 0.9 0.9

MIMO 175

6.5.3 MATLAB Implementation

The System object comm.LTEMIMOChannel is specific to LTE channel modeling and imple-
ments the three types of channel model (EPA, EVA, and ETU) discussed in the previous
section. It takes different sets of parameters, such as antenna configurations and the correlation
level between transmit antennas, to compute all the necessary channel-modeling operations.
The System object implements the MIMO fading profiles prescribed in LTE Recommendation
36.104 [3].
Since this System object is implemented as a MATLAB-authored object, we can use the

command edit comm.LTEMIMOChannel to examine the MATLAB code implementing its
various functionalities. For example, the delay profiles of various LTE channel models are
implemented with a few lines of MATLAB code in the setDelayDopplerProfiles function of
the System object:

Algorithm

MATLAB code segment

function setDelayDopplerProfiles(obj)

EPAPathDelays = [0 30 70 90 110 190 410]*1e-9;

EPAPathGains = [0 -1 -2 -3 -8 -17.2 -20.8];

EVAPathDelays = [0 30 150 310 370 710 1090 1730 2510]*1e-9;

EVAPathGains = [0 -1.5 -1.4 -3.6 -0.6 -9.1 -7 -12 -16.9];

ETUPathDelays = [0 50 120 200 230 500 1600 2300 5000]*1e-9;

ETUPathGains = [-1 -1 -1 0 0 0 -3 -5 -7];

switch obj.Profile

case 'EPA 5Hz'

obj.PathDelays = EPAPathDelays;

obj.AveragePathGains = EPAPathGains;

obj.MaximumDopplerShift = 5;

case 'EVA 5Hz'

obj.PathDelays = EVAPathDelays;

obj.AveragePathGains = EVAPathGains;

obj.MaximumDopplerShift = 5;

case 'EVA 70Hz'

obj.PathDelays = EVAPathDelays;

obj.AveragePathGains = EVAPathGains;

obj.MaximumDopplerShift = 70;

case 'ETU 70Hz'

obj.PathDelays = ETUPathDelays;

obj.AveragePathGains = ETUPathGains;

obj.MaximumDopplerShift = 70;

case 'ETU 300Hz'

obj.PathDelays = ETUPathDelays;

obj.AveragePathGains = ETUPathGains;

obj.MaximumDopplerShift = 300;

end

176 Understanding LTE with MATLAB®

6.5.4 Initializing MIMO Channels

As we initialize the simulation, many properties that are either constant or reused in multiple
functions are stored in various simulating parameter structures. In Chapter 4, we introduced
a parameter structure called prmLTEDLSCH, which contains the properties needed to per-
form turbo coding and payload generation. In Chapter 5, we introduced a parameter structure
called prmLTEPDSCH, which contains the properties needed to perform downlink shared-
channel operations, including resource-grid mapping, OFDM signal generation, and MIMO
operations. In this chapter, we introduce a parameter structure called prmMdl, which contains
multiple properties related to specification of theMIMO fading channel and the criteria needed
to stop the simulation.
The following MATLAB function initializes the prmMdl parameter structure. Depending

on the values of nine parameters specified at the beginning of the simulation, the function
sets a number of the structure’s fields. For example, depending on the string specified as the
chanMdl input argument, different values are set for the path delays, path gains, Doppler shift,
and channel type. This determines whether a flat or frequency-selective fading is implemented
and how the amount of mobility reflected by the Doppler-shift parameter affects the fading
operations.

Algorithm

MATLAB function

function prmMdl = prmsMdl(chanSRate, chanMdl, numTx, numRx, ...

corrLvl, chEstOn, snrdB, maxNumErrs, maxNumBits)

prmMdl.chanMdl = chanMdl;

prmMdl.AntConfig=char([48+numTx,'x',48+numRx]);

switch chanMdl

case 'flat-low-mobility',

prmMdl.PathDelays = 0*(1/chanSRate);

prmMdl.PathGains = 0;

prmMdl.Doppler=0;

prmMdl.ChannelType =1;

case 'flat-high-mobility',

prmMdl.PathDelays = 0*(1/chanSRate);

prmMdl.PathGains = 0;

prmMdl.Doppler=70;

prmMdl.ChannelType =1;

case 'frequency-selective-low-mobility',

prmMdl.PathDelays = [0 10 20 30 100]*(1/chanSRate);

prmMdl.PathGains = [0 -3 -6 -8 -17.2];

prmMdl.Doppler=0;

prmMdl.ChannelType =1;

case 'frequency-selective-high-mobility',

prmMdl.PathDelays = [0 10 20 30 100]*(1/chanSRate);

prmMdl.PathGains = [0 -3 -6 -8 -17.2];

prmMdl.Doppler=70;

prmMdl.ChannelType =1;

MIMO 177

case 'EPA 0Hz'

prmMdl.PathDelays = [0 30 70 90 110 190 410]*1e-9;

prmMdl.PathGains = [0 -1 -2 -3 -8 -17.2 -20.8];

prmMdl.Doppler=0;

prmMdl.ChannelType =1;

otherwise

prmMdl.PathDelays = 0*(1/chanSRate);

prmMdl.PathGains = 0;

prmMdl.Doppler=0;

prmMdl.ChannelType =2;

end

prmMdl.corrLevel = corrLvl;

prmMdl.chEstOn = chEstOn;

prmMdl.snrdB=snrdB;

prmMdl.maxNumBits=maxNumBits;

prmMdl.maxNumErrs=maxNumErrs;

6.5.5 Adding AWGN

In Chapter 8, we introduced the AWGNChannel function, which adds white Gaussian noise
to the signal. The following MATLAB code segment shows how channel modeling is per-
formed by combining a fading channel with an AWGN (Additive White Gaussian Noise)
channel. First, by calling the MIMOFadingChan function, we generate the faded version of
the transmitted signal (rxFade) and the corresponding channel matrix (chPathG). Note that
in the MIMOFadingChan function we specified path gains as being normalized. Despite this
specification, since the MIMO fading channel computes the faded signal as a linear combina-
tion of multiple transmit antennas the output signal (rxFade) may not have a unity variance.
To compute the noise variance needed to execute the AWGNChannel function, we must first
compute the signal variance (sigPow) and derive the noise variance as the difference between
the signal power and the SNR value in decibels.

Algorithm

MATLAB code segment

%% Channel

% MIMO Fading channel

[rxFade, chPathG] = MIMOFadingChan(txSig, prmLTEPDSCH, prmMdl);

% Add AWG noise

sigPow = 10*log10(var(rxFade));

nVar = 10.^(0.1.*(sigPow-snrdB));

rxSig = AWGNChannel(rxFade, nVar);

Finally, through a decibel-to-linear transformation we compute the noise variance (nVar) as a
vector of linear values. Since the second dimension of the faded output signal (rxFade) is equal

178 Understanding LTE with MATLAB®

to the number of receive antennas (numRx), the noise variance vector will have a dimension
equal to the number of receive antennas. As we will see shortly, these noise-variance estimates
are important parameters in equalization and demodulation procedures.

6.6 Common MIMO Features

Some of the functionalities introduced in the previous chapter for multicarrier transmission
are common between it and the current chapter and need to be modified to accommodate mul-
tiple antennas. These functional components include resource-element mapping and demap-
ping, channel-estimation methods, channel-response extraction, and equalization. On the other
hand, some of the functionalities are unique to the MIMO implementation, including precod-
ing, layer mapping, and theMIMO receiver. In this section we detail the modifications required
for common functionalities and introduce the original MIMO operations.

6.6.1 MIMO Resource Grid Structure

The Cell-Specific Reference (CSR) signals play a critical role in both frequency-domain
equalization (see Chapter 5) and MIMO receiver operations (to be described shortly). There
is a fundamental difference, however, in the MIMO case, resulting from the multi-antenna
requirements. When a CSR signal is transmitted on any antenna at any given subcarrier,
all other antennas must transmit nothing (a zero-valued signal) at the same subcarrier. This
requirement introduces a new set of components to be included within the resource grid,
called spectral nulls.
Figure 6.4 shows the locations of CSR and spectral nulls within a typical resource block in

cases where one, two, or four transmit antennas are used. The single-antenna case is illustrated
at the top, showing that CSR signals are available in four OFDM symbols per subframe and
that in every symbol there are two CSR samples available within each resource block. In this
case there is no need for a spectral null, since only one antenna transmits any information.
This configuration, for resource-element mapping and demapping, was implemented in the
last chapter by the functions REmapper_1Tx.m and REdemapper_1Tx.m, respectively.
In the 2× 2 MIMO configuration shown in the middle of Figure 6.4, we can see the addition

of spectral nulls (zero-valued resource elements, marked by the letter x) in both antennas.
Note also that the location of the spectral nulls in the resource block of one transmit antenna
coincides exactly with the location of a CSR signal in the same resource block of the other one.
In this 2× 2 MIMO case, the density of the CSR signals is the same across multiple antennas.
This means that in both antennas there are four OFDM symbols containing CSR signals and
in each symbol there are two CSR signals per resource block.
In the 4× 4 configuration, illustrated at the bottom of the figure, we can see two differences:

1. The CSR density in the first and second transmit antennas is different to that in the third
and fourth.

2. The spectral nulls across all four transmit antennas have a higher overall density than in the
two-antenna case.

The first and second transmit antennas have the same CSR signal density as found in the 2× 2
MIMO configuration. This means there are four OFDM symbols containing CSR signals and

MIMO 179

Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3

CSR signals

Spectral nulls

Number of

antennas = 1

Number of

antennas = 2

Number of

antennas = 4

Figure 6.4 Cell-Specific Reference (CSR) signals and spectral nulls for one, two, and four antennas

that in each symbol and there are two CSR signals per resource block. In the third and fourth
transmit antennas, there are only two OFDM symbols containing CSR signals, located on the
first and eighth symbols, and there are two CSR signals per resource block. The location of
the spectral nulls in any one transmit antenna coincides exactly with the location of all CSR
signals in the other transmit antennas. As a consequence, the sum of CSR signals and spectral
nulls is constant across different transmit antennas.
Details regarding the locations of CSR signals and spectral nulls form the basis for specifying

resource-element mapping and demapping in the multi-antenna case. Next we will discuss the
functions that implement this functionality: REmapper_mTx.m and REdemapper_mTx.m.

6.6.2 Resource-Element Mapping

In this section we detail the resource-element mapping for the MIMO transmission modes. As
in single-antenna transmission, resource-element mapping is performed essentially by creat-
ing indices to the resource grid matrix and placing various information types within the grid.
The types of signal that form the LTE downlink resource grid include the user data (PDSCH,
Physical Downlink Shared Channel), CSR signals, Primary Synchronization Signal and Sec-
ondary Synchronization Signal (PSS, SSS), Physical Broadcast Channel (PBCH), and Physical
Downlink Control Channel (PDCCH). The composition of the resource grid in theMIMO case
is very similar to that for a single antenna, except that we need to include two more features.
First, we must introduce the spectral nulls needed to mitigate interference among CSR signals
during spectral estimation. Second, we must implement the special case of CSR placement in
the 4× 4 configuration, where the number of CSR symbols varies across multiple antennas.

180 Understanding LTE with MATLAB®

The following MATLAB function shows the resource-element mapping. This function
implements the mapping for the SISO (Single Input Single Output), SIMO (Single Input
Multiple Output), and MIMO cases, using one, two, and four transmit antennas, respectively.
The function takes as input the user data (in), CSR signal (csr), subframe index (nS), and
PDSCH parameters, captured in a structure called prmLTEPDSCH. Depending on the avail-
ability of BCH (Broadcast Channel), SSS, PSS, and DCI (Downlink Control Information),
the function may take on additional inputs. The output variable (y) is the resource grid matrix.
The resource grid is a 3D matrix whose first dimension is the number of subcarriers, second
dimension is equal to the number of OFDM symbols per subframe, and third dimension is
the number of transmit antennas. The function is composed of three sections. In the first,
depending on the number of transmit antennas (numTx), we initialize the indices for the user
data (idx_data), the CSR signals (idx_csr), and the DCI (idx_ pdcch). To compute indices for
the user data we use the function ExpungeFrom.m to exclude the locations of all CSR indices.
This way we exclude both the CSR and nulls in each transmit antenna. In the second section,
we exclude from the user data and DCI indices the locations of the PSS, SSS, and PBCH,
according to the value of the subframe index (nS). Finally, in the third section, we initialize
the output buffer. By initializing the entire resource grid to zero we essentially place spectral
nulls within it at locations where no other information is written. For each transmit antenna
we fill up the resource grid using the indices generated in the first two sections.

Algorithm

MATLAB function

function y = REmapper_mTx(in, csr, nS, prmLTE, varargin)

%#codegen

switch nargin

case 4, pdcch=[];pss=[];sss=[];bch=[];

case 5, pdcch=varargin{1};pss=[];sss=[];bch=[];

case 6, pdcch=varargin{1};pss=varargin{2};sss=[];bch=[];

case 7, pdcch=varargin{1};pss=varargin{2};sss=varargin{3};bch=[];

case 8, pdcch=varargin{1};pss=varargin{2};sss=varargin{3};bch=varargin{4};

otherwise

error('REMapper has 4 to 8 arguments!');

end

% NcellID = 0; % One of possible 504 values

% Get input params

numTx = prmLTE.numTx; % Number of transmit antennas

Nrb = prmLTE.Nrb;

Nrb_sc = prmLTE.Nrb_sc; % 12 for normal mode

Ndl_symb = prmLTE.Ndl_symb; % 7 for normal mode

numContSymb = prmLTE.contReg; % either {1, 2, 3}

%% Specify resource grid location indices for CSR, PDCCH, PDSCH, PBCH, PSS, SSS

coder.varsize('idx_data');

lenOFDM = Nrb*Nrb_sc;

ContREs=numContSymb*lenOFDM;

idx_dci=1:ContREs;

MIMO 181

lenGrid= lenOFDM * Ndl_symb*2;

idx_data = ContREs+1:lenGrid;

%% 1st: Indices for CSR pilot symbols

idx_csr0 = 1:6:lenOFDM; % More general starting point = 1+mod(NcellID, 6);

idx_csr4 = 4:6:lenOFDM; % More general starting point = 1+mod(3+NcellID, 6);

% Depends on number of transmit antennas

switch numTx

case 1

idx_csr = [idx_csr0, 4*lenOFDM+idx_csr4, 7*lenOFDM+idx_csr0, 11*lenOFDM

+idx_csr4];

idx_data = ExpungeFrom(idx_data,idx_csr);

idx_ pdcch = ExpungeFrom(idx_dci,idx_csr0);

idx_ex = 7.5* lenOFDM - 36 + (1:6:72);

a=numel(idx_csr); IDX=[1, a];

case 2

idx_csr1 = [idx_csr0, 4*lenOFDM+idx_csr4, 7*lenOFDM+idx_csr0, 11*lenOFDM

+idx_csr4];

idx_csr2 = [idx_csr4, 4*lenOFDM+idx_csr0, 7*lenOFDM+idx_csr4, 11*lenOFDM

+idx_csr0];

idx_csr = [idx_csr1, idx_csr2];

% Exclude pilots and NULLs

idx_data = ExpungeFrom(idx_data,idx_csr1);

idx_data = ExpungeFrom(idx_data,idx_csr2);

idx_ pdcch = ExpungeFrom(idx_dci,idx_csr0);

idx_ pdcch = ExpungeFrom(idx_ pdcch,idx_csr4);

idx_ex = 7.5* lenOFDM - 36 + (1:3:72);

% Point to pilots only

a=numel(idx_csr1); IDX=[1, a; a+1, 2*a];

case 4

idx_csr1 = [idx_csr0, 4*lenOFDM+idx_csr4, 7*lenOFDM+idx_csr0, 11*lenOFDM

+idx_csr4];

idx_csr2 = [idx_csr4, 4*lenOFDM+idx_csr0, 7*lenOFDM+idx_csr4, 11*lenOFDM

+idx_csr0];

idx_csr33 = [lenOFDM+idx_csr0, 8*lenOFDM+idx_csr4];

idx_csr44 = [lenOFDM+idx_csr4, 8*lenOFDM+idx_csr0];

idx_csr = [idx_csr1, idx_csr2, idx_csr33, idx_csr44];

% Exclude pilots and NULLs

idx_data = ExpungeFrom(idx_data,idx_csr1);

idx_data = ExpungeFrom(idx_data,idx_csr2);

idx_data = ExpungeFrom(idx_data,idx_csr33);

idx_data = ExpungeFrom(idx_data,idx_csr44);

% From pdcch

idx_ pdcch = ExpungeFrom(idx_dci,idx_csr0);

idx_ pdcch = ExpungeFrom(idx_ pdcch,idx_csr4);

idx_ pdcch = ExpungeFrom(idx_ pdcch,lenOFDM+idx_csr0);

idx_ pdcch = ExpungeFrom(idx_ pdcch,lenOFDM+idx_csr4);

idx_ex = [7.5* lenOFDM - 36 + (1:3:72), 8.5* lenOFDM - 36 + (1:3:72)];

% Point to pilots only

a=numel(idx_csr1); b=numel(idx_csr33);

182 Understanding LTE with MATLAB®

IDX =[1, a; a+1, 2*a; 2*a+1, 2*a+b; 2*a+b+1, 2*a+2*b];

otherwise

error('Number of transmit antennas must be {1, 2, or 4}');

end

%% 3rd: Indices for PDSCH and PDSCH data in OFDM symbols where pilots are present

%% Handle 3 types of subframes differently

switch nS

%% 4th: Indices for BCH, PSS, SSS are only found in specific subframes 0 and 5

% These symbols share the same 6 center sub-carrier locations (idx_ctr)

% and differ in OFDM symbol number.

case 0 % Subframe 0

% PBCH, PSS, SSS are available + CSR, PDCCH, PDSCH

idx_ctr = 0.5* lenOFDM - 36 + (1:72) ;

idx_SSS = 5* lenOFDM + idx_ctr;

idx_PSS = 6* lenOFDM + idx_ctr;

idx_bch0=[7*lenOFDM + idx_ctr, 8*lenOFDM + idx_ctr, 9*lenOFDM + idx_ctr,

10*lenOFDM + idx_ctr];

idx_bch = ExpungeFrom(idx_bch0,idx_ex);

idx_data = ExpungeFrom(idx_data,[idx_SSS, idx_PSS, idx_bch]);

case 10 % Subframe 5

% PSS, SSS are available + CSR, PDCCH, PDSCH

% Primary and Secondary synchronization signals in OFDM symbols 5 and 6

idx_ctr = 0.5* lenOFDM - 36 + (1:72) ;

idx_SSS = 5* lenOFDM + idx_ctr;

idx_PSS = 6* lenOFDM + idx_ctr;

idx_data = ExpungeFrom(idx_data,[idx_SSS, idx_PSS]);

otherwise % other subframes

% Nothing to do

end

% Initialize output buffer

y = complex(zeros(Nrb*Nrb_sc, Ndl_symb*2, numTx));

for m=1:numTx

grid = complex(zeros(Nrb*Nrb_sc, Ndl_symb*2));

grid(idx_data.')=in(:,m); % Insert user data

Range=idx_csr(IDX(m,1):IDX(m,2)).'; % How many pilots in this antenna

csr_ flat=packCsr(csr, m, numTx); % Pack correct number of CSR values

grid(Range)= csr_ flat(:); % Insert CSR pilot symbols

if ̃isempty(pdcch), grid(idx_ pdcch)=pdcch(:,m);end

% Insert Physical Downlink Control Channel (PDCCH)

if ̃isempty(pss), grid(idx_PSS)=pss(:,m);end

% Insert Primary Synchronization Signal (PSS)

if ̃isempty(sss), grid(idx_SSS)=sss(:,m);end

% Insert Secondary Synchronization Signal (SSS)

if ̃isempty(bch), grid(idx_bch)=bch(:,m);end % Insert Broadcast Channel data (BCH)

y(:,:,m)=grid;

end

end

%% Helper function

function csr_ flat=packCsr(csr, m, numTx)

MIMO 183

if ((numTx==4)&&(m>2)) % Handle special case of 4Tx

csr_ flat=csr(:,[1,3],m); % Extract pilots in this antenna

else

csr_ flat=csr(:,:,m);

end

end

6.6.3 Resource-Element Demapping

Resource-element demapping inverts the operations of resource-grid mapping. The follow-
ing MATLAB function illustrates how the reference signal and data are extracted from the
recovered resource grid at the receiver. The function has three input arguments: the received
resource grid (in), the index of the subframe (nS), and the PDSCH parameter set. The function
outputs extracted user data (data), the indices to the user data (idx_data), the CSR signals (csr),
and optionally the DCI (pdcch), primary and secondary synchronization signals (pss, sss), and
BCH signal (bch). As different subframes contain different content, the second input subframe
index parameter (nS) enables the function to separate the correct data. The same algorithm used
in the resource-mapping function is used here to generate indices in the demapping function. In
the multi-antenna case, the resource-grid input is a 3D matrix. The first two dimensions spec-
ify the size of the resource grid for each receive antenna and the third dimension is the number
of receive antennas. Like the resource-mapping function, resource demapping is performed in
three sections. In the first two, we compute the indices localizing various components of the
resource grid. These include indices for the user data (idx_data), the CSR signals (idx_csr),
the DCI (idx_ pdcch), primary and secondary synchronization signals (idx_PSS, idx_SSS), and
the BCH signal (idx_bch). In the third section, we extract these data components from the
resource grid for each receive antenna using the indices we generated in the first two sections.

Algorithm

MATLAB function

function [data, csr, idx_data, pdcch, pss, sss, bch] = REdemapper_mTx(in, nS, prmLTE)

%#codegen

% NcellID = 0; % One of possible 504 values

% Get input params

numTx = prmLTE.numTx; % number of receive antennas

numRx = prmLTE.numRx; % number of receive antennas

Nrb = prmLTE.Nrb; % either of {6,...,100 }

Nrb_sc = prmLTE.Nrb_sc; % 12 for normal mode

Ndl_symb = prmLTE.Ndl_symb; % 7 for normal mode

numContSymb = prmLTE.contReg; % either {1, 2, 3}

Npss = prmLTE.numPSSRE;

Nsss = prmLTE.numSSSRE;

Nbch = prmLTE.numBCHRE;

%% Specify resource grid location indices for CSR, PDCCH, PDSCH, PBCH, PSS, SSS

184 Understanding LTE with MATLAB®

coder.varsize('idx_data');

coder.varsize('idx_dataC');

lenOFDM = Nrb*Nrb_sc;

ContREs=numContSymb*lenOFDM;

idx_dci=1:ContREs;

lenGrid= lenOFDM * Ndl_symb*2;

idx_data = ContREs+1:lenGrid;

%% 1st: Indices for CSR pilot symbols

idx_csr0 = 1:6:lenOFDM; % More general starting point = 1+mod(NcellID, 6);

idx_csr4 = 4:6:lenOFDM; % More general starting point = 1+mod(3+NcellID, 6);

% Depends on number of transmit antennas

switch numTx

case 1

idx_csr = [idx_csr0, 4*lenOFDM+idx_csr4, 7*lenOFDM+idx_csr0, 11*lenOFDM

+idx_csr4];

idx_data = ExpungeFrom(idx_data,idx_csr);

idx_ pdcch = ExpungeFrom(idx_dci,idx_csr0);

idx_ex = 7.5* lenOFDM - 36 + (1:6:72);

case 2

idx_csr1 = [idx_csr0, 4*lenOFDM+idx_csr4, 7*lenOFDM+idx_csr0, 11*lenOFDM

+idx_csr4];

idx_csr2 = [idx_csr4, 4*lenOFDM+idx_csr0, 7*lenOFDM+idx_csr4, 11*lenOFDM

+idx_csr0];

idx_csr = [idx_csr1, idx_csr2];

% Exclude pilots and NULLs

idx_data = ExpungeFrom(idx_data,idx_csr1);

idx_data = ExpungeFrom(idx_data,idx_csr2);

idx_ pdcch = ExpungeFrom(idx_dci,idx_csr0);

idx_ pdcch = ExpungeFrom(idx_ pdcch,idx_csr4);

idx_ex = 7.5* lenOFDM - 36 + (1:3:72);

case 4

idx_csr1 = [idx_csr0, 4*lenOFDM+idx_csr4, 7*lenOFDM+idx_csr0, 11*lenOFDM

+idx_csr4];

idx_csr2 = [idx_csr4, 4*lenOFDM+idx_csr0, 7*lenOFDM+idx_csr4, 11*lenOFDM

+idx_csr0];

idx_csr33 = [lenOFDM+idx_csr0, 8*lenOFDM+idx_csr4];

idx_csr44 = [lenOFDM+idx_csr4, 8*lenOFDM+idx_csr0];

idx_csr = [idx_csr1, idx_csr2, idx_csr33, idx_csr44];

% Exclude pilots and NULLs

idx_data = ExpungeFrom(idx_data,idx_csr1);

idx_data = ExpungeFrom(idx_data,idx_csr2);

idx_data = ExpungeFrom(idx_data,idx_csr33);

idx_data = ExpungeFrom(idx_data,idx_csr44);

% From pdcch

idx_ pdcch = ExpungeFrom(idx_dci,idx_csr0);

idx_ pdcch = ExpungeFrom(idx_ pdcch,idx_csr4);

idx_ pdcch = ExpungeFrom(idx_ pdcch,lenOFDM+idx_csr0);

idx_ pdcch = ExpungeFrom(idx_ pdcch,lenOFDM+idx_csr4);

idx_ex = [7.5* lenOFDM - 36 + (1:3:72), 8.5* lenOFDM - 36 + (1:3:72)];

MIMO 185

otherwise

error('Number of transmit antennas must be {1, 2, or 4}');

end

%% 3rd: Indices for PDSCH and PDSCH data in OFDM symbols where pilots are present

%% Handle 3 types of subframes differently

switch nS

%% 4th: Indices for BCH, PSS, SSS are only found in specific subframes 0 and 5

% These symbols share the same 6 center sub-carrier locations (idx_ctr)

% and differ in OFDM symbol number.

case 0 % Subframe 0

% PBCH, PSS, SSS are available + CSR, PDCCH, PDSCH

idx_ctr = 0.5* lenOFDM - 36 + (1:72) ;

idx_SSS = 5* lenOFDM + idx_ctr;

idx_PSS = 6* lenOFDM + idx_ctr;

idx_bch0=[7*lenOFDM + idx_ctr, 8*lenOFDM + idx_ctr, 9*lenOFDM + idx_ctr,

10*lenOFDM + idx_ctr];

idx_bch = ExpungeFrom(idx_bch0,idx_ex);

idx_data = ExpungeFrom(idx_data,[idx_SSS, idx_PSS, idx_bch]);

case 10 % Subframe 5

% PSS, SSS are available + CSR, PDCCH, PDSCH

% Primary and Secondary synchronization signals in OFDM symbols 5 and 6

idx_ctr = 0.5* lenOFDM - 36 + (1:72) ;

idx_SSS = 5* lenOFDM + idx_ctr;

idx_PSS = 6* lenOFDM + idx_ctr;

idx_data = ExpungeFrom(idx_data,[idx_SSS, idx_PSS]);

otherwise % other subframes

% Nothing to do

end

%% Write user data PDCCH, PBCH, PSS, SSS, CSR

pss=complex(zeros(Npss,numRx));

sss=complex(zeros(Nsss,numRx));

bch=complex(zeros(Nbch,numRx));

pdcch = complex(zeros(numel(idx_ pdcch),numRx));

data=complex(zeros(numel(idx_data),numRx));

idx_dataC=idx_data.';

for n=1:numRx

grid=in(:,:,n);

data(:,n)=grid(idx_dataC); % Physical Downlink Shared Chan-

nel (PDSCH) = user data

pdcch(:,n) = grid(idx_ pdcch.'); % Physical Downlink Control Channel (PDCCH)

if nS==0

pss(:,n)=grid(idx_PSS.'); % Primary Synchronization Signal (PSS)

sss(:,n)=grid(idx_SSS.'); % Secondary Synchronization Signal (SSS)

bch(:,n)=grid(idx_bch.'); % Broadcast Channel data (BCH)

elseif nS==10

pss(:,n)=grid(idx_PSS.'); % Primary Synchronization Signal (PSS)

sss(:,n)=grid(idx_SSS.'); % Secondary Synchronization Signal (SSS)

end

end

186 Understanding LTE with MATLAB®

%% Cell-specific Reference Signal (CSR) = pilots

switch numTx

case 1 % Case of 1 Tx

csr=complex(zeros(2*Nrb,4,numRx)); % 4 symbols have CSR per Subframe

for n=1:numRx

grid=in(:,:,n);

csr(:,:,n)=reshape(grid(idx_csr'), 2*Nrb,4) ;

end

case 2 % Case of 2 Tx

idx_0=(1:3:lenOFDM); % Total number of Nulls + CSR are constant

idx_all=[idx_0, 4*lenOFDM+idx_0, 7*lenOFDM+idx_0, 11*lenOFDM+idx_0]';

csr=complex(zeros(4*Nrb,4,numRx)); % 4 symbols have CSR+NULLs per Subframe

for n=1:numRx

grid=in(:,:,n);

csr(:, :,n)=reshape(grid(idx_all), 4*Nrb,4) ;

end

case 4

idx_0=(1:3:lenOFDM); % Total number of Nulls + CSR are constant

idx_all=[idx_0, lenOFDM+idx_0, 4*lenOFDM+idx_0, ...

7*lenOFDM+idx_0, 8*lenOFDM+idx_0, 11*lenOFDM+idx_0]';

csr=complex(zeros(4*Nrb,6,numRx)); % 4 symbols have CSR+NULLs per Subframe

for n=1:numRx

grid=in(:,:,n);

csr(:, :,n)=reshape(grid(idx_all), 4*Nrb,6) ;

end

end

end

6.6.4 CSR-Based Channel Estimation

The system of linear equations characterizing a MIMO channel can be expressed as follows:

−→
Y (n) = H(n) ∗ −→

X (n) + −→n (6.1)

where at time index n and at any given subcarrier,
−→
Y (n) is the received signal,

−→
X (n) is the

transmitted signal, H(n) is the channel matrix, and −→n represents the AWGN vector. When the
receiver has obtained the received signal

−→
Y (n), we must compute an estimate for the channel

matrixH(n) and the noise −→n in order to properly estimate the transmitted signal
−→
X (n). Assum-

ing that an estimate of the channel AWGN is available, we focus in this section on ways of
estimating the channel matrix.
Let us denote the number of transmit antennas by numTx and the number of receive antennas

by numRx. The channel matrix has a dimension of (numRx, numTx). For each subcarrier and
for each OFDM symbol, numRx× numTx values must be estimated for the channel matrix. As
discussed in the last chapter, we use the CSR (pilot) signals for channel-matrix estimation. Let
us see how multi-antenna transmission affects the channel estimation process. Considering,
for example, a 2× 2 configuration for the MIMO channel, the MIMO system of equation at a

MIMO 187

given time index can be expressed as:[
y1 (n)
y2(n)

]
=
[
h1,1 (n) h1,2(n)
h2,1(n) h2,2(n)

]
∗
[
x1 (n)
x2(n)

]
+
[
n1
n2

]
(6.2)

Focusing on a single receive antenna, for example y1(n), the value of the received signal is
a linear combination of values in two transmit antennas scaled by two channel gains:

y1(n) = h1,1(n) ∗ x1(n) + h1,2(n) ∗ x2(n) + n1 (6.3)

Since multicarrier transmission allows us to perform channel estimation in the frequency
domain, by taking a discrete Fourier transform of this expression we can express the relation-
ship between the channel gains and received and transmitted signals as follows:

y1(𝜔) = h1,1(𝜔) ∗ x1(𝜔) + h1,2(𝜔) ∗ x2(𝜔) + nVar (6.4)

where y1(𝜔), for example, is the Fourier transform of the corresponding time-domain signal

y1(n)
FFT

←−−−→ y1(𝜔) and nVar is the noise variance of the AWGN channel at a given subcarrier.
Note that variables y1(𝜔), x1(𝜔), and x2(𝜔) are received and transmitted values at a given
subcarrier and a given OFDM symbol in a transmitted and received resource grid, respectively.
If we choose known pilot (CSR) signals for variables x1(𝜔) and x2(𝜔), then by knowing the

received variable y1(𝜔) and ignoring the noise variance we can easily estimate channel-matrix
variables h1,1(𝜔) and h1,2(𝜔). This is where the need for spectral nulls becomes apparent. At
a given subcarrier and with a given OFDM symbol, when the value of x1(𝜔) is equal to a
reference signal at the same subcarrier the value of x2(𝜔) is equal to zero, because this variable
represents a spectral null. As a result, the previous equation can be modified to derive an
expression for the channel matrix:

y1(𝜔) = h1,1(𝜔) ∗ x1(𝜔)]𝜔=subcarrier + h1,2(𝜔) ∗ x2(𝜔)]𝜔=subcarrier
y1(𝜔) = h1,1(𝜔) ∗ x1(𝜔) + h1,2(𝜔) ∗ 0.0

y1(𝜔) = h1,1(𝜔) ∗ x1(𝜔) (6.5)

This discussion shows that by exploiting the CSR signals and spectral nulls embedded within
the resource grid, we can estimate the channel-matrix path gain value hm,n(𝜔) as:

hm,n(𝜔) =
yn(𝜔)
xm(𝜔)

(6.6)

where m is the index of the transmit antenna, with a range equal to m= 1, … , numTx and n is
the index of the receive antenna, with a range equal tom= 1, … , numRx. In the next sectionwe
see how in MATLAB we can use the transmitted and received CSR signals to implement this
equation and estimate the channel matrix. Then, by expanding the channel matrix across the
resource grid through interpolation, we arrive at an estimate of the channel-frequency response
over the entire grid.

188 Understanding LTE with MATLAB®

6.6.5 Channel-Estimation Function

The following MATLAB function illustrates how channel estimation is performed using the
transmitted and received reference symbols, also referred to as pilots, at regular intervals within
the OFDM time–frequency grid. The function has four input arguments: the parameters of
the PDSCH captured in a structure (prmLTE), the received CSR signal (Rx), the transmit-
ted reference CSR signal (Ref), and a parameter representing the channel-estimation mode
(Mode). As its output, the function computes the channel-frequency response over the entire
grid (hD).

Algorithm

MATLAB function

function hD = ChanEstimate_mTx(prmLTE, Rx, Ref, Mode)

%#codegen

Nrb = prmLTE.Nrb; % Number of resource blocks

Nrb_sc = prmLTE.Nrb_sc; % 12 for normal mode

Ndl_symb = prmLTE.Ndl_symb; % 7 for normal mode

numTx = prmLTE.numTx;

numRx = prmLTE.numRx;

% Initialize output buffer

switch numTx

case 1 % Case of 1 Tx

hD = complex(zeros(Nrb*Nrb_sc, Ndl_symb*2,numRx)); % Initialize Output

% size(Rx) = [2*Nrb, 4,numRx] size(Ref) = [2*Nrb, 4]

Edges=[0,3,0,3];

for n=1:numRx

Rec=Rx(:,:,n);

hp= Rec./Ref;

hD(:,:,n)=gridResponse(hp, Nrb, Nrb_sc, Ndl_symb, Edges,Mode);

end

case 2 % Case of 2 Tx

hD = complex(zeros(Nrb*Nrb_sc, Ndl_symb*2,numTx, numRx));

% size(Rx) = [4*Nrb, 4,numRx] size(Ref) = [2*Nrb, 4, numTx]

for n=1:numRx

Rec=Rx(:,:,n);

for m=1:numTx

[R,Edges]=getBoundaries2(m, Rec);

T=Ref(:,:,m);

hp= R./T;

hD(:,:,m,n)=gridResponse(hp, Nrb, Nrb_sc, Ndl_symb, Edges,Mode);

end

end

case 4

hD = complex(zeros(Nrb*Nrb_sc, Ndl_symb*2,numTx, numRx));

% size(Rx) = [4*Nrb, 4,numRx] size(Ref) = [2*Nrb, 4, numTx]

for n=1:numRx

Rec=Rx(:,:,n);

MIMO 189

for m=1:numTx

[R,idx3, Edges]=getBoundaries4(m, Rec);

T=Ref(:,idx3,m);

hp= R./T;

hD(:,:,m,n)=gridResponse(hp, Nrb, Nrb_sc, Ndl_symb, Edges,Mode);

end

end

end

end

%% Helper function

function [R,idx3, Edges]=getBoundaries4(m, Rec)

coder.varsize('Edges');coder.varsize('idx3');

numPN=size(Rec,1);

idx_0=(1:2:numPN);

idx_1=(2:2:numPN);

Edges=[0,3,0,3];

idx3=1:4;

switch m

case 1

index=[idx_0, 2*numPN+idx_1, 3*numPN+idx_0, 5*numPN+idx_1]';

Edges=[0,3,0,3]; idx3=1:4;

case 2

index=[idx_1, 2*numPN+idx_0, 3*numPN+idx_1, 5*numPN+idx_0]';

Edges=[3,0,3,0]; idx3=1:4;

case 3

index=[numPN+idx_0, 4*numPN+idx_1]';

Edges=[0,3]; idx3=[1 3];

case 4

index=[numPN+idx_1, 4*numPN+idx_0]';

Edges=[3,0]; idx3=[1 3];

end

R=reshape(Rec(index),numPN/2,numel(Edges));

end

%% Helper function

function [R, Edges]=getBoundaries2(m, Rec)

numPN=size(Rec,1);

idx_0=(1:2:numPN);

idx_1=(2:2:numPN);

Edges=[0,3,0,3];

switch m

case 1

index=[idx_0, numPN+idx_1, 2*numPN+idx_0, 3*numPN+idx_1]';

Edges=[0,3,0,3];

case 2

index=[idx_1, numPN+idx_0, 2*numPN+idx_1, 3*numPN+idx_0]';

Edges=[3,0,3,0];

end

R=reshape(Rec(index),numPN/2,4);

end

190 Understanding LTE with MATLAB®

The function performs channel estimation in two steps. First, it computes the channel matrix
over elements of the resource grid aligned with the reference signal. This is accomplished by
accessing all combinations of the transmitted reference signal (T) and received reference signal
(R) and using the elementwise division operator in MATLAB to compute the channel-matrix
elements. In the second step, we call the gridResponse function to expand the channel-matrix
estimates over the entire grid from those computed based only on CSR values. The type of
interpolation or averaging of values that makes expansion possible is specified by the input
argument (Mode).Next we will look at various channel-expansion operations.

6.6.6 Channel-Estimate Expansion

The following MATLAB function shows three algorithms that can expand the channel matri-
ces computed only over CSR signals to generate the function output (y), channel-frequency
responses over the entire resource grid. The function takes as input the following arguments:
a limited set of channel responses computed over pilots (hp) and parameters related to the
dimensions of the resource grid, including the number of resource blocks (Nrb), number of sub-
carriers in each resource block (Nrb_sc), and number of OFDM symbols per slot (Ndl_symb),
as well as two others: a vector that specifies the location of the CSR signal relative to the edge
of the resource block (Edges) and the algorithm chosen to expand the response to the entire
grid (Mode).

Algorithm

MATLAB function

function y=gridResponse(hp, Nrb, Nrb_sc, Ndl_symb, Edges,Mode)

%#codegen

switch Mode

case 1

y=gridResponse_interpolate(hp, Nrb, Nrb_sc, Ndl_symb, Edges);

case 2

y=gridResponse_averageSlot(hp, Nrb, Nrb_sc, Ndl_symb, Edges);

case 3

y=gridResponse_averageSubframe(hp, Ndl_symb, Edges);

otherwise

error('Choose the right Mode in function ChanEstimate.');

end

end

The following MATLAB function (gridResponse_interpolate.m) executes if the value cho-
sen for the Mode argument in the gridResponse.m function is 1. It performs an expansion
algorithm based on frequency-and-time-domain interpolation. This algorithm involves inter-
polation between subcarriers in the frequency domain in OFDM symbols that contain CSR
signals. Having computed the channel response for all subcarriers on these symbols, the func-
tion then interpolates in time to find the channel response across the whole resource grid.

MIMO 191

The difference between this algorithm and the one used in the single-antenna case is the sepa-
rate treatment of two-antenna and four-antenna cases. Note that the number of OFDM symbols
containing CSR signals in the third and fourth antennas in the four-antenna case is only two.
The interpolation between OFDM symbols must take this detail into account.

Algorithm

MATLAB function

function hD=gridResponse_interpolate(hp, Nrb, Nrb_sc, Ndl_symb, Edges)

% Average over the two same Freq subcarriers, and then interpolate between

% them - get all estimates and then repeat over all columns (symbols).

% The interpolation assmues NCellID = 0.

% Time average two pilots over the slots, then interpolate (F)

% between the 4 averaged values, repeat for all symbols in sframe

Separation=6;

hD = complex(zeros(Nrb*Nrb_sc, Ndl_symb*2));

N=numel(Edges);

% Compute channel response over all resource elements of OFDM symbols

switch N

case 2

Symbols=[2, 9];

% Interpolate between subcarriers

for n=1:N

E=Edges(n);Edge=[E, 5-E];

y = InterpolateCsr(hp(:,n), Separation, Edge);

hD(:,Symbols(n))=y;

end

% Interpolate between OFDM symbols

for m=[1,3:8,10:14]

alpha=(1/7)*(m-2);

beta=1-alpha;

hD(:,m) = beta*hD(:,2) + alpha*hD(:, 9);

end

case 4

Symbols=[1, 5, 8, 12];

% Interpolate between subcarriers

for n=1:N

E=Edges(n);Edge=[E, 5-E];

y = InterpolateCsr(hp(:,n), Separation, Edge);

hD(:,Symbols(n))=y;

end

% Interpolate between OFDM symbols

for m=[2, 3, 4, 6, 7]

alpha=0.25*(m-1);

beta=1-alpha;

hD(:,m) = beta*hD(:,1) + alpha*hD(:, 5);

hD(:,m+7) =beta*hD(:,8) + alpha*hD(:,12);

end

192 Understanding LTE with MATLAB®

otherwise

error('Wrong Edges parameter for function gridResponse.');

end

The followingMATLAB function (gridResponse_averageSlot.m) executes if the value of the
Mode argument in the gridResponse.m function is set to 2. It performs an expansion algorithm
based on frequency-domain interpolation and averaging in time among OFDM symbols in
each slot. The operations of this algorithm depend on whether one or two OFDM symbols
containing CSR signals are found in a given slot. If there are two OFDM symbols containing
CSR signals, the algorithm combines the CSR signals from the first two OFDM symbols. In
this case, instead of a separation of six subcarriers between CSR signals, we have a separation
of three subcarriers. If there is only one OFDM symbol that contains CSR signals per slot (e.g.,
in a four-antenna case, in the third and fourth antennas), no CSR combination is performed
and the separation between CSR values remains six subcarriers. As a next step, the function
interpolates the values along the frequency axis based on the separation value determined
previously. Finally, it applies the same channel response to all the OFDM symbols of a given
slot and repeats the operations for the next slot in order to compute the channel response of
the whole resource grid.

Algorithm

MATLAB function

function hD=gridResponse_averageSlot(hp, Nrb, Nrb_sc, Ndl_symb, Edges)

% Average over the two same Freq subcarriers, and then interpolate between

% them - get all estimates and then repeat over all columns (symbols).

% The interpolation assmues NCellID = 0.

% Time average two pilots over the slots, then interpolate (F)

% between the 4 averaged values, repeat for all symbols in sframe

Separation=3;

hD = complex(zeros(Nrb*Nrb_sc, Ndl_symb*2));

N=numel(Edges);

% Compute channel response over all resource elements of OFDM symbols

switch N

case 2

% Interpolate between subcarriers

Index=1:Ndl_symb;

for n=1:N

E=Edges(n);Edge=[E, 5-E];

y = InterpolateCsr(hp(:,n), 2* Separation, Edge);

% Repeat between OFDM symbols in each slot

yR=y(:,ones(1,Ndl_symb));

hD(:,Index)=yR;

Index=Index+Ndl_symb;

end

case 4

MIMO 193

Edge=[0 2];

h1_a_mat = [hp(:,1),hp(:,2)].';

h1_a = h1_a_mat(:);

h2_a_mat = [hp(:,3),hp(:,4)].';

h2_a = h2_a_mat(:);

hp_a=[h1_a,h2_a];

Index=1:Ndl_symb;

for n=1:size(hp_a,2)

y = InterpolateCsr(hp_a(:,n), Separation, Edge);

% Repeat between OFDM symbols in each slot

yR=y(:,ones(1,Ndl_symb));

hD(:,Index)=yR;

Index=Index+Ndl_symb;

end

otherwise

error('Wrong Edges parameter for function gridResponse.');

end

Finally, the following MATLAB function (gridResponse_averageSubframe.m) executes if
the value of the Mode argument in the gridResponse.m function is set to 3. It performs an
expansion algorithm based on frequency-domain interpolation and averaging in time among
OFDM symbols in the entire subframe. The operations of this algorithm depend on whether or
not there are two or four OFDM symbols containing CSR signals found in a given subframe.
If there are four, the algorithm averages the values first in the first and third OFDM symbols
and then in the second and fourth symbols, and then combines these average vectors. In this
case, instead of a separation of six subcarriers between CSR signals we now have a separation
of three subcarriers. If there is only one OFDM symbol per slot that contains CSR signals,
the algorithm combines the two OFDM symbols, resulting in a separation of three subcarriers
between combined CSR signals. As the next step, the function interpolates the values along
the frequency axis based on a separation value of 3 in all cases. Finally, it applies the same
channel response to all the OFDM symbols of the subframe as the channel response of the
whole resource grid.

Algorithm

MATLAB function

function hD=gridResponse_averageSubframe(hp, Ndl_symb, Edges)

% Average over the two same Freq subcarriers, and then interpolate between

% them - get all estimates and then repeat over all columns (symbols).

% The interpolation assmues NCellID = 0.

% Time average two pilots over the slots, then interpolate (F)

% between the 4 averaged values, repeat for all symbols in sframe

Separation=3;

N=numel(Edges);

Edge=[0 2];

194 Understanding LTE with MATLAB®

% Compute channel response over all resource elements of OFDM symbols

switch N

case 2

h1_a_mat = hp.';

h1_a = h1_a_mat(:);

% Interpolate between subcarriers

y = InterpolateCsr(h1_a, Separation, Edge);

% Repeat between OFDM symbols

hD=y(:,ones(1,Ndl_symb*2));

case 4

h1_a1 = mean([hp(:, 1), hp(:, 3)],2);

h1_a2 = mean([hp(:, 2), hp(:, 4)],2);

h1_a_mat = [h1_a1 h1_a2].';

h1_a = h1_a_mat(:);

% Interpolate between subcarriers

y = InterpolateCsr(h1_a, Separation, Edge);

% Repeat between OFDM symbols

hD=y(:,ones(1,Ndl_symb*2));

otherwise

error('Wrong Edges parameter for function gridResponse.');

end

The three algorithms mentioned here provide different dynamic behaviors within each sub-
frame. Note that in OFDM transmission with a normal cyclic prefix, each slot contains seven
OFDM symbols and each subframe contains fourteen. The first algorithm results in a chan-
nel estimate where the response within a subframe is dynamic and changes from one OFDM
symbol to the next. The second algorithm results in a constant channel response for the first
seven OFDM symbols (first slot) and in a different constant response for the next seven OFDM
symbols (second slot). The third algorithm is the least dynamic implementation, with a single
response applying to all OFDM symbols of a subframe.

6.6.7 Ideal Channel Estimation

So far we have discussed algorithms that rely on the pilots (CSR signals) to provide a channel-
response estimate. These algorithms are realistic implementations and can be incorporated as
part of a real system. In this section, we present what we call an “ideal channel estimator.” This
type of ideal algorithm relies on exact knowledge of the channel matrix or the path gain values
that the MIMO channel model provides. Since the second output of theMIMOFadingChan.m
function is the multidimensional channel matrix representing the path gains, the ideal chan-
nel estimator can use these path gains to compute the best estimate of the channel-frequency
response for the entire resource grid. Note that because of the way it is formulated, the ideal
channel estimator cannot be implemented as part of a real system. It can only be used dur-
ing simulation as a yardstick or as the best “upper-bound” solution to the problem of channel
estimation.
The function IdChEst.m implements an ideal channel estimator. It takes as input the param-

eters of the PDSCH captured in a structure (prmLTEPDSCH), the channel model parameter

MIMO 195

structure (prmMdl), and the channel matrix (chPathG), which is the second output of the
MIMOFadingChan.m function. As its output, the function computes the channel-frequency
response over the entire grid (H).

Algorithm

MATLAB function

function H = IdChEst(prmLTEPDSCH, prmMdl, chPathG)

% Ideal channel estimation for LTE subframes

%

% Given the system parameters and the MIMO channel path Gains, provide

% the ideal channel estimates for the RE corresponding to the data.

% Limitation - will work for path delays that are multiple of channel sample

% time and largest pathDelay < size of FFT

% Implementation based on FFT of channel impulse response

persistent hFFT;

if isempty(hFFT)

hFFT = dsp.FFT;

end

% get parameters

numDataTones = prmLTEPDSCH.Nrb*12; % Nrb_sc = 12

N = prmLTEPDSCH.N;

cpLen0 = prmLTEPDSCH.cpLen0;

cpLenR = prmLTEPDSCH.cpLenR;

Ndl_symb = prmLTE.Ndl_symb; % 7 for normal mode

slotLen = (N*Ndl_symb + cpLen0 + cpLenR*6);

% Get path delays

pathDelays = prmMdl.PathDelays;

% Delays, in terms of number of channel samples, +1 for indexing

sampIdx = round(pathDelays/(1/prmLTEPDSCH.chanSRate)) + 1;

[̃, numPaths, numTx, numRx] = size(chPathG);

% Initialize output

H = complex(zeros(numDataTones, 2*Ndl_symb, numTx, numRx));

for i= 1:numTx

for j = 1:numRx

link_PathG = chPathG(:, :, i, j);

% Split this per OFDM symbol

g = complex(zeros(2*Ndl_symb, numPaths));

for n = 1:2 % over two slots

% First OFDM symbol

Index=(n-1)*slotLen + (1:(N+cpLen0));

g((n-1)*Ndl_symb+1, :) = mean(link_PathG(Index, :), 1);

% Next 6 OFDM symbols

for k = 1:6

Index=(n-1)*slotLen+cpLen0+k*N+(k-1)*cpLenR + (1:(N+cpLenR));

g((n-1)*Ndl_symb+k+1, :) = mean(link_PathG(Index, :), 1);

end

end

196 Understanding LTE with MATLAB®

hImp = complex(zeros(2*Ndl_symb, N));

% assign pathGains at impulse response sample locations

hImp(:, sampIdx) = g;

% FFT of impulse response

h = step(hFFT, hImp.');

% Reorder, remove DC, Unpack channel gains

h = [h(N/2+1:N, :); h(1:N/2, :)];

H(:, :, i, j) = [h(N/2-numDataTones/2+1:N/2, :); h(N/2+2:N/2+1+numDataTones/2, :)];

end

end

This function essentially computes the channel frequency by applying a Fast Fourier Trans-
form (FFT) to the channel impulse response. It is based on averaging over the entire subframe,
so the same channel response is applied to all 14 OFDM symbols of a subframe. The oper-
ations of this function can be summarized as follows: (i) for any given transmit antenna and
receive antenna, the channel path gains are extracted for all samples in time; (ii) the cyclic pre-
fix samples are excluded; (iii) an average value is taken over the non-cyclic-prefix samples; (iv)
a single impulse response vector (hImp) is initialized; (v) the non-zero samples of the impulse
response are found by rounding the normalized path-delay values to the nearest integer; (vi)
the impulse-response vector is updated by placing the average path gains in non-zero samples;
(vii) an FFT is applied to the impulse response; (viii) the channel-response values are reordered
and unpacked in oirder to compute the channel response over the entire resource grid.

6.6.8 Channel-Response Extraction

The received resource grid of each receive antenna contains multiple types of data, including
user data, CSR and spectral-null signals, DCI, synchronization signals, and BCH signals. In
order to focus on equalizing and recovering the user data, we must extract from the estimated
channel response those elements that align with user data. The following MATLAB function
(ExtChResponse.m) employs the PDSCH parameter structure (prmLTEPDSCH) and the user-
data indices (idx_data) to extract from the full grid (chEst) the channel response values that
align with the user data (hD). Note that when this function is called, the user-data indices
(idx_data) have already been already computed as the third output of the resource-demapper
function (REdemapper_mTx).

Algorithm

MATLAB function

function hD=ExtChResponse(chEst, idx_data, prmLTE)

%#codegen

numTx = prmLTE.numTx;

numRx = prmLTE.numRx;

if (numTx==1)

hD=complex(zeros(numel(idx_data),numRx));

MIMO 197

for n=1:numRx

tmp=chEst(:,:,n);

hD(:,n)=tmp(idx_data);

end

else

hD=complex(zeros(numel(idx_data),numTx,numRx));

for n=1:numRx

for m=1:numTx

tmp=chEst(:,:,m,n);

hD(:,m,n)=tmp(idx_data);

end

end

end

6.7 Specific MIMO Features

In the following sections we will introduce functionalities that are unique to the MIMO imple-
mentation. These include precoding, layer mapping, and MIMO receiver. These operations
will be markedly different depending on whether a transmit-diversity or a spatial-multiplexing
technique is used. By adding these specific features to the common MIMO features – that is,
resource grid computations, channel estimation, and OFDM specific features related to OFDM
signal generation – we can completely specify the PDSCH operation. In this chapter we will
feature PDSCH operations for modes 2, 3, and 4 of MIMO transmission in the LTE standard.

6.7.1 Transmit Diversity

Transmit diversity uses multiple antennas at the transmitter to exploit diversity gains and
improve the link quality. There are two transmit-diversity schemes specified by LTE: one
is a 2× 2 SFBC technique and the other is a 4× 4 technique. Both techniques feature full-
rate codes and offer increased performance via their diversity as compared to single-antenna
transmissions.

6.7.1.1 MIMO Operations in Transmit Diversity

The LTE standard specifies MIMO operations as a combination of layer mapping and pre-
coding. In transmit-diversity mode, layer mapping and precoding are combined as a single
encoding operation. The transmit-diversity encoder subdivides the modulated symbols into
pairs and through diversity coding places transformed versions of modulated pairs on differ-
ent transmit antennas. As the samples on each transmit antenna are derived from the original
modulated stream, layer mapping is also implicit and precoding can be considered the result of
various conjugations and negations. The number of layers is defined as the number of transmit
antennas with independent and nonrelated data. Since samples on different antennas essen-
tially reflect the same modulated data, the number of layers in transmit diversity is equal
to one.

198 Understanding LTE with MATLAB®

Two Antenna Ports
When using two transmit antennas, transmit diversity in LTE is based on SFBC. SFBC is
closely related to the more familiar STBC. Transmit diversity using STBC has been deployed
in various 3GPP and WiMAX standards. We will now provide a short overview of the STBC
and SFBC techniques and show how SFBC can be derived from STBC through a simple trans-
formation.
STBC can be regarded as a multi-antenna modulation and mapping technique that provides

full diversity and results in simple encoders and decoders. One of the simplest forms of STBC
is an Alamouti code defined for a two-antenna transmission. In STBC with Alamouti code,
as illustrated in Figure 6.5, pairs of modulated symbols (s1, s2) are mapped on the first and
second antenna ports in the initial sample time. In the following sample time, the symbols are
swapped and conjugated (−s2∗, s1∗) and mapped to the first and second antenna ports. Note
that the two consecutive vectors in time are orthogonal.
In SFBC, as illustrated in Figure 6.6, pairs of consecutive modulated symbols (s1, s2) map

directly on to consecutive samples in time on the first antenna port. On the second port, the
swapped and transformed symbols (−s2∗, s1∗) are mapped consecutively in time such that the
consecutive vectors on different antennas are orthogonal.
We can produce the SFBC output symbols through a simple transformation followed by

STBC using the Alamouti code. As illustrated in Figure 6.7, we first transform every second
modulated symbol such that it is both negated and conjugated and then apply STBC with an
Alamouti code. The result is the SFBC output for the pair of modulated inputs. This approach
leverages the availability of efficient implementations for STBC and the Alamouti code and is
considered advantageous as an example of software reuse.

s1, s2,...
s1

...

–s2
∗

s2

...

s1
∗

Space-Time

Block Coding

(Alamouti)

Antenna

#1

Antenna

#2

time

Figure 6.5 Space–time block coding: Alamouti code

s1, s2,...
s1

...

s2

–s2
∗

...

s1
∗Space-Frequency

Block Coding

Antenna

#1

Antenna

#2

time

Figure 6.6 Space–frequency block coding

MIMO 199

s1, s2,... s1,– s2
∗, ...

s1

...

s2

–s2
∗

...

s1
∗

Antenna

#1

Antenna

#2

time

Transformation

Space-Time

Block Coding

(Alamouti)

Figure 6.7 SFBC as a combination of a transformation and STBC

s1, s2 s3, s4, ...

– s2
∗

– s3
∗

 s4
∗

 s1
∗

s1

s2

s3

s4

...

Frequency-Switched

Transmit Diversity

time

Antenna

#1

Antenna

#2

Antenna

#3

Antenna

#4

Figure 6.8 SFBC combined with Frequency-Switched Transmit Diversity (FSTD)

Four Antenna Ports
When using four transmit antennas, LTE combines SFBC with a Frequency-Switched Trans-
mit Diversity (FSTD) technique. In this case, we perform transmit-diversity encoding on four
consecutive modulated symbols at a time. First we apply SFBC to the first pair of modulated
symbols (s1, s2) and place the results in first two samples in time and on the first and third
transmit antennas. Then we apply SFBC on the third and fourth modulated symbols (s3, s4)
and place the results in the third and fourth samples in time and on the second and fourth
transmit antennas. Figure 6.8 illustrates the four-antenna transmit-diversity operations.

6.7.1.2 Transmit-Diversity Encoder Function

The following MATLAB function implements the transmit-diversity encoder for both
two- and four-antenna configurations. The function takes as inputs the signal composed of
modulated symbols (in) and the number of transmit antennas (numTx). The function output
(out) is a 2D matrix. The first dimension is equal to the number of modulated symbols; that is,
the size of the first input signal (in). The second dimension is equal to the number of transmit
antennas (numTx). Operations performed for the two- and four-antenna cases include the
following. First we transform the input signal by replacing every even-numbered element
with its negative conjugate value. If we have two transmit antennas, we then perform STBC

200 Understanding LTE with MATLAB®

with Alamouti code. For the case of four transmit antennas, we perform the FSTD, which
selects pairs of samples from the input, applies STBC with Alamouti code to both pairs, and
places the results in the outputbuffer, as described in the last section. Finally, we scale the
result to compute the output signal.

Algorithm

MATLAB function

function out = TDEncode(in, numTx)

% Both SFBC and SFBC with FSTD

persistent hTDEnc;

if isempty(hTDEnc)

% Use same object for either scheme

hTDEnc = comm.OSTBCEncoder('NumTransmitAntennas', 2);

end

switch numTx

case 1

out=in;

case 2 % SFBC

in((2:2:end).') = -conj(in((2:2:end).'));

% STBC Alamouti

y= step(hTDEnc, in);

% Scale

out = y/sqrt(2);

case 4

inLen=size(in,1);

y = complex(zeros(inLen, 4));

in((2:2:end).') = -conj(in((2:2:end).'));

idx12 = ([1:4:inLen; 2:4:inLen]); idx12 = idx12(:);

idx34 = ([3:4:inLen; 4:4:inLen]); idx34 = idx34(:);

y(idx12, [1 3]) = step(hTDEnc, in(idx12));

y(idx34, [2 4]) = step(hTDEnc, in(idx34));

out = y/sqrt(2);

end

Note that in order to perform STBC with the Alamouti code we take advantage of the
comm.OSTBCEncoder System object from the Communications System Toolbox. As we will
show in Chapter 9, using this System object results in a more efficient implementation of the
STBC operation.

6.7.1.3 Transmit-Diversity Receiver Operations

To find the best estimates of the transmitted modulated symbols, we must perform transmit-
diversity combining at the receiver. Transmit-diversity combining can be regarded as the
inverse of transmit-diversity encoding.

MIMO 201

Let us consider a 2× 2 MIMO channel. A MIMO system of linear equations computes

the received signals

[
y1 (n)
y2(n)

]
at two receive antennas in each time index (n) as a function

of the transmitted signals

[
x1 (n)
x2(n)

]
and the MIMO channel matrix

[
h1,1 (n) h1,2(n)
h2,1(n) h2,2(n)

]
in the

same time: [
y1 (n)
y2(n)

]
=
[
h1,1 (n) h1,2(n)
h2,1(n) h2,2(n)

]
∗
[
x1 (n)
x2(n)

]
(6.7)

In the next time index (n+ 1), the equation is expressed as:[
y1 (n + 1)
y2(n + 1)

]
=
[
h1,1 (n + 1) h1,2(n + 1)
h2,1(n + 1) h2,2(n + 1)

]
∗
[
x1 (n + 1)
x2(n + 1)

]
(6.8)

In both cases of two and four antennas, transmit-diversity encoding operations process pairs
of consecutive modulated symbols. Let us consider a pair of consecutive received samples at

the first receive antenna

[
y1 (n)

y1(n + 1)

]
and develop transmit-diversity equations with the ass-

umption that STBC with Alamouti code has been used in the MIMO transmitter. The results
can then be repeated for any pair of received signals at any receive-antenna port. The equation
for the pair of consecutive received samples in the first receive antenna is expressed as:[

y1 (n)
y1(n + 1)

]
=
[

h1,1 (n) ∗ x1(n) + h1,2(n) ∗ x2(n)
h1,1(n + 1) ∗ x1(n + 1) + h1,2(n + 1) ∗ x2(n + 1)

]
(6.9)

Recall that the transmit-diversity encoder applies STBCwith Alamouti code to pairs of mod-
ulated inputs symbols (s1, s2) and maps them into a 2× 2 transmitted signal as:[

x1 (n) x2(n)
x1(n + 1) x2(n + 1)

]
=
[
s1 s2
−s∗2 s∗1

]
(6.10)

As a result, the equation for the pair of received signal in a 2× 2 transmit-diversity case can
be expressed as: [

y1 (n)
y1(n + 1)

]
=
[

h1,1 (n) ∗ s1 + h1,2(n) ∗ s2
−h1,1(n + 1) ∗ s∗2 + h1,2(n + 1) ∗ s∗1

]
(6.11)

Now, if we assume that the channel gains in two consecutive samples in time are similar to
each other (i.e., h1,1(n) ≈ h1,1(n + 1) = h1,1 and h1,2(n) ≈ h1,2(n + 1) = h1,2) and fix the value
of time index n (i.e., y1(n) = y1 and y1(n + 1) = y2), we can further simply the equations as:[

y1
y2

]
=
[
h1,1 ∗ s1 + h1,2 ∗ s2
−h1,1 ∗ s∗2 + h1,2 ∗ s∗1

]
(6.12)

202 Understanding LTE with MATLAB®

Conjugating both sides of the second equation can lead to further simplification:[
y1
y∗2

]
=
[
h1,1 ∗ s1 + h1,2 ∗ s2
−h∗1,1 ∗ s2 + h∗1,2 ∗ s1

]
=
[
h1,1 h1,2
h∗1,2 −h∗1,1

]
∗
[
s1
s2

]
(6.13)

By essentially inverting the matrix H =
[
h1,1 h1,2
h∗1,2 −h∗1,1

]
, we can solve for the best estimates of

the modulated transmitted symbols

[̂
s1
ŝ2

]
as a function of received symbols

[
y1
y∗2

]
.

[̂
s1
ŝ2

]
=
[
h1,1 h1,2
h∗1,2 −h∗1,1

]−𝟏 [
y1
y∗2

]
[̂
s1
ŝ2

]
=

[
h∗1,1 h1,2
h∗1,2 −h1,1

] [
y1
y∗2

]
(h1,1 ∗ h∗1,1 + h1,2 ∗ h∗1,2)

(6.14)

This equation expresses an estimate of the transmitted symbols

[̂
s1
ŝ2

]
at a given receiver

antenna. To compute the best overall estimate of the transmitted symbols, a MRC algorithm
is used. The MRC algorithm combines all the estimates computed at various receivers, as
described next.

At each receiver (denoted by index n), let us call the estimate−→s n =
[̂
s1
ŝ2

]
n

, the channel matrix,

Hn =

[
h∗1,1 h1,2
h∗1,2 −h1,1

]
n

the received symbols −→y n =
[
y1
y∗2

]
n

and the norm (the energy estimate) of

the channel matrix En = (h1,1 ∗ h∗1,1 + h1,2 ∗ h∗1,2)n.
The Equation 6.14 can then be re-written as

−→s n =
1
En
Hn

−→y n (6.15)

The MCR algorithm computes the overall estimate (̂s) as a weighted sum of the individ-
ual estimates (−→s n) across N receive antennas, where 1< n<N. Each individual estimate, at
receiver n, is weighted by a gain factor 𝛼n, that is

ŝ =
N∑
n=1

𝛼n
−→s n (6.16)

The gain factor is defined as the ratio of a given channel matrix norm (En) over the sum of
all channel matrix norms, that is

𝛼n =
En∑N
k=1 Ek

(6.17)

MIMO 203

By combining Equations 6.15–6.17 and simplifying the formulation, we arrive at the
maximum-ratio combing expression for the best overall estimate of the transmitted symbols:

ŝ =
N∑
n=1

𝛼n
−→s n =

N∑
n=1

En∑N
k=1 Ek

.
1
En
Hn

−→y n =
∑N

n=1Hn
−→y n∑N

k=1 Ek
(6.18)

The following MATLAB function implements transmit-diversity combining for the 2× 2
Alamouti code. The function has two inputs: (i) the received symbols (u), with dimensions
of (LEN, 2), and (ii) the estimated channel matrix, with dimensions of (LEN, 2, 2). The func-
tion subdivides the received symbols in consecutive pairs in time and at each receive antenna
performs an ML combining estimate as outlined in this section.

Algorithm

MATLAB function

function s = Alamouti_Combiner1(u,H)

%#codegen

% STBC_DEC STBC Combiner

% Outputs the recovered symbol vector

LEN=size(u,1);

Nr=size(u,2);

BlkSize=2;

NoBlks=LEN/BlkSize;

% Initialize outputs

h=complex(zeros(1,2));

s=complex(zeros(LEN,1));

% Alamouti code for 2 Tx

indexU=(1:BlkSize);

for m=1:NoBlks

t_hat=complex(zeros(BlkSize,1));

h_norm=0.0;

for n=1:Nr

h(:)=H(2*m-1,:,n);

h_norm=h_norm+real(h*h');

r=u(indexU,n);

r(2)=conj(r(2));

shat=[conj(h(1)), h(2); conj(h(2)), -h(1)]*r;

t_hat=t_hat+shat;

end

s(indexU)=t_hat/h_norm; % Maximum-likelihood combining

indexU=indexU+BlkSize;

end

end

204 Understanding LTE with MATLAB®

This function is an explicit and descriptive formulation ofML combining for the 2× 2 Alam-
outi code. However, the runtime performance of this function is not optimal. As we will
see in Chapter 9, a vectorized MATLAB function performs much better in runtime. As a
result, we will use the comm.OSTBCCombiner System object of the Communications Sys-
tem Toolbox, which is optimized for performance. The following MATLAB function uses the
comm.OSTBCCombiner System object to implement transmit-diversity combining. It requires
just six lines of MATLAB code to achieve the same functionality as the previous function.

Algorithm

MATLAB function

function s = Alamouti_CombinerS(u,H)

%#codegen

% STBC_DEC STBC Combiner

persistent hTDDec

if isempty(hTDDec)

hTDDec= comm.OSTBCCombiner(...

'NumTransmitAntennas',2,'NumReceiveAntennas',2);

end

s = step(hTDDec, u, H);

6.7.1.4 Transmit-Diversity Combiner Function

The following MATLAB function implements the transmit-diversity combiner for both two-
and four-antenna configurations. The function takes as inputs: (i) the 2D received signal (in),
(ii) the 3D channel-estimate signal (chEst), (iii) the number of transmit antennas (numTx), and
(iv) the number of receive antennas (numRx). The function output (y) is an ML estimate of the
transmitted modulated symbols. The number of samples in the output vector (y) is equal to the
number of transmitted modulated symbols (inLen); that is, the first dimension of input signals
(in and chEst). The second dimension of input signals (in and chEst) is equal to the number of
transmit antennas (numTx). The third dimension of the channel-estimate signal (chEst) is the
number of receive antennas (numRx).
The operations performed for the two- and four-antenna cases are the inverse of those in

transmit-diversity encoding. We first scale the input signal. If we have two transmit antennas,
we then perform STBC combining. In the case of four transmit antennas, we perform FSTD
combining. First we rerrange the 3D channel-estimate matrix (chEst) to form a new matrix
(H) with dimensions equal to (inLen, 2, 4). Then we perform STBC combining on matrix H;
that is, we repeat Alamouti code combining for transmit antennas (1, 3) and (2, 4) separately.
Finally we replace every even-numbered element of the combiner output with its negative and
conjugate value to return to SFBC and compute the output signal.

MIMO 205

Algorithm

MATLAB function

function y = TDCombine(in, chEst, numTx, numRx)

% LTE transmit diversity combining

% SFBC and SFBC with FSTD.

inLen = size(in, 1);

Index=(2:2:inLen)';

switch numTx

case 1

y=in;

case 2 % For 2TX - SFBC

in = sqrt(2) * in; % Scale

y = Alamouti_CombinerS(in,chEst);

% ST to SF transformation.

% Apply blockwise correction for 2nd symbol combining

y(Index) = -conj(y(Index));

case 4 % For 4Tx - SFBC with FSTD

in = sqrt(2) * in; % Scale

H = complex(zeros(inLen, 2, numRx));

idx12 = ([1:4:inLen; 2:4:inLen]); idx12 = idx12(:);

idx34 = ([3:4:inLen; 4:4:inLen]); idx34 = idx34(:);

H(idx12, :, :) = chEst(idx12, [1 3], :);

H(idx34, :, :) = chEst(idx34, [2 4], :);

y = Alamouti_CombinerS(in, H);

% ST to SF transformation.

% Apply blockwise correction for 2nd symbol combining

y(Index) = -conj(y(Index));

end

6.7.2 Transceiver Setup Functions

Before we look at models of the various MIMO transmission modes, we will present in this
section the testbench, initialization, and visualization functions. These types of function are
common among all simulations and help verify the performance of each transceiver model.

6.7.2.1 Initialization Functions

The following initialization function (commlteMIMO_initialize) sets simulation parameters.
This function is used for all MIMO modes, including transmit diversity and spatial multi-
plexing. The first input argument (txMode) determines which MIMO mode is used: a value
of 2 signals a transmit-diversity mode, a value of 3 an open-loop spatial-multiplexing mode,
and a value of 4 a closed-loop spatial-multiplexing mode. In order to set prmLTEPDSCH,

206 Understanding LTE with MATLAB®

prmLTEDLSCH, and prmMdl parameter structures, this function calls three functions: prm-
sPDSCH, prmsDLSCH, and prmsMdl, respectively.

Algorithm

MATLAB function

function [prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,

chanMdl, corrLvl, ...

chEstOn, snrdB, maxNumErrs, maxNumBits)

% Create the parameter structures

% PDSCH parameters

CheckAntennaConfig(numTx, numRx);

prmLTEPDSCH = prmsPDSCH(txMode, chanBW, contReg, modType,numTx, numRx);

prmLTEPDSCH.Eqmode=Eqmode;

prmLTEPDSCH.modType=modType;

[SymbolMap, Constellation]=ModulatorDetail(modType);

prmLTEPDSCH.SymbolMap=SymbolMap;

prmLTEPDSCH.Constellation=Constellation;

% DLSCH parameters

prmLTEDLSCH = prmsDLSCH(cRate,maxIter, fullDecode, prmLTEPDSCH);

% Channel parameters

chanSRate = prmLTEPDSCH.chanSRate;

prmMdl = prmsMdl(chanSRate, chanMdl, numTx, numRx, ...

corrLvl, chEstOn, snrdB, maxNumErrs, maxNumBits);

The functions prmsDLSCH and prmsMdl are unchanged from those described in this and
the previous chapter. The function prmLTEPDSCH is however modified to handle all MIMO
cases. Depending on the transmission mode, number of antennas, channel bandwidth, and
modulation mode used, this function sets all necessary parameters for many functions in
PDSCH processing.

Algorithm

MATLAB function

function p = prmsPDSCH(txMode, chanBW, contReg, modType, numTx, numRx,

numCodeWords)

%% PDSCH parameters

switch chanBW

case 1 % 1.4 MHz

BW = 1.4e6; N = 128; cpLen0 = 10; cpLenR = 9;

Nrb = 6; chanSRate = 1.92e6;

case 2 % 3 MHz

BW = 3e6; N = 256; cpLen0 = 20; cpLenR = 18;

Nrb = 15; chanSRate = 3.84e6;

MIMO 207

case 3 % 5 MHz

BW = 5e6; N = 512; cpLen0 = 40; cpLenR = 36;

Nrb = 25; chanSRate = 7.68e6;

case 4 % 10 MHz

BW = 10e6; N = 1024; cpLen0 = 80; cpLenR = 72;

Nrb = 50; chanSRate = 15.36e6;

case 5 % 15 MHz

BW = 15e6; N = 1536; cpLen0 = 120; cpLenR = 108;

Nrb = 75; chanSRate = 23.04e6;

case 6 % 20 MHz

BW = 20e6; N = 2048; cpLen0 = 160; cpLenR = 144;

Nrb = 100; chanSRate = 30.72e6;

end

p.BW = BW; % Channel bandwidth

p.N = N; % NFFT

p.cpLen0 = cpLen0; % Cyclic prefix length for 1st symbol

p.cpLenR = cpLenR; % Cyclic prefix length for remaining

p.Nrb = Nrb; % Number of resource blocks

p.chanSRate = chanSRate; % Channel sampling rate

p.contReg = contReg;

switch txMode

case 1 % SISO transmission

p.numTx = numTx;

p.numRx = numRx;

numCSRRE_RB = 2*2*2; % CSR, RE per OFDMsym/slot/subframe per RB

p.numLayers = 1;

p.numCodeWords = 1;

case 2 % Transmit diversity

p.numTx = numTx;

p.numRx = numRx;

switch numTx

case 1

numCSRRE_RB = 2*2*2; % CSR, RE per OFDMsym/slot/subframe per RB

case 2 % 2xnumRx

% RE - resource element, RB - resource block

numCSRRE_RB = 4*2*2; % CSR, RE per OFDMsym/slot/subframe per RB

case 4 % 4xnumRx

numCSRRE_RB = 4*3*2; % CSR, RE per OFDMsym/slot/subframe per RB

end

p.numLayers = 1;

p.numCodeWords = 1; % for transmit diversity

case 3 % CDD Spatial multiplexing

p.numTx = numTx;

p.numRx = numRx;

switch numTx

case 1

numCSRRE_RB = 2*2*2; % CSR, RE per OFDMsym/slot/subframe per RB

case 2 % 2x2

% RE - resource element, RB - resource block

208 Understanding LTE with MATLAB®

numCSRRE_RB = 4*2*2; % CSR, RE per OFDMsym/slot/subframe per RB

case 4 % 4x4

numCSRRE_RB = 4*3*2; % CSR, RE per OFDMsym/slot/subframe per RB

end

p.numLayers = min([p.numTx, p.numRx]);

p.numCodeWords = 1; % for spatial multiplexing

case 4 % Spatial multiplexing

p.numTx = numTx;

p.numRx = numRx;

switch numTx

case 1

numCSRRE_RB = 2*2*2; % CSR, RE per OFDMsym/slot/subframe per RB

case 2 % 2x2

% RE - resource element, RB - resource block

numCSRRE_RB = 4*2*2; % CSR, RE per OFDMsym/slot/subframe per RB

case 4 % 4x4

numCSRRE_RB = 4*3*2; % CSR, RE per OFDMsym/slot/subframe per RB

end

p.numLayers = min([p.numTx, p.numRx]);

p.numCodeWords = numCodeWords; % for spatial multiplexing

end

% For Normal cyclic prefix, FDD mode

p.deltaF = 15e3; % subcarrier spacing

p.Nrb_sc = 12; % no. of subcarriers per resource block

p.Ndl_symb = 7; % no. of OFDM symbols in a slot

%% Modeling a subframe worth of data (=> 2 slots)

numResources = (p.Nrb*p.Nrb_sc)*(p.Ndl_symb*2);

numCSRRE = numCSRRE_RB * p.Nrb; % CSR, RE per

OFDMsym/slot/subframe per RB

% Actual PDSCH bits calculation - accounting for PDCCH, PBCH, PSS, SSS

switch p.numTx

% numRE in control region - minus the CSR

case 1

numContRE = (10 + 12*(p.contReg-1))*p.Nrb;

numBCHRE = 60+72+72+72; % removing the CSR present in 1st symbol

case 2

numContRE = (8 + 12*(p.contReg-1))*p.Nrb;

numBCHRE = 48+72+72+72; % removing the CSR present in 1st symbol

case 4

numContRE = (8 + (p.contReg>1)*(8+ 12*(p.contReg-2)))*Nrb;

numBCHRE = 48+48+72+72; % removing the CSR present in 1,2 symbol

end

numSSSRE=72;

numPSSRE=72;

numDataRE=zeros(3,1);

% Account for BCH, PSS, SSS and PDCCH for subframe 0

numDataRE(1)=numResources-numCSRRE-numContRE-numSSSRE

- numPSSRE-numBCHRE;

% Account for PSS, SSS and PDCCH for subframe 5

MIMO 209

numDataRE(2)=numResources-numCSRRE-numContRE-numSSSRE - numPSSRE;

% Account for PDCCH only in all other subframes

numDataRE(3)=numResources-numCSRRE-numContRE;

% Maximum data resources - with no extra overheads (only CSR + data)

p.numResources=numResources;

p.numCSRResources = numCSRRE;

p.numDataResources = p.numResources - p.numCSRResources;

p.numContRE = numContRE;

p.numBCHRE = numBCHRE;

p.numSSSRE=numSSSRE;

p.numPSSRE=numPSSRE;

p.numDataRE=numDataRE;

% Modulation types , bits per symbol, number of layers per codeword

Qm = 2 * modType;

p.Qm = Qm;

p.numLayPerCW = p.numLayers/p.numCodeWords;

% Maximum data bits - with no extra overheads (only CSR + data)

p.numDataBits = p.numDataResources*Qm*p.numLayPerCW;

numPDSCHBits =numDataRE*Qm*p.numLayPerCW;

p.numPDSCHBits = numPDSCHBits;

p.maxG = max(numPDSCHBits);

The CheckAntennaConfig function is called within commlteMIMO_initialize. It ensures that
a valid antenna configuration is selected for simulation. In this book we limit our antenna
configurations to four single-antenna cases (1× 1, 1× 2, 1× 3, and 1× 4), one two-antenna
configuration (2× 2), and one four-antenna configuration (4× 4).

Algorithm

MATLAB function

function CheckAntennaConfig(numTx, numRx)

MyConfig=[numTx,numRx];

Allowed=[1,1;1,2;1,3;1,4;2,2;4,4];

tmp=MyConfig(ones(size(Allowed,1),1),:);

err=sum(abs(tmp-Allowed),2);

if isempty(find(̃err,1))

Status=0;

else

Status=1;

end

if ̃Status

disp('Wrong antenna configuration! Allowable configurations are:');

disp(Allowed);

error('Please change number of Tx and/or Rx antennas!');

end

210 Understanding LTE with MATLAB®

The ModulatorDetail function is also called within commlteMIMO_initialize. Depending
on the modulation mode, the function provides the constellation and symbol mapping used in
the visualization function and in one of the MIMO receiver functions, known as the Sphere
Decoder (SD).

Algorithm

MATLAB function

function [SymMap, Constellation]=ModulatorDetail(Mode)

%% Initialization

persistent QPSK QAM16 QAM64

if isempty(QPSK)

QPSK = comm.PSKModulator(4, 'BitInput', true, ...

'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...

'CustomSymbolMapping', [0 2 3 1]);

QAM16 = comm.RectangularQAMModulator(16, 'BitInput',true,...

'NormalizationMethod','Average power',...

'SymbolMapping', 'Custom', ...

'CustomSymbolMapping', [11 10 14 15 9 8 12 13 1 0 4 5 3 2 6 7]);

QAM64 = comm.RectangularQAMModulator(64, 'BitInput',true,...

'NormalizationMethod','Average power',...

'SymbolMapping', 'Custom', ...

'CustomSymbolMapping', [47 46 42 43 59 58 62 63 45 44 40 41 ...

57 56 60 61 37 36 32 33 49 48 52 53 39 38 34 35 51 50 54 55 7 ...

6 2 3 19 18 22 23 5 4 0 1 17 16 20 21 13 12 8 9 25 24 28 29 15 ...

14 10 11 27 26 30 31]);

end

%% Processing

switch Mode

case 1

Constellation=constellation(QPSK);

SymMap = QPSK.CustomSymbolMapping;

case 2

Constellation=constellation(QAM16);

SymMap = QAM16.CustomSymbolMapping;

case 3

Constellation=constellation(QAM64);

SymMap = QAM64.CustomSymbolMapping;

otherwise

error('Invalid Modulation Mode. Use {1,2, or 3}');

end

6.7.2.2 Visualization Functions

In this chapter we have updated the zVisualize function, which enables us to directly observe
the effects of fading on transmitted symbols before and after MIMO receiver processing.

MIMO 211

Algorithm

MATLAB function

function zVisualize(prmLTE, txSig, rxSig, yRec, dataRx, csr, nS)

% Constellation Scopes & Spectral Analyzers

zVisConstell(prmLTE, yRec, dataRx, nS);

zVisSpectrum(prmLTE, txSig, rxSig, yRec, csr, nS);

The function performs two tasks. First, it shows the constellation diagram of the user data
at the receiver before and after equalization by calling the function zVisConstell, which shows
constellation diagrams for data transmitted over multiple transmit antennas. Depending on the
number of transmit antennas used, it creates and configures multiple Constellation Diagram
System objects from the Communications System Toolbox.

Algorithm

MATLAB function

function zVisConstell(prmLTE, yRec, dataRx, nS)

% Constellation Scopes

switch prmLTE.numTx

case 1

zVisConstell_1(prmLTE, yRec, dataRx, nS);

case 2

zVisConstell_2(prmLTE, yRec, dataRx, nS);

case 4

zVisConstell_4(prmLTE, yRec, dataRx, nS);

end

end

%% Case of numTx =1

function zVisConstell_1(prmLTE, yRec, dataRx, nS)

persistent h1 h2

if isempty(h1)

h1 = comm.ConstellationDiagram('SymbolsToDisplay',...

prmLTE.numDataResources, 'ReferenceConstellation', prmLTE.

Constellation,...

'YLimits', [-2 2], 'XLimits', [-2 2], 'Position', ...

figposition([5 60 20 25]), 'Name', 'Before Equalizer');

h2 = comm.ConstellationDiagram('SymbolsToDisplay',...

prmLTE.numDataResources, 'ReferenceConstellation', prmLTE.

Constellation,...

'YLimits', [-2 2], 'XLimits', [-2 2], 'Position', ...

figposition([6 61 20 25]), 'Name', 'After Equalizer');

end

% Update Constellation Scope

if (nS̃=0 && nS̃=10)

212 Understanding LTE with MATLAB®

step(h1, dataRx(:,1));

step(h2, yRec(:,1));

end

end

%% Case of numTx =2

function zVisConstell_2(prmLTE, yRec, dataRx, nS)

persistent h11 h21 h12 h22

if isempty(h11)

h11 = comm.ConstellationDiagram('SymbolsToDisplay',...

prmLTE.numDataResources, 'ReferenceConstellation', prmLTE.Constellation,...

'YLimits', [-2 2], 'XLimits', [-2 2], 'Position', ...

figposition([5 60 20 25]), 'Name', 'Before Equalizer');

h21 = comm.ConstellationDiagram('SymbolsToDisplay',...

prmLTE.numDataResources, 'ReferenceConstellation', prmLTE.Constellation,...

'YLimits', [-2 2], 'XLimits', [-2 2], 'Position', ...

figposition([6 61 20 25]), 'Name', 'After Equalizer');

h12 = clone(h11);

h22 = clone(h21);

end

yRecM = sqrt(2) *TDEncode(yRec, 2);

% Update Constellation Scope

if (nS̃=0 && nS̃=10)

step(h11, dataRx(:,1));

step(h21, yRecM(:,1));

step(h12, dataRx(:,2));

step(h22, yRecM(:,2));

end

end

%% Case of numTx =4

function zVisConstell_4(prmLTE, yRec, dataRx, nS)

persistent ha1 hb1 ha2 hb2 ha3 hb3 ha4 hb4

if isempty(ha1)

ha1 = comm.ConstellationDiagram('SymbolsToDisplay',...

prmLTE.numDataResources, 'ReferenceConstellation', prmLTE.Constellation,...

'YLimits', [-2 2], 'XLimits', [-2 2], 'Position', ...

figposition([5 60 20 25]), 'Name', 'Before Equalizer');

hb1 = comm.ConstellationDiagram('SymbolsToDisplay',...

prmLTE.numDataResources, 'ReferenceConstellation', prmLTE.Constellation,...

'YLimits', [-2 2], 'XLimits', [-2 2], 'Position', ...

figposition([6 61 20 25]), 'Name', 'After Equalizer');

ha2 = clone(ha1);

hb2 = clone(hb1);

ha3 = clone(ha1);

hb3 = clone(hb1);

ha4 = clone(ha1);

hb4 = clone(hb1);

end

yRecM = sqrt(2) *TDEncode(yRec, 4);

% Update Constellation Scope

MIMO 213

if (nS̃=0 && nS̃=10)

step(ha1, dataRx(:,1));

step(hb1, yRecM(:,1));

step(ha2, dataRx(:,2));

step(hb2, yRecM(:,2));

step(ha3, dataRx(:,3));

step(hb3, yRecM(:,3));

step(ha4, dataRx(:,4));

step(hb4, yRecM(:,4));

end

end

Second, the zVisualize function illustrates the spectra of the transmitted signal and of the
received signal both before and after equalization, by calling the function zVisSpectrum, which
shows the magnitude spectrum of data transmitted over multiple transmit antennas. Depending
on the number of transmit antennas used, it creates and configures multiple SpectrumAnalyzer
System objects from the DSP System Toolbox.

Algorithm

MATLAB function

function zVisSpectrum(prmLTE, txSig, rxSig, yRec, csr, nS)

% Spectral Analyzers

switch prmLTE.numTx

case 1

zVisSpectrum_1(prmLTE, txSig, rxSig, yRec, csr, nS);

case 2

zVisSpectrum_2(prmLTE, txSig, rxSig, yRec, csr, nS);

case 4

zVisSpectrum_4(prmLTE, txSig, rxSig, yRec, csr, nS);

end

end

%% Case of numTx = 1

function zVisSpectrum_1(prmLTE, txSig, rxSig, yRec, csr, nS)

persistent hSpecAnalyzer

if isempty(hSpecAnalyzer)

hSpecAnalyzer = dsp.SpectrumAnalyzer('SampleRate', prmLTE.chanSRate, ...

'SpectrumType', 'Power density', 'PowerUnits', 'dBW', ...

'RBWSource', 'Property', 'RBW', 15000,...

'FrequencySpan', 'Span and center frequency',...

'Span', prmLTE.BW, 'CenterFrequency', 0,...

'FFTLengthSource', 'Property', 'FFTLength', prmLTE.N,...

'Title', 'Transmitted & Received Signal Spectrum', 'YLimits', [-110 -60],...

'YLabel', 'PSD');

end

214 Understanding LTE with MATLAB®

alamoutiRx = TDEncode(yRec, prmLTE.numTx);

yRecGrid = REmapper_mTx(alamoutiRx, csr, nS, prmLTE);

yRecGridSig = lteOFDMTx(yRecGrid, prmLTE);

step(hSpecAnalyzer, ...

[SymbSpec(txSig(:,1), prmLTE), SymbSpec(rxSig(:,1), prmLTE),

SymbSpec(yRecGridSig(:,1), prmLTE)]);

end

%% Case of numTx = 2

function zVisSpectrum_2(prmLTE, txSig, rxSig, yRec, csr, nS)

persistent hSpec1 hSpec2

if isempty(hSpec1)

hSpec1 = dsp.SpectrumAnalyzer('SampleRate', prmLTE.chanSRate, ...

'SpectrumType', 'Power density', 'PowerUnits', 'dBW', ...

'RBWSource', 'Property', 'RBW', 15000,...

'FrequencySpan', 'Span and center frequency',...

'Span', prmLTE.BW, 'CenterFrequency', 0,...

'FFTLengthSource', 'Property', 'FFTLength', prmLTE.N,...

'Title', 'Transmitted & Received Signal Spectrum', 'YLimits', [-110 -60],...

'YLabel', 'PSD');

hSpec2 = clone(hSpec1);

end

alamoutiRx = TDEncode(yRec, prmLTE.numTx);

yRecGrid = REmapper_mTx(alamoutiRx, csr, nS, prmLTE);

yRecGridSig = lteOFDMTx(yRecGrid, prmLTE);

step(hSpec1, ...

[SymbSpec(txSig(:,1), prmLTE), SymbSpec(rxSig(:,1), prmLTE),

SymbSpec(yRecGridSig(:,1), prmLTE)]);

step(hSpec2, ...

[SymbSpec(txSig(:,2), prmLTE), SymbSpec(rxSig(:,2), prmLTE),

SymbSpec(yRecGridSig(:,2), prmLTE)]);

end

%% Case of numTx = 4

function zVisSpectrum_4(prmLTE, txSig, rxSig, yRec, csr, nS)

persistent hSpec1 hSpec2 hSpec3 hSpec4

if isempty(hSpec1)

hSpec1 = dsp.SpectrumAnalyzer('SampleRate', prmLTE.chanSRate, ...

'SpectrumType', 'Power density', 'PowerUnits', 'dBW', ...

'RBWSource', 'Property', 'RBW', 15000,...

'FrequencySpan', 'Span and center frequency',...

'Span', prmLTE.BW, 'CenterFrequency', 0,...

'FFTLengthSource', 'Property', 'FFTLength', prmLTE.N,...

'Title', 'Transmitted & Received Signal Spectrum', 'YLimits', [-110 -60],...

'YLabel', 'PSD');

hSpec2 = clone(hSpec1);

hSpec3 = clone(hSpec1);

hSpec4 = clone(hSpec1);

end

alamoutiRx = TDEncode(yRec, prmLTE.numTx);

yRecGrid = REmapper_mTx(alamoutiRx, csr, nS, prmLTE);

MIMO 215

yRecGridSig = lteOFDMTx(yRecGrid, prmLTE);

step(hSpec1, ...

[SymbSpec(txSig(:,1), prmLTE), SymbSpec(rxSig(:,1), prmLTE),

SymbSpec(yRecGridSig(:,1), prmLTE)]);

step(hSpec2, ...

[SymbSpec(txSig(:,2), prmLTE), SymbSpec(rxSig(:,2), prmLTE),

SymbSpec(yRecGridSig(:,2), prmLTE)]);

step(hSpec3, ...

[SymbSpec(txSig(:,3), prmLTE), SymbSpec(rxSig(:,3), prmLTE),

SymbSpec(yRecGridSig(:,3), prmLTE)]);

step(hSpec4, ...

[SymbSpec(txSig(:,4), prmLTE), SymbSpec(rxSig(:,4), prmLTE),

SymbSpec(yRecGridSig(:,4), prmLTE)]);

end

%% Helper function

function y = SymbSpec(in, prmLTE)

N = prmLTE.N;

cpLenR = prmLTE.cpLen0;

y = complex(zeros(N+cpLenR, 1));

% Use the first Tx/Rx antenna of the input for the display

y(:,1) = in(end-(N+cpLenR)+1:end, 1);

end

6.7.3 Downlink Transmission Mode 2

The following MATLAB function shows a transceiver model for transmit diversity mode 2 of
the LTE standard. It includes both the two- and the four-transmit-antenna configurations. In
essence, both the 2× 2 and the 4× 4 schemes specified by LTE are full-rate codes and both
offer increased performance benefits, due to their diversity when compared to single-antenna
transmissions. The key components highlighted in this example include:

• Generation of payload data for a single subframe (a transport block).
• DLSCH processing: Transport-block CRC (Cyclic Redundancy Check) attachment, code-

block segmentation and CRC attachment, turbo coding based on a 1/3-rate code, rate match-
ing, and codeblock concatenation to generate a codeword input to PDSCH.

• PDSCH transmitter processing: Bit-level scrambling, data modulation, layer mapping,
and precoding for two and four antennas with transmit diversity encoding, plus resource-
element mapping and OFDM signal generation.

• Channel modeling: A MIMO fading channel followed by an AWGN channel.
• PDSCH receiver processing: An OFDM signal receiver generating the resource grid,

resource element demapping to separate the CSR signal from the user data, channel esti-
mation, SFBC-based combining using channel estimates and soft-decision demodulation
and descrambling, and DLSCH decoding.

216 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function [dataIn, dataOut, modOut, rxSig, dataRx, yRec, csr_ref]...

= commlteMIMO_TD_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl)

%% TX

% Generate payload

dataIn = genPayload(nS, prmLTEDLSCH.TBLenVec);

% Transport block CRC generation

tbCrcOut1 =CRCgenerator(dataIn);

% Channel coding includes - CB segmentation, turbo coding, rate matching,

% bit selection, CB concatenation - per codeword

[data, Kplus1, C1] = lteTbChannelCoding(tbCrcOut1, nS, prmLTEDLSCH, prmLTEPDSCH);

%Scramble codeword

scramOut = lteScramble(data, nS, 0, prmLTEPDSCH.maxG);

% Modulate

modOut = Modulator(scramOut, prmLTEPDSCH.modType);

% TD with SFBC

numTx=prmLTEPDSCH.numTx;

alamouti = TDEncode(modOut(:,1),numTx);

% Generate Cell-Specific Reference (CSR) signals

csr = CSRgenerator(nS, numTx);

csr_ref=complex(zeros(2*prmLTEPDSCH.Nrb, 4, numTx));

for m=1:numTx

csr_ pre=csr(1:2*prmLTEPDSCH.Nrb,:,:,m);

csr_ref(:,:,m)=reshape(csr_ pre,2*prmLTEPDSCH.Nrb,4);

end

% Resource grid filling

txGrid = REmapper_mTx(alamouti, csr_ref, nS, prmLTEPDSCH);

% OFDM transmitter

txSig = OFDMTx(txGrid, prmLTEPDSCH);

%% Channel : MIMO Fading channel

[rxFade, chPathG] = MIMOFadingChan(txSig, prmLTEPDSCH, prmMdl);

% Add AWG noise

nVar = 10.^(0.1.*(-snrdB));

rxSig = AWGNChannel(rxFade, nVar);

%% RX

% OFDM Rx

rxGrid = OFDMRx(rxSig, prmLTEPDSCH);

% updated for numLayers -> numTx

[dataRx, csrRx, idx_data] = REdemapper_mTx(rxGrid, nS, prmLTEPDSCH);

% MIMO channel estimation

if prmMdl.chEstOn

chEst = ChanEstimate_mTx(prmLTEPDSCH, csrRx, csr_ref, prmMdl.chEstOn);

hD = ExtChResponse(chEst, idx_data, prmLTEPDSCH);

MIMO 217

else

idealChEst = IdChEst(prmLTEPDSCH, prmMdl, chPathG);

hD = ExtChResponse(idealChEst, idx_data, prmLTEPDSCH);

end

% Frequency-domain equalizer

if (numTx==1)

% Based on Maximum-Combining Ratio (MCR)

yRec = Equalizer_simo(dataRx, hD, nVar, prmLTEPDSCH.Eqmode);

else

% Based on Transmit Diversity with SFBC combiner

yRec = TDCombine(dataRx, hD, prmLTEPDSCH.numTx, prmLTEPDSCH.numRx);

end

% Demodulate

demodOut = DemodulatorSoft(yRec, prmLTEPDSCH.modType, nVar);

% Descramble received codeword

rxCW = lteDescramble(demodOut, nS, 0, prmLTEPDSCH.maxG);

% Channel decoding includes - CB segmentation, turbo decoding, rate dematching

[decTbData1, ̃,̃] = lteTbChannelDecoding(nS, rxCW, Kplus1, C1, prmLTEDLSCH,

prmLTEPDSCH);

% Transport block CRC detection

[dataOut, ̃] = CRCdetector(decTbData1);

end

6.7.3.1 Structure of the Transceiver Model

The following MATLAB script is the testbench that calls the MIMO transceiver function
commlteMIMO. First it calls the initialization function (commlteMIMO_initialize) to set
all relevant parameter structures (prmLTEDLSCH, prmLTEPDSCH, prmMdl). Then it uses
a while loop to perform subframe processing by calling the MIMO transceiver function
commlteMIMO_TD_step. Finally, it computes the BER and calls the visualization function to
illustrate the channel response and modulation constellation before and after equalization.

Algorithm

MATLAB function

% Script for MIMO LTE (mode 2)

%

% Single codeword transmission only,

%

clear all

clear functions

%% Set simulation parameters & initialize parameter structures

commlteMIMO_ params;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,

chanMdl, corrLvl, chEstOn, snrdB, maxNumErrs, maxNumBits);

218 Understanding LTE with MATLAB®

clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter

fullDecode chanMdl corrLvl chEstOn snrdB maxNumErrs maxNumBits

%%

disp('Simulating the LTE Mode 2: Multiple Tx & Rx antrennas with transmit diversity');

zReport_data_rate(prmLTEPDSCH, prmLTEDLSCH);

hPBer = comm.ErrorRate;

snrdB=prmMdl.snrdB;

maxNumErrs=prmMdl.maxNumErrs;

maxNumBits=prmMdl.maxNumBits;

%% Simulation loop

nS = 0; % Slot number, one of [0:2:18]

Measures = zeros(3,1); %initialize BER output

while ((Measures(2)< maxNumErrs) && (Measures(3) < maxNumBits))

[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr] = ...

commlteMIMO_TD_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);

% Calculate bit errors

Measures = step(hPBer, dataIn, dataOut);

% Visualize constellations and spectrum

if visualsOn, zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);end;

% Update subframe number

nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;

end

disp(Measures);

6.7.3.2 Verifying Transceiver Performance

By executing the MATLAB script of the MIMO transceiver model (commlteMIMO), we can
look at various signals to assess the performance of the system. The parameters used in sim-
ulation are summarized in the following MATLAB script (commlteMIMO_ params). This set
of parameters specifies a transceiver model using the transmit-diversity MIMO mode, with
the number of transmit and receive antennas equal to two, a channel bandwidth of 10MHz
(with 1 OFDM symbol per subframe carrying the DCI), a 16QAM (Quadrature Amplitude
Modulation) modulation type (with 1/3-rate turbo coding with early termination enabled), the
maximum number of iterations set to 6), and a frequency-selective MIMO channel with a
Doppler shift of 70Hz (estimating channel response based on the interpolation method and
using a transmit-diversity combiner as a MIMO receiver). In this simulation, 10 million bits of
user data are processed, the SNR of the AWGN channel is set to 16 dB, and the visualization
function is turned on.

Algorithm

MATLAB function

% PDSCH

txMode = 2; % Transmission mode one of {1, 2, 4}

numTx = 2; % Number of transmit antennas

MIMO 219

numRx = 2; % Number of receive antennas

chanBW = 4; % Index to chanel bandwidth used [1,....6]

contReg = 1; % No. of OFDM symbols dedictaed to control information [1,...,3]

modType = 2; % Modulation type [1, 2, 3] for ['QPSK,'16QAM','64QAM']

% DLSCH

cRate = 1/3; % Rate matching target coding rate

maxIter = 6; % Maximum number of turbo decoding terations

fullDecode = 0; % Whether "full" or "early stopping" turbo decoding is performed

% Channel model

chanMdl = 'frequency-selective-high-mobility';

corrLvl = 'Medium';

% Simulation parameters

Eqmode = 2; % Type of equalizer used [1,2] for ['ZF', 'MMSE']

chEstOn = 1; % One of [0,1,2,3] for 'Ideal estimator','Interpolation',

Slot average','Subframe average'

snrdB = 16; % Signal to Noise ratio

maxNumErrs = 5e5; % Maximum number of errors found before simulation stops

maxNumBits = 5e5; % Maximum number of bits processed before simulation stops

visualsOn = 1; % Whether to visualize channel response and constellations

Figure 6.9 shows the constellation diagrams before (first row) and after (second row) equal-
ization of user data obtained from each of the two receive antennas in a subframe. It shows
that the equalizer can compensate for the effect of a fading channel to result in a constellation
that more closely resembles that of the 16QAM modulator.
Figure 6.10 illustrates the spectra of user data obtained from each of the two receive antennas

in a subframe. It shows the transmitted signal and the received signal before and after equaliza-
tion. The received signal before equalization (showing the effects of frequency-selective fad-
ing) is effectively equalized by the transmit diversity (showing a more frequency-flat nature),
which closely resembles the transmitted signal spectrum.

6.7.3.3 BER Measurements

In order to verify the BER performance of the transceiver, we create a testbench called
commlteMIMO_test_timing_ber. This testbench first initializes the LTE system parameters
and then iterates through a range of SNR values and calls the commlteMIMO_ fcn function in
the loop in order to compute the corresponding BER values.

Algorithm

MATLAB script: commlteMIMO_test_timing_ber

% Script for MIMO LTE (mode 2)

%

% Single codeword transmission only,

%

220 Understanding LTE with MATLAB®

Figure 6.9 LTEmodel:MIMO transmit-diversity constellation diagram of user data before and after
equalization

Figure 6.10 LTE MIMO transmit-diversity model: spectra of the transmitted signal and of the
received signal before and after equalization

MIMO 221

clear all

clear functions

%% Set simulation parameters & initialize parameter structures

commlteMIMO_ params;

maxNumErrs=5e7;

maxNumBits=5e7;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,

chanMdl, corrLvl, chEstOn, snrdB, maxNumErrs, maxNumBits);

clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter

fullDecode chanMdl corrLvl chEstOn snrdB maxNumErrs maxNumBits

%%

disp('Simulating the LTE Mode 2: Multiple Tx & Rx antrennas with transmit diversity');

zReport_data_rate(prmLTEPDSCH, prmLTEDLSCH);

%%

MaxIter=8;

snr_vector=getSnrVector(prmLTEPDSCH.modType, MaxIter);

ber_vector=zeros(size(snr_vector));

tic;

for n=1:MaxIter

fprintf(1,'Iteration %2d out of %2d: Processing %10d bits. SNR = %3d\n', ...

n, MaxIter, prmMdl.maxNumBits, snr_vector(n));

[ber, ̃] = commlteMIMO_ fcn(snr_vector(n), prmLTEPDSCH, prmLTEDLSCH, prmMdl);

ber_vector(n)=ber;

end;

toc;

semilogy(snr_vector, ber_vector);

title('BER - commlteMIMO TD');xlabel('SNR (dB)');ylabel('ber');grid;

Figure 6.11 shows the BER of the transceiver as a function of the SNR after processing of
50 million bits of user data in each of the eight iterations.

6.7.4 Spatial Multiplexing

Spatial multiplexing is a multiple-antenna technique that allows MIMO wireless systems to
obtain high spectral efficiencies by dividing the bit stream into multiple substreams. Because
these substreams are independently modulated, spatial multiplexing can accommodate higher
data rates than comparable space–time or space–frequency block codes. However, this
absence of redundancy in the transmitted signal makes spatial multiplexing susceptible to
deficiencies in the rank of the matrix characterizing the MIMO equation. Channel-estimation
inaccuracies when computing the MIMO channel matrix can severely limit performance
gains. As a result, the LTE standard introduces various mechanisms, including adaptive
precoding and layer mapping based on rank estimation, to make the implementation more
robust in the presence of various channel impairments.

222 Understanding LTE with MATLAB®

2 4 6 8

SNR (dB)

10 12 14 160

100

BER performance of transmission

mode 2 as a function of SNR

10−1

10−2

B
E

R

10−3

10−4

10−5

16 QAM, 1/3 turbo coding, 10 MHz BW

Figure 6.11 BER results: LTE mode 2, transmit diversity, 2× 2 MIMO channel

In this section we will discuss details regarding the spatial-multiplexing approach to MIMO
transmission in the LTE standard. These include the way in which it implements precoding
and layer mapping, whcih eventually lead to generation of OFDM signals for simultaneous
transmission over multiple antennas. Finally, by examining the receiver operations, including
variousMIMO equalizationmethodologies, wewill study the performance of the system under
various conditions.

6.7.4.1 Motivation for Precoding

The spectral-efficiency benefits associated with MIMO processing hinge on the availability
of a rich scattering environment. A MIMO channel with a high degree of scattering enables
independent multipath links to be made from each transmit antenna to each receive antenna.
As a result, the matrix of channel gains connecting each pair of transmit and receive antennas
pairs will have a full rank and the resulting MIMO equation will be solvable.
In a typical MIMO transmission, however, the assumption regarding a high level of scatter-

ing cannot be guaranteed. As a result, in order to design a practical system, steps must be taken
to reduce the probability of channel matrices with reduced ranks occuring. Precoding is one
of the most effective approaches taken by the LTE standard to combating the rank-deficiency
problem. In this section we will elaborate on the nature of channel-matrix rank deficiencies,
introduce a precoding formulation, provide a beamforming interpretation for precoding, and
introduce different types of precoding used in the LTE standard. Then we will show the MAT-
LAB functions that efficiently implement these operations.

MIMO 223

6.7.4.2 Rank-Deficiency Problem

Spatial multiplexing solves the following system of linear equations, which expresses the
received signal (Y) as a modified version of the transmitted signal (X) transformed linearly
by the MIMO channel matrix (H) plus an added white noise (n):

Y = H X + n (6.19)

For example, for a 4× 4 MIMO configuration the received vector
−→
Y can be expressed as

follows:

−→
Y =

⎡⎢⎢⎢⎣
y1
y2
y3
y4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
h1,1 · · · h1,4
⋮ ⋱ ⋮
h4,1 · · · h4,4

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
n1
n2
n3
n4

⎤⎥⎥⎥⎦ (6.20)

When the paths connecting transmit antennas to receive antennas become similar, multiple
rows or columns of the channel matrix H can become linearly dependent; for example, in the
following matrix the first two rows are identical.

H =
⎡⎢⎢⎢⎣
h1,1 h1,2
h1,1 h1,2
h3,1 h3,2
h4,1 h4,2

h1,3 h1,4
h1,3 h1,4
h3,3 h3,4
h4,3 h4,4

⎤⎥⎥⎥⎦ (6.21)

In this scenario, the rank of the channel matrix (the number of linearly independent
equations) is three, whereas the dimension of the matrix is four. This system of linear
equations is singular and has no inverses. As a result, the MIMO system of equation
represented by this type of linearly dependent matrix cannot be uniquely solved.

6.7.4.3 Formulation of Precoding

Precoding techniques have been developed to solve the problem of rank deficiency. The opti-
mal precoder can be determined by exploiting the singular-value decomposition of the channel
matrix. Singular-value decomposition expresses the channel matrix as:

H = UDV (6.22)

where V is a square matrix whose size is equal to the rank of the channel matrix, D is a diag-
onal matrix with diagonal elements composed of singular values of the channel matrix, and
U is a square matrix whose size is equal to the number of receiver antennas. As developed
in References [4] and [5], one of the theoretically optimal precoders can be defined as a
column-permuted version of matrix V. This precoder operates only on transmitter antennas
with sufficient rank and guarantees that the resulting MIMO equation can be solved.
Such an optimal precoder cannot be practically implemented, since it requires complete

knowledge of the channel matrix at the transmitter. As the channel matrix can only be esti-
mated at the receiver, communicating this information to the transmitter would require an
excessive amount of bandwidth. The LTE chooses a more practical approach, based on choos-
ing among a finite set of predetermined precodingmatrices. Through a process similar to vector
quantization, we can choose the best precoder at both the transmitter and the receiver.

224 Understanding LTE with MATLAB®

At the transmitter, precoding performs a matrix multiplication on modulated symbols after
layer mapping. As a result, the MIMO equation with the precoder is expressed as:

Y = HV X + n (6.23)

where V is the precoding matrix. At the receiver, following the MIMO receiver operations,
we apply the received signal with the inverse of the same precoding matrix V as used in the
transmitter. LTE defines the precoding matrices as Hermitian matrices, which means that the
precoder matrix is composed of a set of orthonormal vectors. This implies that the inverse of
a precoder matrix is simply equal to its Hermitian transpose. It also results in efficient imple-
mentation of precoding, since transposing a matrix is much less computationally expensive
than performing a matrix inversion.

6.7.4.4 Precoder-Matrix Codebooks

The finite sets of precoder matrices used in the LTE standard are known as the precoder code-
book. Table 6.3 shows the precoder codebooks for two transmit antennas.
The precoding operation essentially spreads the input signal and reduces the probability of

error by combating rank-deficiency problems. The efficacy of precoding in reducing the prob-
ability of rank deficiencies can be explained by interpreting the precoder matrix columns as
beamforming vectors. In the case of single-layer transmission, for example, choosing each
codebook index results in a multiplication of the transmitted signal X with different beam-
forming vectors. This multiplication is essentially a transformation that rotates the transmitted
signal in various directions. Since precoder vectors are orthonormal, the direction of rotation
results in phase differences of

{
0, 𝜋, 𝜋

2
,−𝜋

2

}
. Large phase differences make it more likely

that different streams will take different multipath trajectories before arriving at any receive
antenna. This in turn reduces the possibility of channel matrices with linearly dependent rows
or columns occurring and increases the chance of there being full-rank channel matrices.

Table 6.3 Precoding matrices for two transmit
antennas in LTE spatial multiplexing

Codebook index Number of layers

1 2

0 1√
2

[
1

1

]
1√
2

[
1

0

0

1

]

1 1√
2

[
1

−1

]
1√
2

[
1

1

1

−1

]

2 1√
2

[
1

j

]
1√
2

[
1

j

1

−j

]

3 1√
2

[
1

−j

]
–

MIMO 225

The same interpretation applies to the two-antenna and four-antenna precoder matrices. For
example, in the case of two transmit antennas, when we multiply the two modulated sub-

streams by any of the precoder matrices, 1√
2

[
1
j

1
−j

]
for example, each substream is steered

like a beamformer by each of the precoder matrix column vectors. Since these vectors are
orthonormal, they can represent rotation operations in different N-dimensional directions [6].
When viewed as a beamformer, precoding enhances the chance of the transmitted streams
following different multipaths, since it can force each substream to take different directions,
as specified by the angle of rotation. This explains why spatial-multiplexing systems that use
precoding have been shown to provide dramatic performance gains over unprecoded systems.

6.7.4.5 Types of Precoding

Precoding can be performed within an open- or a closed-loop MIMO processing context.
Open-loop precoding is used in the third MIMO transmission mode and closed-loop precod-
ing in the fourth. In open-loop precoding, the transmitter and receiver use a predefined set of
precoding matrix indices and periodically rotate through them without any need for codebook
index transmission. Precoding with closed-loop feedback prompts the receiver to choose the
precoder matrix from a finite codebook and then to convey the selected matrix to the trans-
mitter using a limited number of bits. Precoder-matrix codebook selection and closed-loop
precoder-matrix feedback are discussed in Chapter 7.

6.7.5 MIMO Operations in Spatial Multiplexing

Among the ninemodes of transmissions in the LTE standard, six are based on spatial multiplex-
ing. In spatial multiplexing, layer mapping and precoding are distinct and explicit operations.
As the samples on each transmit antenna are independent of each other, the original modulated
stream will be mapped to various substreams to be transmitted on each transmit antenna. Since
different samples are transmitted on different antennas, spatial multiplexing has the potential
to boost data rates in proportion to the number of transmit antennas. TheMIMO receiver opera-
tion is performed at the receiver to recover the best estimate of the modulated symbols from the
received signal. The estimation processes featured in this book are based on the following three
algorithms: Zero Forcing (ZF), Minimum Mean Square Error (MMSE), and Sphere Decoder
(SD). Next, we will discuss in detail layer mapping, precoding, andMIMO receiver operations.

6.7.5.1 Layer Mapping

Layer mapping divides a single data stream into substreams destined for different antennas.
The following MATLAB function shows how the modulated data stream from one or two
codewords is mapped to layers (antenna ports) defined by the LTE standard. At this stage
we assume a full rank transmission. As a result, the number of layers is equal to the number
of transmit antennas. This function takes as input the modulated streams of the first (in1)
and second (in2) codewords and the parameter structure of the PDSCH (prmLTEPDSCH).
Depending on the number of codewords and the number of layers, the function reorganizes
the input symbol stream to generate the output signal (out). The output signal is a 2D matrix
whose second dimension is equal to the number of layers.

226 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function out = LayerMapper(in1, in2, prmLTEPDSCH)

% Layer mapper for spatial multiplexing.

%

%#codegen

% Assumes the incoming codewords are of the same length.

q = prmLTEPDSCH.numCodeWords; % Number of codewords

v = prmLTEPDSCH.numLayers; % Number of layers

inLen1 = size(in1, 1);

inLen2 = size(in2, 1);

switch q

case 1 % Single codeword

% for numLayers = 1,2,3,4

out = reshape(in1, v, inLen1/v).';

case 2 % Two codewords

switch v

case 2

out = complex(zeros(inLen1, v));

out(:,1) = in1;

out(:,2) = in2;

case 4

out = complex(zeros(inLen1/2, v));

out(:,1:2) = reshape(in1, 2, inLen1/2).';

out(:,3:4) = reshape(in2, 2, inLen2/2).';

case 6

out = complex(zeros(inLen1/3, v));

out(:,1:3) = reshape(in1, 3, inLen1/3).';

out(:,4:6) = reshape(in2, 3, inLen2/3).';

case 8

out = complex(zeros(inLen1/4, v));

out(:,1:4) = reshape(in1, 4, inLen1/4).';

out(:,5:8) = reshape(in2, 4, inLen2/4).';

otherwise

assert(false, 'This mode is not implemented yet.');

end

end

6.7.5.2 Precoding

Precoding performs linear transformations on the data of each substream to improve the over-
all receiver performance. The followingMATLAB function shows how the multi-antenna data
substreams that follow layer mapping are precoded prior to resource element mapping and
generation of the resource grid. The function takes as input the modulated symbols orga-
nized in layers (in), the precoder matrix index (cbIdx), and the PDSCH parameter structure

MIMO 227

(prmLTEPDSCH). First we compute the orthonormal precoder matrix (Wn) by calling the
SpatialMuxPrecoder function. Then we compute the precoded output (out) by multiplying the
precoder matrix with vectors of input, selected by taking samples from all transmit antennas
at a given sample time.

Algorithm

MATLAB function

function [out, Wn] = SpatialMuxPrecoder(in, prmLTEPDSCH, cbIdx)

% Precoder for PDSCH spatial multiplexing

%#codegen

% Assumes the incoming codewords are of the same length

v = prmLTEPDSCH.numLayers; % Number of layers

numTx = prmLTEPDSCH.numTx; % Number of Tx antennas

% Compute the precoding matrix

Wn = PrecoderMatrix(cbIdx, numTx, v);

% Initialize the output

out = complex(zeros(size(in)));

inLen = size(in, 1);

% Apply the relevant precoding matrix to the symbol over all layers

for n = 1:inLen

temp = Wn * (in(n, :).');

out(n, :) = temp.';

end

The PrecoderMatrix function computes the precoder matrix (Wn) from the values stored
in a codebook. The codebook values are defined in [7]. The function takes as input the pre-
coder index (cbIdx), the number of transmit antennas (numTx), and the number of layers (v).
Regardless of whether an open- or a closed-loop precoding technique is used, at each subframe
a common codebook index is selected at both the transmitter and the receiver. In this chapter,
we choose a constant value of 1 as our codebook index. For a two-transmit-antenna configura-
tion, valid values for the codebook index are from 0 to 3, and for a four-antenna configuration,
from 0 to 15. Note that for a two-antenna transmission in which the number of layers is also
two, only codebook indices of 1 and 2 are valid. Note also that for a four-antenna configura-
tion, the precoder matrix is computed from 1× 4 codebook vectors and a matrix operation that
results in an orthonormal precoder matrix for any given index.

Algorithm

MATLAB function

function Wn = PrecoderMatrix(cbIdx, numTx, v)

% LTE Precoder for PDSCH spatial multiplexing.

%#codegen

% v = Number of layers

228 Understanding LTE with MATLAB®

% numTx = Number of Tx antennas

switch numTx

case 2

Wn = complex(ones(numTx, v));

switch v

case 1

a=(1/sqrt(2));

codebook = [a,a; a,-a; a, 1j*a; a, -1j*a];

Wn = codebook(cbIdx+1,:);

case 2

if cbIdx==1

Wn = (1/2)*[1 1; 1 -1];

elseif cdIdx==2

Wn = (1/2)*[1 1; 1j -1j];

else

error('Not used. Please try with a different index.');

end

end

case 4

un = complex(ones(numTx, 1));

switch cbIdx

case 0, un = [1 -1 -1 -1].';

case 1, un = [1 -1j 1 1j].';

case 2, un = [1 1 -1 1].';

case 3, un = [1 1j 1 -1j].';

case 4, un = [1 (-1-1j)/sqrt(2) -1j (1-1j)/sqrt(2)].';

case 5, un = [1 (1-1j)/sqrt(2) 1j (-1-1j)/sqrt(2)].';

case 6, un = [1 (1+1j)/sqrt(2) -1j (-1+1j)/sqrt(2)].';

case 7, un = [1 (-1+1j)/sqrt(2) 1j (1+1j)/sqrt(2)].';

case 8, un = [1 -1 1 1].';

case 9, un = [1 -1j -1 -1j].';

case 10, un = [1 1 1 -1].';

case 11, un = [1 1j -1 1j].';

case 12, un = [1 -1 -1 1].';

case 13, un = [1 -1 1 -1].';

case 14, un = [1 1 -1 -1].';

case 15, un = [1 1 1 1].';

end

Wn = eye(4) - 2*(un*un')./(un'*un);

switch cbIdx % order columns, for numLayers=4 only

case {2, 3, 14}

Wn = Wn(:, [3 2 1 4]);

case {6, 7, 10, 11, 13}

Wn = Wn(:, [1 3 2 4]);

end

Wn = Wn./sqrt(v);

end

MIMO 229

6.7.5.3 MIMO Receiver

The MIMO receiver inverts the combination of precoding and MIMO channel operations to
recover the best estimate of the modulated symbols. As a result of the MIMO channel mod-
eling, at each time index n the vector of received signals

−→
Y (n) can be modeled as a linear

combination of transmitted signals from transmit antennas
−→
X (n) scaled by the channel matrix

H(n), with an added vector of white Gaussian noise −→n (n). In this book we will model the
channel matrices only as 2× 2 or 4× 4 square matrices in order to simplify the discussion.
The results can be easily generalized to non-square matrices where matrix inverse operations
can be replaced by pseudo-inverse operations.
For example, for a 4× 4 MIMO configuration, in any subframe and at any point in time, the

received vector
−→
Y can be expressed as:

−→
Y =

⎡⎢⎢⎢⎣
y1
y2
y3
y4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
h1,1 · · · h1,4
⋮ ⋱ ⋮
h4,1 · · · h4,4

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
n1
n2
n3
n4

⎤⎥⎥⎥⎦ (6.24)

The objective of the MIMO receiver operation is to solve for best estimates of the modulated

transmitted symbols

⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦ as a function of received symbols

⎡⎢⎢⎢⎣
y1
y2
y3
y4

⎤⎥⎥⎥⎦. Since the AWGN is a

stochastic process, actual values of the noise vector

⎡⎢⎢⎢⎣
n1
n2
n3
n4

⎤⎥⎥⎥⎦ are not exactly known. We can only

estimate the noise variance in each receive antenna. As a result, the effect of the AWGN is
already included in the received vector.

Defining the received signal as follows,

⎡⎢⎢⎢⎣
r1
r2
r3
r4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
y1
y2
y3
y4

⎤⎥⎥⎥⎦ −
⎡⎢⎢⎢⎣
n1
n2
n3
n4

⎤⎥⎥⎥⎦, we can rewrite Equation 6.24
as:

⎡⎢⎢⎢⎣
r1
r2
r3
r4

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎣
h1,1 · · · h1,4
⋮ ⋱ ⋮
h4,1 · · · h4,4

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦ (6.25)

In this section we present the three most popular methods of MIMO equalizer design, which

produce the best estimate of the modulated transmitted symbols

⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦:

230 Understanding LTE with MATLAB®

• ZF equalizer:We apply the inverse of the channel matrix H =
⎡⎢⎢⎣
h1,1 · · · h1,4
⋮ ⋱ ⋮
h4,1 · · · h4,4

⎤⎥⎥⎦ to both sides
of the equation. As we will see shortly, ZF equalizers can augment the effect of uncorrelated
noise on the equalization process, especially in a low-SNR transmission environment.

• MMSEequalizer:Weminimize themean square error between the transmitted vector

⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦
and its estimate

⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦. This approach takes into account the effect of AWGN and offsets the

inverse matrix with the noise variance. MMSE equalizers have been shown to outperform
ZF equalizers in terms of reconstruction error.

• SD equalizer: Our objective to find the Maximum-Likelihood solution for Equation 6.25.
The SD algorithm needs to know the modulation scheme used on all of the transmit anten-
nas. It combines MIMO equalization and soft-decision demodulation and maximizes the a
posteriori probability measure to output the Log-Likelihood Ratios (LLRs) of the transmit-

ted bits most likely to be involved in generating the received signal

⎡⎢⎢⎢⎣
r1
r2
r3
r4

⎤⎥⎥⎥⎦ at each sample

time.

The following function implements the MIMO receiver operation, taking as input the
received signal (in), the channel matrix (chEst), the PDSCH parameter structure (prmLTE),
the noise-variance vector (nVar), and the precoder matrix (Wn). Depending on the equalization
mode specified (prmLTE.Eqmode), either of the functions implementing a ZF, MMSE, or SD
receiver can be called to generate the output signal (y).
We will now discuss each of the equalizer methodologies. Each provides a unique way of

inverting layer mapping, precoding, and MIMO channel operations. The ZF and MMSE tech-
niques help arrive at an estimate of the transmitted modulated symbols. In the case of SD,
the output is not actually an estimate of the modulated symbols but rather of the bits that if
modulated would generate the symbols.

Algorithm

MATLAB function

function y = MIMOReceiver(in, chEst, prmLTE, nVar, Wn)

%#codegen

switch prmLTE.Eqmode

case 1 % ZF receiver

y = MIMOReceiver_ZF(in, chEst, Wn);

case 2 % MMSE receiver

MIMO 231

y = MIMOReceiver_MMSE(in, chEst, nVar, Wn);

case 3 % Sphere Decoder

y = MIMOReceiver_SphereDecoder(in, chEst, prmLTE, nVar, Wn);

otherwise

error('Function MIMOReceiver: ZF, MMSE, Sphere decoder are only

supported MIMO detectors');

end

ZF Receiver
The following MATLAB function shows a MIMO receiver that employs a ZF receiver to undo
the effects of the MIMO channel and combat the interference from multi-antenna transmis-
sion. The function takes as input the received signal (in), the 2D channel matrix (chEst), and
the precoder matrix used in this subframe (Wn). The function generates as its output (y) the
estimated modulated symbols in this subframe based on the ZF equalization method. In a ZF
approach, we simply invert the channel matrix and multiply the received signal by the inverse
matrix. Since the vector of transmitted signals is also subject to precoding in the transmitter,
in the MIMO receiver we need to multiply the equalized vector by the inverse of the precoder
matrix.

Algorithm

MATLAB function

function y = MIMOReceiver_ZF(in, chEst, Wn)

%#codegen

% MIMO Receiver:

% Based on received channel estimates, process the data elements

% to equalize the MIMO channel. Uses the ZF detector.

% Get params

numData = size(in, 1);

y = complex(zeros(size(in)));

iWn = inv(Wn);

%% ZF receiver

for n = 1:numData

h = squeeze(chEst(n, :, :)); % numTx x numRx

h = h.'; % numRx x numTx

Q = inv(h);

x = Q * in(n, :).';%#ok

tmp = iWn * x; %#ok

y(n, :) = tmp.';

end

MMSE Receiver
The objective of the MMSE equalizer is to minimize the power of the error signal e(n), defined
as the difference between the equalized signal X(n) and the original transmitted modulated

232 Understanding LTE with MATLAB®

signal X(n). Let us define G as the optimum equalizer that transforms the received signal Y(n)
into the equalized signal. The error signal can then be expressed as:

e(n) = X̂(n) − X(n) = GY(n) − X(n) (6.26)

Now, combining this expression with the definition of the received signal Y(n) as the trans-
formed version of the transmitted signal X(n) by the MIMO channel matrix H:

Y(n) = H X(n) + n(n) (6.27)

Assuming square matrices for both the channel matrix H and the equalizer matrix G, we
obtain the following expression for the error signal:

e(n) = G Y(n) − X(n) = G(H X(n) + n(n)) − X(n) = (GH − I) X(n) + G n(n) (6.28)

Modeling this expression as a Wiener filtering problem that minimizes the expected value
of the error signal, we find the MMSE optimal equalizer to be:

Gmmse = HH(HHH + 𝝈
2
nIn)−1 (6.29)

where HH represents the Hermitian of the channel matrix H, 𝝈2
n represents the channel noise

variance, and In represents the identity matrix of the same size as the number of transmit
antennas.
The following MATLAB function shows a MIMO receiver based on an MMSE equalizer.

The function takes as input the received signal (in), the 2D channel matrix (chEst), and the
precoder matrix used in this subframe (Wn). The function generates as its output (y) the esti-
mated modulated symbols in this subframe based on theMMSE equalization method. For each
vector of received signal at sample time n, we compute the equalizer matrix (Q) based on the
optimal MMSE equalizer formula and multiply the received vector by the equalizer matrix.
To undo the precoding operation, we also need to multiply the equalized vector by the inverse
of the precoder matrix.

Algorithm

MATLAB function

function y = MIMOReceiver_MMSE(in, chEst, nVar, Wn)

%#codegen

% MIMO Receiver:

% Based on received channel estimates, process the data elements

% to equalize the MIMO channel. Uses the MMSE detector.

% Get params

numLayers = size(Wn,1);

% noisFac = numLayers*diag(nVar);

noisFac = diag(nVar);

numData = size(in, 1);

y = complex(zeros(size(in)));

iWn = inv(Wn);

%% MMSE receiver

MIMO 233

for n = 1:numData

h = chEst(n, :, :); % numTx x numRx

h = reshape(h(:), numLayers, numLayers).'; % numRx x numTx

Q = (h'*h + noisFac)\h';

x = Q * in(n, :).';

tmp = iWn * x;

y(n, :) = tmp.';

end

SD Receiver
In SD, the objective is to find the ML solution for the MIMO equation. Given the MIMO
channel modeling equation at a given time sample:

Y = H X + n (6.30)

the SD finds the ML estimate for the transmitted modulated symbols X̂ML, such that:

X̂ML = argmin ‖Y −H X‖2 (6.31)

where X ∈ 𝛀 and 𝛀 is the complex-valued constellation from which the elements of X are
chosen. The SD algorithm makes use of knowledge concerning the modulation scheme and
the actual constellation and symbol mapping used in the modulator. It combines MIMO equal-
ization and soft-decision demodulation and maximizes the a posteriori probability measure to
produce its output. The output of an SD is the LLRs of the transmitted bits most likely to
be involved in generation of the received signal. The comm.SphereDecoder System object of
the Communications System Toolbox implements an SD algorithm. The ML receiver used in
the System object is implemented in a reduced-complexity form by means of a Soft Sphere
Decoder (SSD).
The following MATLAB function shows a MIMO receiver implemented with an SD. The

function takes as input the received signal (in), the 3D channel matrix (chEst), the PDSCH
parameter structure (prmLTE), the noise variance vector (nVar), and the precoder matrix used
in this subframe (Wn). It generates as its output (y) the estimated modulated symbols in this
subframe based on the Sphere Decoder (SD) equalization method. First, we transform the
channel matrices of each sample time by the inverse of the precoder matrix. Then , we use the
comm.SphereDecoder System object to implement maximum-likelihood (ML) Sphere Decod-
ing operation.

Algorithm

MATLAB function

function [y, bittable] = MIMOReceiver_SphereDecoder(in, chEst, prmLTE, nVar, Wn)

%#codegen

% MIMO Receiver:

234 Understanding LTE with MATLAB®

% Based on received channel estimates, process the data elements

% to equalize the MIMO channel. Uses the Sphere detector.

% Soft-Sphere Decoder

symMap=prmLTE.SymbolMap;

numBits=prmLTE.Qm;

constell=prmLTE.Constellation;

bittable = de2bi(symMap, numBits, 'left-msb');

iWn=Wn.';

nVar1=(-1/mean(nVar));

persistent SphereDec

if isempty(SphereDec)

% Soft-Sphere Decoder

SphereDec = comm.SphereDecoder('Constellation', constell,...

'BitTable', bittable, 'DecisionType', 'Soft');

end

% SSD receiver

temp = complex(zeros(size(chEst)));

% Account for precoding

for n = 1:size(chEst,1)

temp(n, :, :) = iWn * squeeze(chEst(n, :, :));

end

hD = temp;

y = nVar1 * step(SphereDec, in, hD);

6.7.6 Downlink Transmission Mode 4

In this section, we will focus on what is in my view one of the most innovative MIMO modes
in the LTE standard, responsible for its highest data rates: mode 4. This mode employs spatial
multiplexing with precoding and closed-loop channel feedback. In low-mobility scenarios,
a closed-loop feedback of the channel quality can lead to performance improvements. We
will actually perform the closed-loop feedback operations in the receiver in Chapter 7. In this
chapter, we use a constant precoder matrix index as a stepping stone to implementation of the
closed-loop adaptive precoding featured in the next chapter.
We will build two variants of this mode:

1. Single-codeword case: Only one codeword is generated at the DLSCH and processed by
the PDSCH.

2. Two-codeword case: Two distinct codewords are generated at the DLSCH andmultiplexed
by the layer-mapping operation for precoding, resource-element mapping, and eventual
OFDM transmission.

6.7.6.1 Single-Codeword Case

The following MATLAB function shows a transmitter, receiver, and channel model for the
fourth mode of the LTE standard, featuring single-codeword spatial multiplexing. Using
multiple antennas at both the transmitter and the receiver, we showcase both 2× 2 and 4× 4

MIMO 235

MIMO antenna configurations. The key components highlighted in the example include the
following:

• Generation of payload data for a single subframe (a transport block)
• DLSCH processing, as described earlier
• PDSCH transmitter processing, including bit-level scrambling, data modulation, layer map-

ping, and precoding for two or four antennas, as well as precoding for spatial multiplexing,
resource-element mapping, and OFDM signal generation

• Channel modeling, including a MIMO fading channel followed by an AWGN channel
• PDSCH receiver processing, including an OFDM signal receiver to generate the resource

grid, resource-element demapping to separate the CSR signal from the user data, channel
estimation, MIMO receiver and layer demapping, soft-decision demodulation, descram-
bling, and DLSCH decoding.

Algorithm

MATLAB script

function [dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr_ref]...

= commlteMIMO_SM_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl)

%% TX

persistent hPBer1

if isempty(hPBer1), hPBer1=comm.ErrorRate; end;

% Generate payload

dataIn = genPayload(nS, prmLTEDLSCH.TBLenVec);

% Transport block CRC generation

tbCrcOut1 =CRCgenerator(dataIn);

% Channel coding includes - CB segmentation, turbo coding, rate matching,

% bit selection, CB concatenation - per codeword

[data, Kplus1, C1] = lteTbChannelCoding(tbCrcOut1, nS, prmLTEDLSCH, prmLTEPDSCH);

%Scramble codeword

scramOut = lteScramble(data, nS, 0, prmLTEPDSCH.maxG);

% Modulate

modOut = Modulator(scramOut, prmLTEPDSCH.modType);

% Map modulated symbols to layers

numTx=prmLTEPDSCH.numTx;

LayerMapOut = LayerMapper(modOut, [], prmLTEPDSCH);

usedCbIdx = prmMdl.cbIdx;

% Precoding

[PrecodeOut, Wn] = lteSpatialMuxPrecoder(LayerMapOut, prmLTEPDSCH, usedCbIdx);

% Generate Cell-Specific Reference (CSR) signals

csr = CSRgenerator(nS, numTx);

csr_ref=complex(zeros(2*prmLTEPDSCH.Nrb, 4, numTx));

for m=1:numTx

csr_ pre=csr(1:2*prmLTEPDSCH.Nrb,:,:,m);

csr_ref(:,:,m)=reshape(csr_ pre,2*prmLTEPDSCH.Nrb,4);

end

236 Understanding LTE with MATLAB®

% Resource grid filling

txGrid = REmapper_mTx(PrecodeOut, csr_ref, nS, prmLTEPDSCH);

% OFDM transmitter

txSig = OFDMTx(txGrid, prmLTEPDSCH);

%% Channel

% MIMO Fading channel

[rxFade, chPathG] = MIMOFadingChan(txSig, prmLTEPDSCH, prmMdl);

% Add AWG noise

sigPow = 10*log10(var(rxFade));

nVar = 10.^(0.1.*(sigPow-snrdB));

rxSig = AWGNChannel(rxFade, nVar);

%% RX

% OFDM Rx

rxGrid = OFDMRx(rxSig, prmLTEPDSCH);

% updated for numLayers -> numTx

[dataRx, csrRx, idx_data] = REdemapper_mTx(rxGrid, nS, prmLTEPDSCH);

% MIMO channel estimation

if prmMdl.chEstOn

chEst = ChanEstimate_mTx(prmLTEPDSCH, csrRx, csr_ref, prmMdl.chEstOn);

hD = ExtChResponse(chEst, idx_data, prmLTEPDSCH);

else

idealChEst = IdChEst(prmLTEPDSCH, prmMdl, chPathG);

hD = ExtChResponse(idealChEst, idx_data, prmLTEPDSCH);

end

% Frequency-domain equalizer

if (numTx==1)

% Based on Maximum-Combining Ratio (MCR)

yRec = Equalizer_simo(dataRx, hD, nVar, prmLTEPDSCH.Eqmode);

else

% Based on Spatial Multiplexing

yRec = MIMOReceiver(dataRx, hD, prmLTEPDSCH, nVar, Wn);

end

% Demap received codeword(s)

[cwOut, ̃] = LayerDemapper(yRec, prmLTEPDSCH);

if prmLTEPDSCH.Eqmode < 3

% Demodulate

demodOut = DemodulatorSoft(cwOut, prmLTEPDSCH.modType, mean(nVar));

else

demodOut = cwOut;

end

% Descramble received codeword

rxCW = lteDescramble(demodOut, nS, 0, prmLTEPDSCH.maxG);

% Channel decoding includes - CB segmentation, turbo decoding, rate dematching

[decTbData1, ̃,̃] = lteTbChannelDecoding(nS, rxCW, Kplus1, C1, prmLTEDLSCH,

prmLTEPDSCH);

% Transport block CRC detection

[dataOut, ̃] = CRCdetector(decTbData1);

end

MIMO 237

Structure of the Transceiver Model
The following MATLAB script is the testbench that calls the MIMO transceiver function
commlteMIMO. First it calls the initialization function (commlteMIMO_initialize) to set
all relevant parameter structures (prmLTEDLSCH, prmLTEPDSCH, prmMdl). Then it uses
a while loop to perform subframe processing by calling the MIMO transceiver function
commlteMIMO_SM_step. Finally, it computes the BER and calls the visualization function to
illustrate the channel response and modulation constellation before and after equalization.

Algorithm

MATLAB script

% Script for MIMO LTE (mode 4)

%

% Single codeword transmission

%

clear all

clear functions

%% Set simulation parameters & initialize parameter structures

commlteMIMO_ params;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,

chanMdl, corrLvl, ...

chEstOn, numCodeWords, enPMIfback, cbIdx, snrdB, maxNumErrs, maxNumBits);

clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter

fullDecode chanMdl corrLvl chEstOn numCodeWords enPMIfback cbIdx snrdB

maxNumErrs maxNumBits

%%

disp('Simulating the LTE Mode 3: Multiple Tx & Rx antrennas with Spatial Multiplexing');

zReport_data_rate(prmLTEPDSCH, prmLTEDLSCH);

hPBer = comm.ErrorRate;

snrdB=prmMdl.snrdB;

maxNumErrs=prmMdl.maxNumErrs;

maxNumBits=prmMdl.maxNumBits;

%% Simulation loop

tic;

nS = 0; % Slot number, one of [0:2:18]

Measures = zeros(3,1); %initialize BER output

while ((Measures(2)< maxNumErrs) && (Measures(3) < maxNumBits))

[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr] = ...

commlteMIMO_SM_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);

% Calculate bit errors

Measures = step(hPBer, dataIn, dataOut);

% Visualize constellations and spectrum

if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);

end;

238 Understanding LTE with MATLAB®

% Update subframe number

nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;

end

disp(Measures);

toc;

Verifying Transceiver Performance
By executing the MATLAB script of the MIMO transceiver model (commlteMIMO) we can
examine various signals to assess the performance of the system. The parameters used in
simulation are summarized in the following MATLAB script (commlteMIMO_params). This
parameter set copies the common MIMO parameters used in Section 6.7.1. The parameters
that are different reflect the use of spatial multiplexing MIMO mode 4 with a single code-
word, turning off of the precoder matrix feedback, and use of the MMSE equalizer for MIMO
receiver processing. In this simulation, 1 million bits of user data are processed, the SNR of
the AWGN channel is set to 16 dB, and the visualization function is turned on.

Algorithm

MATLAB script

% PDSCH

txMode = 4; % Transmission mode one of {1, 2, 4}

numTx = 2; % Number of transmit antennas

numRx = 2; % Number of receive antennas

chanBW = 4; % [1,2,3,4,5,6] maps to [1.4, 3, 5, 10, 15, 20]MHz

contReg = 1; % {1,2,3} for >=10MHz, {2,3,4} for <10Mhz

modType = 2; % [1,2,3] maps to ['QPSK','16QAM','64QAM']

% DLSCH

cRate = 1/3; % Rate matching target coding rate

maxIter = 6; % Maximum number of turbo decoding terations

fullDecode = 0; % Whether "full" or "early stopping" turbo decoding is performed

% Channel model

chanMdl = 'frequency-selective-high-mobility';

% one of {'flat-low-mobility', 'flat-high-mobility','frequency-selective-low-mobility',

% 'frequency-selective-high-mobility', 'EPA 0Hz', 'EPA 5Hz', 'EVA 5Hz', 'EVA 70Hz'}

corrLvl = 'Medium';

% Simulation parameters

Eqmode = 2; % Type of equalizer used [1,2,3] for ['ZF', 'MMSE','Sphere Decoder']

chEstOn = 1; % use channel estimation or ideal channel

snrdB = 16; % Signal to Noise Ratio in dB

maxNumErrs = 1e6; % Maximum number of errors found before simulation stops

maxNumBits = 1e6; % Maximum number of bits processed before simulation stops

visualsOn = 1; % Whether to visualize channel response and constellations

numCodeWords = 1; % Number of codewords in PDSCH

enPMIfback = 0; % Enable/Disable Precoder Matrix Indicator (PMI) feedback

cbIdx = 1; % Initialize PMI index

MIMO 239

Figure 6.12 LTE model: MIMO spatial-multiplexing constellation diagram of user data before and
after equalization

Figure 6.12 shows the constellation diagrams before (first row) and after (second row) equal-
ization of user data obtained from each of the two receive antennas in a subframe. It shows
that the equalizer can compensate for the effect of a fading channel to result in a constellation
that more closely resembles that of the 16QAM modulator.
Figure 6.13 illustrates the spectra of user data obtained from each of the two receive

antennas in a subframe. It shows the transmitted signal and the received signal before and
after equalization. The received signal before equalization (showing the effects of frequency-
selective fading) is effectively equalized by the closed-loop spatial multiplexing (showing a
more frequency-flat nature), which closely resembles the transmitted signal spectrum.

BER Measurements
In order to verify the BER performance of the transceiver, we create a testbench called
commlteMIMO_test_timing_ber, which first initializes the LTE system parameters and then
iterates through a range of SNR values and calls the commlteMIMO_fcn function in the loop
in order to compute the corresponding BER values.

240 Understanding LTE with MATLAB®

Figure 6.13 LTEMIMO spatial-multiplexing spectra of transmitted and of the received signal before
and after equalization

Algorithm

MATLAB script: commlteMIMO_test_timing_ber

% Script for MIMO LTE (mode 4)

%

% Single codeword transmission only

%

clear all

clear functions

%% Set simulation parameters & initialize parameter structures

commlteMIMO_ params;

maxNumErrs=5e7;

maxNumBits=5e7;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,

chanMdl, corrLvl, ...

chEstOn, numCodeWords, enPMIfback, cbIdx, snrdB, maxNumErrs, maxNumBits);

clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter

fullDecode chanMdl corrLvl chEstOn numCodeWords enPMIfback cbIdx snrdB

maxNumErrs maxNumBits

%%

disp('Simulating the LTE Mode 3: Multiple Tx & Rx antrennas with Spatial Multiplexing');

zReport_data_rate(prmLTEPDSCH, prmLTEDLSCH);

%% Geerate code and setup parallelism

disp('Generating code for commlteMIMO_ fcn.m ...');

arg1=coder.Constant(prmLTEPDSCH);

arg2=coder.Constant(prmLTEDLSCH);

arg3=coder.Constant(prmMdl);

MIMO 241

codegen commlteMIMO_ fcn -args {16, arg1, arg2, arg3} -report

disp('Done.');

parallel_setup;

%%

MaxIter=8;

snr_vector=getSnrVector(prmLTEPDSCH.modType, MaxIter);

ber_vector=zeros(size(snr_vector));

maxNumBits=prmMdl.maxNumBits;

tic;

parfor n=1:MaxIter

fprintf(1,'Iteration %2d out of %2d: Processing %10d bits. SNR = %3d\n', ...

n, MaxIter, maxNumBits, snr_vector(n));

[ber, ̃] = commlteMIMO_ fcn_mex(snr_vector(n), prmLTEPDSCH, prmLTEDLSCH,

prmMdl);

ber_vector(n)=ber;

end;

toc;

semilogy(snr_vector, ber_vector);

title('BER - commlteMIMO SM');xlabel('SNR (dB)');ylabel('ber');grid;

Figure 6.14 shows the BER of the transceiver as a function of the SNR values after processing
of 50 million bits of user data in each of eight iterations.

1 2 3 4 5

SNR (dB)

6 7 8 90

100

BER performance of transmission

mode 4 as a function of SNR

10−1

10−2

B
E

R

10−3

10−4

10−5

QPSK, 1/3 turbo coding, 10 MHZ BW

Figure 6.14 BER results: LTE mode 4 spatial-multiplexing single-codeword (2× 2) MIMO channel

242 Understanding LTE with MATLAB®

6.7.6.2 Two-Codeword Case

The following MATLAB function shows a transmitter, receiver, and channel model for mode
4 of the LTE standard featuring two-codeword spatial multiplexing. The structure of the
transceiver model is very similar to that in the single-codeword case, except that we create and
process a pair of data bits and repeat operations such as CRC generation, DLSCH processing,
scrambling, and modulation on data pairs. The layer-mapping operation transforms the data
into layers, and from then until layer demapping everything is similar to the single-antenna
case. After that, demodulation, descrambling, CRC detection, and transport-block-channel
decoding (the inverse of DLSCH processing) also occur as pairs of operations.

Algorithm

MATLAB function

function [dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr_ref]...

= commlteMIMO_SM2_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl)

%% TX

persistent hPBer1

if isempty(hPBer1), hPBer1=comm.ErrorRate; end;

% Generate payload

dataIn1 = genPayload(nS, prmLTEDLSCH.TBLenVec);

dataIn2 = genPayload(nS, prmLTEDLSCH.TBLenVec);

dataIn=[dataIn1;dataIn2];

% Transport block CRC generation

tbCrcOut1 =CRCgenerator(dataIn1);

tbCrcOut2 =CRCgenerator(dataIn2);

% Channel coding includes - CB segmentation, turbo coding, rate matching,

% bit selection, CB concatenation - per codeword

[data1, Kplus1, C1] = lteTbChannelCoding(tbCrcOut1, nS, prmLTEDLSCH,

prmLTEPDSCH);

[data2, Kplus2, C2] = lteTbChannelCoding(tbCrcOut2, nS, prmLTEDLSCH,

prmLTEPDSCH);

%Scramble codeword

scramOut1 = lteScramble(data1, nS, 0, prmLTEPDSCH.maxG);

scramOut2 = lteScramble(data2, nS, 0, prmLTEPDSCH.maxG);

% Modulate

modOut1 = Modulator(scramOut1, prmLTEPDSCH.modType);

modOut2 = Modulator(scramOut2, prmLTEPDSCH.modType);

% Map modulated symbols to layers

numTx=prmLTEPDSCH.numTx;

LayerMapOut = LayerMapper(modOut1, modOut2, prmLTEPDSCH);

usedCbIdx = prmMdl.cbIdx;

% Precoding

[PrecodeOut, Wn] = lteSpatialMuxPrecoder(LayerMapOut, prmLTEPDSCH, usedCbIdx);

% Generate Cell-Specific Reference (CSR) signals

csr = CSRgenerator(nS, numTx);

csr_ref=complex(zeros(2*prmLTEPDSCH.Nrb, 4, numTx));

for m=1:numTx

MIMO 243

csr_ pre=csr(1:2*prmLTEPDSCH.Nrb,:,:,m);

csr_ref(:,:,m)=reshape(csr_ pre,2*prmLTEPDSCH.Nrb,4);

end

% Resource grid filling

txGrid = REmapper_mTx(PrecodeOut, csr_ref, nS, prmLTEPDSCH);

% OFDM transmitter

txSig = OFDMTx(txGrid, prmLTEPDSCH);

%% Channel

% MIMO Fading channel

[rxFade, chPathG] = MIMOFadingChan(txSig, prmLTEPDSCH, prmMdl);

% Add AWG noise

sigPow = 10*log10(var(rxFade));

nVar = 10.^(0.1.*(sigPow-snrdB));

rxSig = AWGNChannel(rxFade, nVar);

%% RX

% OFDM Rx

rxGrid = OFDMRx(rxSig, prmLTEPDSCH);

% updated for numLayers -> numTx

[dataRx, csrRx, idx_data] = REdemapper_mTx(rxGrid, nS, prmLTEPDSCH);

% MIMO channel estimation

if prmMdl.chEstOn

chEst = ChanEstimate_mTx(prmLTEPDSCH, csrRx, csr_ref, prmMdl.chEstOn);

hD = ExtChResponse(chEst, idx_data, prmLTEPDSCH);

else

idealChEst = IdChEst(prmLTEPDSCH, prmMdl, chPathG);

hD = ExtChResponse(idealChEst, idx_data, prmLTEPDSCH);

end

% Frequency-domain equalizer

if (numTx==1)

% Based on Maximum-Combining Ratio (MCR)

yRec = Equalizer_simo(dataRx, hD, nVar, prmLTEPDSCH.Eqmode);

else

% Based on Spatial Multiplexing

yRec = MIMOReceiver(dataRx, hD, prmLTEPDSCH, nVar, Wn);

end

% Demap received codeword(s)

[cwOut1, cwOut2] = LayerDemapper(yRec, prmLTEPDSCH);

if prmLTEPDSCH.Eqmode < 3

% Demodulate

demodOut1 = DemodulatorSoft(cwOut1, prmLTEPDSCH.modType, mean(nVar));

demodOut2 = DemodulatorSoft(cwOut2, prmLTEPDSCH.modType, mean(nVar));

else

demodOut1 = cwOut1;

demodOut2 = cwOut2;

end

% Descramble received codeword

rxCW1 = lteDescramble(demodOut1, nS, 0, prmLTEPDSCH.maxG);

rxCW2 = lteDescramble(demodOut2, nS, 0, prmLTEPDSCH.maxG);

% Channel decoding includes - CB segmentation, turbo decoding, rate dematching

244 Understanding LTE with MATLAB®

[decTbData1, ̃,̃] = lteTbChannelDecoding(nS, rxCW1, Kplus1, C1, prmLTEDLSCH,

prmLTEPDSCH);

[decTbData2, ̃,̃] = lteTbChannelDecoding(nS, rxCW2, Kplus2, C2, prmLTEDLSCH,

prmLTEPDSCH);

% Transport block CRC detection

[dataOut1, ̃] = CRCdetector(decTbData1);

[dataOut2, ̃] = CRCdetector(decTbData2);

dataOut=[dataOut1;dataOut2];

end

Structure of the Transceiver Model
The following MATLAB script is the testbench that calls the MIMO transceiver function
commlteMIMO. First it calls the initialization function (commlteMIMO_initialize) to set all
the relevant parameter structures (prmLTEDLSCH, prmLTEPDSCH, prmMdl). Then it uses a
while loop to perform subframe processing by calling the MIMO transceiver function comml-
teMIMO_SM2_step. Finally, it computes the BER and calls the visualization function to illus-
trate the channel response and modulation constellation before and after equalization.

Algorithm

MATLAB script

% Script for MIMO LTE (mode 4)

%

% Two codeword transmission

%

clear all

clear functions

%% Set simulation parameters & initialize parameter structures

commlteMIMO_ params;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,

chanMdl, corrLvl, ...

chEstOn, numCodeWords, enPMIfback, cbIdx, snrdB, maxNumErrs, maxNumBits);

clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter

fullDecode chanMdl corrLvl chEstOn numCodeWords enPMIfback cbIdx snrdB

maxNumErrs maxNumBits

%%

disp('Simulating the LTE Mode 3: Multiple Tx & Rx antrennas with Spatial Multiplexing');

zReport_data_rate(prmLTEPDSCH, prmLTEDLSCH);

hPBer = comm.ErrorRate;

snrdB=prmMdl.snrdB;

maxNumErrs=prmMdl.maxNumErrs;

maxNumBits=prmMdl.maxNumBits;

%% Simulation loop

tic;

MIMO 245

nS = 0; % Slot number, one of [0:2:18]

Measures = zeros(3,1); %initialize BER output

while ((Measures(2)< maxNumErrs) && (Measures(3) < maxNumBits))

[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr] = ...

commlteMIMO_SM2_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);

% Calculate bit errors

Measures = step(hPBer, dataIn, dataOut);

% Visualize constellations and spectrum

if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);

end;

% Update subframe number

nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;

end

disp(Measures);

toc;

Verifying Transceiver Performance
By executing the MATLAB script of the MIMO transceiver model (commlteMIMO) we can
examine various signals in order to assess the performance of the system. The parameters used
in simulation are summarized in the following MATLAB script (commlteMIMO_ params).
This parameter set copies the common MIMO parameters used in Section 6.7.1. The param-
eters that are different reflect the use of spatial-multiplexing MIMO mode 4 with two code-
words, turning off of the precoder matrix feedback, and the use of the MMSE equalizer for
MIMO receiver processing. In this simulation, 1 million bits of user data are processed, the
SNR of the AWGN channel is set to 16 dB, and the visualization function is turned on.

Algorithm

MATLAB script

% PDSCH

txMode = 4; % Transmission mode one of {1, 2, 4}

numTx = 2; % Number of transmit antennas

numRx = 2; % Number of receive antennas

chanBW = 4; % [1,2,3,4,5,6] maps to [1.4, 3, 5, 10, 15, 20]MHz

contReg = 1; % {1,2,3} for >=10MHz, {2,3,4} for <10Mhz

modType = 2; % [1,2,3] maps to ['QPSK','16QAM','64QAM']

% DLSCH

cRate = 1/3; % Rate matching target coding rate

maxIter = 6; % Maximum number of turbo decoding terations

fullDecode = 0; % Whether "full" or "early stopping" turbo decoding is performed

% Channel model

chanMdl = 'frequency-selective-high-mobility';

% one of {'flat-low-mobility', 'flat-high-mobility','frequency-selective-low-mobility',

% 'frequency-selective-high-mobility', 'EPA 0Hz', 'EPA 5Hz', 'EVA 5Hz', 'EVA 70Hz'}

246 Understanding LTE with MATLAB®

corrLvl = 'Medium';

% Simulation parameters

Eqmode = 2; % Type of equalizer used [1,2,3] for ['ZF', 'MMSE','Sphere Decoder']

chEstOn = 1; % use channel estimation or ideal channel

snrdB = 16; % Signal to Noise Ratio in dB

maxNumErrs = 1e6; % Maximum number of errors found before simulation stops

maxNumBits = 1e6; % Maximum number of bits processed before simulation stops

visualsOn = 1; % Whether to visualize channel response and constellations

numCodeWords = 2; % Number of codewords in PDSCH

enPMIfback = 0; % Enable/Disable Precoder Matrix Indicator (PMI) feedback

cbIdx = 1; % Initialize PMI index

Figure 6.15 shows the constellation diagrams before (first row) and after (second row) equal-
ization of the user data obtained from each of the two receive antennas in a given subframe.

Figure 6.15 LTE model: MIMO spatial-multiplexing two-codeword constellation diagram before
and after equalization

MIMO 247

Figure 6.16 MIMO spatial-multiplexing two-codewords spectra of the transmited signal and of the
received signal before and after equalization

It shows that the equalizer can compensate for the effect of a fading channel to result in a
constellation that more closely resembles that of the 16QAM modulator.
Figure 6.16 illustrates the spectra of user data obtained from each of the two receive antennas

in a subframe. It shows the transmitted signal and the received signal before and after equaliza-
tion. The received signal before equalization is effectively equalized in the 2-codeword spatial
multiplexing case which closely resembles the transmitted signal spectrum.

BER Measurements
In order to verify the BER performance of the transceiver, we create a testbench called
commlteMIMO_test_timing_ber, which first initializes the LTE system parameters and then
iterates through a range of SNR values and calls the commlteMIMO_ fcn function in the
loop to compute the corresponding BER values. The results obtained are very similar to the
single-codeword results illustrated in Figure 6.14.

Algorithm

MATLAB script: commlteMIMO_test_timing_ber

% Script for MIMO LTE (mode 4)

%

% Single codeword transmission only

%

clear all

clear functions

%% Set simulation parameters & initialize parameter structures

commlteMIMO_ params;

248 Understanding LTE with MATLAB®

maxNumErrs=5e7;

maxNumBits=5e7;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,

chanMdl, corrLvl, ...

chEstOn, numCodeWords, enPMIfback, cbIdx, snrdB, maxNumErrs, maxNumBits);

clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter

fullDecode chanMdl corrLvl chEstOn numCodeWords enPMIfback cbIdx snrdB

maxNumErrs maxNumBits

%%

disp('Simulating the LTE Mode 3: Multiple Tx & Rx antrennas with Spatial Multiplexing');

zReport_data_rate(prmLTEPDSCH, prmLTEDLSCH);

%% Geerate code and setup parallelism

disp('Generating code for commlteMIMO_ fcn.m ...');

arg1=coder.Constant(prmLTEPDSCH);

arg2=coder.Constant(prmLTEDLSCH);

arg3=coder.Constant(prmMdl);

codegen commlteMIMO_ fcn -args {16, arg1, arg2, arg3} -report

disp('Done.');

parallel_setup;

%%

MaxIter=8;

snr_vector=getSnrVector(prmLTEPDSCH.modType, MaxIter);

ber_vector=zeros(size(snr_vector));

maxNumBits=prmMdl.maxNumBits;

tic;

parfor n=1:MaxIter

fprintf(1,'Iteration %2d out of %2d: Processing %10d bits. SNR = %3d\n', ...

n, MaxIter, maxNumBits, snr_vector(n));

[ber, ̃] = commlteMIMO_ fcn_mex(snr_vector(n), prmLTEPDSCH, prmLTEDLSCH,

prmMdl);

ber_vector(n)=ber;

end;

toc;

semilogy(snr_vector, ber_vector);

title('BER - commlteMIMO SM');xlabel('SNR (dB)');ylabel('ber');grid;

6.7.7 Open-Loop Spatial Multiplexing

The following MATLAB function shows the spatial-multiplexing-with-large-CDD (Cyclic
Delay Diversity) algorithm that implements MIMO transmission mode 3 of the LTE stan-
dard. Open-loop precoding is designed for transmission in high-mobility scenarios and does
not rely on Precoder Matrix Indicator (PMI) by the mobile terminal. When the mobile terminal
moves rapidly, an open-loop approach works best, since the channel-state feedback from a pre-
vious subframe cannot accurately predict the channel quality in the current one. As a result, in
open-loop spatial multiplexing no explicit information regarding the precoder matrix is trans-
mitted from the base station to the mobile terminal. Instead, the precoder matrix is selected in a

MIMO 249

deterministic way that can be computed synchronously in both the transmitter and the receiver
in every subframe.

6.7.7.1 Open-Loop Precoding

In open-loop precoding, the transmitter and receiver do not communicate the choice of code-
book indices using a feedback loop. Instead, a predefined set of precoding matrix indices is
used, whcih is periodically updated in the transmitter and the receiver and is synchronized with
each transmitted sample.
The transmission rank for open-loop precoding can also vary, from a full rank down to a

minimum of two layers. When rank estimation results in a single layer, we switch from spatial
multiplexing to transmit diversity. For a mode 3 transmission, when the rank takes on a value
of 1, SFBC is used for two antennas and combined SFBC/FSTD for four.
The PrecoderMatrix function computes the precoder matrix (W), the diagonal matrix (D),

and the matrix of eigenvectors (U) for each sample of the input signal. The function takes as
input the sample index (n) and the number of layers (v). The codebook values are defined in
Reference [7].

Algorithm

MATLAB function

function [W, D, U] = PrecoderMatrix(n, v)

% LTE Precoder for PDSCH spatial multiplexing.

%#codegen

idx=mod(n-1,4);

switch v

case 1

W=complex(1,0);

U=W;D=W;

case 2

W=[1 0; 0 1];

U=(1/sqrt(2))*[1 1;1 exp(-1j*pi)];

D=[1 0;0 exp(-1j*pi*idx)];

case 4

k=1+mod(floor(n/4),4);

switch k

case 1, un = [1 -1 -1 1].';

case 2, un = [1 -1 1 -1].';

case 3, un = [1 1 -1 -1].';

case 4, un = [1 1 1 1].';

end

W = eye(4) - 2*(un*un')./(un'*un);

switch k % order columns

case 3

W = W(:, [3 2 1 4]);

case 2

250 Understanding LTE with MATLAB®

W = W(:, [1 3 2 4]);

end

a=[0*(0:1:3);2*(0:1:3);4*(0:1:3);6*(0:1:3)];

U=(1/2)*exp(-1j*pi*a/4);

b=0:1:3;

D=diag(exp(-1j*2*pi*idx*b/4));

end

The following MATLAB function shows the precoding operations used when open-loop
spatial multiplexing is selected as the mode of transmission. The function takes as input the
modulated symbols organized in layers (in), the precoder matrix index (cbIdx), and the PDSCH
parameter structure (prmLTEPDSCH). The output (out) is computed in three steps: (i) in the
processing loop for each sample of the input, the PrecoderMatrix function obtains the three
output matrices (W, D, U); (ii) the matrices are multiplied to obtain the transformation matrix
(T); (iii) finally, the input vector is precoded sample by sample by multiplying it with the
transformation matrix.

Algorithm

MATLAB function

function out = SpatialMuxPrecoder(in, prmLTEPDSCH)

% Precoder for PDSCH spatial multiplexing

%#codegen

% Assumes the incoming codewords are of the same length

v = prmLTEPDSCH.numLayers; % Number of layers

% Initialize the output

out = complex(zeros(size(in)));

inLen = size(in, 1);

% Apply the relevant precoding matrix to the symbol over all layers

for n = 1:inLen

% Compute the precoding matrix

[W, D, U] = PrecoderMatrix(n, v);

T=W *D*U;

temp = T* (in(n, :).');

out(n, :) = temp.';

end

6.7.7.2 MIMO Receiver Operations

The MIMO receiver function in open-loop spatial multiplexing is analogous to those used in
closed-loop spatial multiplexing. It takes as input the received signal (in), the channel matrix
(chEst), the PDSCH parameter structure (prmLTE), and the noise-variance vector (nVar).
Depending on the equalization mode specified (prmLTE.Eqmode), either of the functions
implementing a ZF, MMSE, or SD receiver is then called to generate the output signal (y).

MIMO 251

Algorithm

MATLAB function

function y = MIMOReceiver_OpenLoop(in, chEst, prmLTE, nVar)

%#codegen

v=prmLTE.numTx;

switch prmLTE.Eqmode

case 1 % ZF receiver

y = MIMOReceiver_ZF_OpenLoop(in, chEst, v);

case 2 % MMSE receiver

y = MIMOReceiver_MMSE_OpenLoop(in, chEst, nVar, v);

case 3 % Sphere Decoder

y = MIMOReceiver_SD_OpenLoop(in, chEst, prmLTE, nVar, v);

otherwise

error('Function MIMOReceiver: ZF, MMSE, Sphere decoder are only

supported MIMO detectors');

end

ZF Receiver
The following MATLAB function shows a MIMO receiver that employs a ZF receiver. The
function takes as input the received signal (in), the 2D channel matrix (chEst), and the number
of layers in this subframe (v). Based on the ZF equalization method, it generates as output (y)
the estimated modulated symbols in this subframe.

Algorithm

MATLAB function

function y = MIMOReceiver_ZF_OpenLoop(in, chEst, v)

%#codegen

% MIMO Receiver:

% Based on received channel estimates, process the data elements

% to equalize the MIMO channel. Uses the ZF detector.

% Get params

numData = size(in, 1);

y = complex(zeros(size(in)));

%% ZF receiver

for n = 1:numData

[W, D, U] = PrecoderMatrixOpenLoop(n, v);

iWn = (W *D*U)';

h = squeeze(chEst(n, :, :)); % numTx x numRx

h = h.'; % numRx x numTx

x = h \ (in(n, :).');

tmp = iWn * x;

y(n, :) = tmp.';

end

252 Understanding LTE with MATLAB®

MMSE Receiver
The following MATLAB function shows a MIMO receiver that employs a MMSE receiver.
The function input and output signatures are very similar to those for the ZF algorithm, but
with an additional input parameter corresponding to the noise variance (nVar) of the current
subframe.

Algorithm

MATLAB function

function y = MIMOReceiver_MMSE_OpenLoop(in, chEst, nVar, v)

%#codegen

% MIMO Receiver:

% Based on received channel estimates, process the data elements

% to equalize the MIMO channel. Uses the MMSE detector.

% noisFac = numLayers*diag(nVar);

noisFac = diag(nVar);

numData = size(in, 1);

y = complex(zeros(size(in)));

%% MMSE receiver

for n = 1:numData

[W, D, U] = PrecoderMatrixOpenLoop(n, v);

iWn = (W *D*U)'; % Orthonormal matrix

h = chEst(n, :, :); % numTx x numRx

h = reshape(h(:), v, v).'; % numRx x numTx

Q = (h'*h + noisFac)\h';

x = Q * in(n, :).';

tmp = iWn * x;

y(n, :) = tmp.';

end

SD Receiver
The following MATLAB function shows a MIMO receiver that employs an Sphere Decoder
(SD) receiver. The function input and output signatures are identical to those presented in the
MMSE case.

Algorithm

MATLAB function

function [y, bittable] = MIMOReceiver_SD_OpenLoop(in, chEst, prmLTE, nVar, v)

%#codegen

% MIMO Receiver:

% Based on received channel estimates, process the data elements

% to equalize the MIMO channel. Uses the Sphere detector.

MIMO 253

% Soft-Sphere Decoder

symMap=prmLTE.SymbolMap;

numBits=prmLTE.Qm;

constell=prmLTE.Constellation;

bittable = de2bi(symMap, numBits, 'left-msb');

nVar1=(-1/mean(nVar));

persistent SphereDec

if isempty(SphereDec)

% Soft-Sphere Decoder

SphereDec = comm.SphereDecoder('Constellation', constell,...

'BitTable', bittable, 'DecisionType', 'Soft');

end

% SSD receiver

temp = complex(zeros(size(chEst)));

% Account for precoding

for n = 1:size(chEst,1)

[W, D, U] =PrecoderMatrixOpenLoop(n, v);

iWn = (W *D*U).';

temp(n, :, :) = iWn * squeeze(chEst(n, :, :)) ;

end

hD = temp;

y = nVar1 * step(SphereDec, in, hD);

6.7.8 Downlink Transmission Mode 3

The third downlink transmission mode uses open-loop spatial multiplexing and is intended for
transmission in high-mobility scenarios. The following MATLAB function shows a transmit-
ter, receiver, and channel model for this mode featuring single-codeword spatial multiplexing.
Using multiple antennas at both the transmitter and the receiver, we showcase both 2× 2 and
4× 4 MIMO antenna configurations. The key components highlighted in the example include
the following:

• Generation of payload data for a single subframe (a transport block)
• DLSCH processing, as described earlier
• PDSCH transmitter processing, including bit-level scrambling, data modulation, layer map-

ping and precoding for two or four antennas, precoding for spatial multiplexing, resource-
element mapping, and OFDM signal generation

• Channel modeling, including a MIMO fading channel followed by an AWGN channel
• PDSCH receiver processing, including an OFDM signal receiver to generate the resource

grid, resource-element demapping to separate the CSR signal from the user data, channel
estimation, MIMO receiver and layer demapping, soft-decision demodulation, descram-
bling, and DLSCH decoding.

254 Understanding LTE with MATLAB®

Algorithm

MATLAB script

function [dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr_ref]...

= commlteMIMO_SM_Mode3_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl)

%% TX

persistent hPBer1

if isempty(hPBer1), hPBer1=comm.ErrorRate; end;

% Generate payload

dataIn = genPayload(nS, prmLTEDLSCH.TBLenVec);

% Transport block CRC generation

tbCrcOut1 =CRCgenerator(dataIn);

% Channel coding includes - CB segmentation, turbo coding, rate matching,

% bit selection, CB concatenation - per codeword

[data, Kplus1, C1] = lteTbChannelCoding(tbCrcOut1, nS, prmLTEDLSCH, prmLTEPDSCH);

%Scramble codeword

scramOut = lteScramble(data, nS, 0, prmLTEPDSCH.maxG);

% Modulate

modOut = Modulator(scramOut, prmLTEPDSCH.modType);

% Map modulated symbols to layers

numTx=prmLTEPDSCH.numTx;

LayerMapOut = LayerMapper(modOut, [], prmLTEPDSCH);

% Precoding

PrecodeOut = SpatialMuxPrecoderOpenLoop(LayerMapOut, prmLTEPDSCH);

% Generate Cell-Specific Reference (CSR) signals

csr = CSRgenerator(nS, numTx);

csr_ref=complex(zeros(2*prmLTEPDSCH.Nrb, 4, numTx));

for m=1:numTx

csr_ pre=csr(1:2*prmLTEPDSCH.Nrb,:,:,m);

csr_ref(:,:,m)=reshape(csr_ pre,2*prmLTEPDSCH.Nrb,4);

end

% Resource grid filling

txGrid = REmapper_mTx(PrecodeOut, csr_ref, nS, prmLTEPDSCH);

% OFDM transmitter

txSig = OFDMTx(txGrid, prmLTEPDSCH);

%% Channel

% MIMO Fading channel

[rxFade, chPathG] = MIMOFadingChan(txSig, prmLTEPDSCH, prmMdl);

% Add AWG noise

sigPow = 10*log10(var(rxFade));

nVar = 10.^(0.1.*(sigPow-snrdB));

rxSig = AWGNChannel(rxFade, nVar);

%% RX

% OFDM Rx

MIMO 255

rxGrid = OFDMRx(rxSig, prmLTEPDSCH);

% updated for numLayers -> numTx

[dataRx, csrRx, idx_data] = REdemapper_mTx(rxGrid, nS, prmLTEPDSCH);

% MIMO channel estimation

if prmMdl.chEstOn

chEst = ChanEstimate_mTx(prmLTEPDSCH, csrRx, csr_ref, prmMdl.chEstOn);

hD = ExtChResponse(chEst, idx_data, prmLTEPDSCH);

else

idealChEst = IdChEst(prmLTEPDSCH, prmMdl, chPathG);

hD = ExtChResponse(idealChEst, idx_data, prmLTEPDSCH);

end

% Frequency-domain equalizer

if (numTx==1)

% Based on Maximum-Combining Ratio (MCR)

yRec = Equalizer_simo(dataRx, hD,mean(nVar), prmLTEPDSCH.Eqmode);

else

% Based on Spatial Multiplexing

yRec = MIMOReceiver_OpenLoop(dataRx, hD, prmLTEPDSCH, nVar);

end

% Demap received codeword(s)

[cwOut, ̃] = LayerDemapper(yRec, prmLTEPDSCH);

if prmLTEPDSCH.Eqmode < 3

% Demodulate

demodOut = DemodulatorSoft(cwOut, prmLTEPDSCH.modType, mean(nVar));

else

demodOut = cwOut;

end

% Descramble received codeword

rxCW = lteDescramble(demodOut, nS, 0, prmLTEPDSCH.maxG);

% Channel decoding includes - CB segmentation, turbo decoding, rate dematching

[decTbData1, ̃,̃] = lteTbChannelDecoding(nS, rxCW, Kplus1, C1, prmLTEDLSCH,

prmLTEPDSCH);

% Transport block CRC detection

[dataOut, ̃] = CRCdetector(decTbData1);

end

6.7.8.1 Structure of the Transceiver Model

The MATLAB script below is the testbench that calls the MIMO transceiver function
commlteMIMO. First it calls the initialization function (commlteMIMO_initialize) to set
all relevant parameter structures (prmLTEDLSCH, prmLTEPDSCH, prmMdl). Then it uses
a while loop to perform subframe processing by calling the MIMO transceiver function
commlteMIMO_SM_Mode3_step. Finally, it computes the BER and calls the visualization
function to illustrate the channel response and modulation constellation before and after
equalization.

256 Understanding LTE with MATLAB®

Algorithm

MATLAB script

% Script for MIMO LTE (mode 3)

%

% Single or Two codeword transmission

%

clear all

clear functions

%% Set simulation parameters & initialize parameter structures

commlteMIMO_ params;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,

chanMdl, corrLvl, ...

chEstOn, numCodeWords, snrdB, maxNumErrs, maxNumBits);

clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter

fullDecode chanMdl corrLvl chEstOn numCodeWords snrdB maxNumErrs

maxNumBits

%%

disp('Simulating the LTE Mode 3: Multiple Tx & Rx antrennas with Spatial

Multiplexing');

zReport_data_rate(prmLTEPDSCH, prmLTEDLSCH);

hPBer = comm.ErrorRate;

snrdB=prmMdl.snrdB;

maxNumErrs=prmMdl.maxNumErrs;

maxNumBits=prmMdl.maxNumBits;

%% Simulation loop

tic;

nS = 0; % Slot number, one of [0:2:18]

Measures = zeros(3,1); %initialize BER output

while ((Measures(2)< maxNumErrs) && (Measures(3) < maxNumBits))

[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr] = ...

commlteMIMO_SM_Mode3_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH,

prmMdl);

% Calculate bit errors

Measures = step(hPBer, dataIn, dataOut);

% Visualize constellations and spectrum

if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);

end;

% Update subframe number

nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;

end

disp(Measures);

toc;

MIMO 257

6.7.8.2 Verifying Transceiver Performance

By executing the MATLAB script of the MIMO transceiver model (commlteMIMO) we can
examine various signals to assess the performance of the system. The parameters used in
simulation are summarized in the following MATLAB script (commlteMIMO_ params). This
parameter set copies the common MIMO parameters used in Section 6.7.1. The parameters
that are different reflect the use of spatial-multiplexing MIMOmode 3 with a single codeword
and of the MMSE equalizer for MIMO receiver processing. In this simulation, 1 million bits
of user data are processed, the SNR of the AWGN channel is set to 16 dB, and the visualization
function is turned on.

Algorithm

MATLAB script

% PDSCH

txMode = 3; % Transmission mode one of {1, 2, 4}

numTx = 2; % Number of transmit antennas

numRx = 2; % Number of receive antennas

chanBW = 4; % [1,2,3,4,5,6] maps to [1.4, 3, 5, 10, 15, 20]MHz

contReg = 1; % {1,2,3} for >=10MHz, {2,3,4} for <10Mhz

modType = 2; % [1,2,3] maps to ['QPSK','16QAM','64QAM']

% DLSCH

cRate = 1/3; % Rate matching target coding rate

maxIter = 6; % Maximum number of turbo decoding terations

fullDecode = 0; % Whether "full" or "early stopping" turbo decoding is performed

% Channel model

chanMdl = 'frequency-selective-high-mobility';

% one of {'flat-low-mobility', 'flat-high-mobility','frequency-selective-low-mobility',

% 'frequency-selective-high-mobility', 'EPA 0Hz', 'EPA 5Hz', 'EVA 5Hz', 'EVA 70Hz'}

corrLvl = 'Medium';

% Simulation parameters

Eqmode = 2; % Type of equalizer used [1,2,3] for ['ZF', 'MMSE','Sphere Decoder']

chEstOn = 1; % use channel estimation or ideal channel

snrdB = 16; % Signal to Noise Ratio in dB

maxNumErrs = 1e6; % Maximum number of errors found before simulation stops

maxNumBits = 1e6; % Maximum number of bits processed before simulation stops

visualsOn = 1; % Whether to visualize channel response and constellations

numCodeWords = 1; % Number of codewords in PDSCH

enPMIfback = 0; % Enable/Disable Precoder Matrix Indicator (PMI) feedback

cbIdx = 1; % Initialize PMI index

258 Understanding LTE with MATLAB®

Figure 6.17 LTE model: MIMO spatial-multiplexing constellation diagram of the user data before
and after equalization

Figure 6.17 shows the constellation diagrams before (first row) and after (second row) equal-
ization of user data obtained from each of the two receive antennas in a subframe. It shows
that the equalizer can compensate for the effect of a fading channel to result in a constellation
that more closely resembles that of the 16QAM modulator.
Figure 6.18 illustrates the spectra of user data obtained from each of the two receive

antennas in a subframe. It shows the transmitted signal and the received signal before
and after equalization. The received signal before equalization (showing the effects of

MIMO 259

Figure 6.18 LTE MIMO spatial-multiplexing spectra of the transmited signal and of the received
signal before and after equalization

frequency-selective fading) is effectively equalized by the open-loop spatial multiplexing
used in transmission mode 3 (showing a more frequency-flat nature), which closely resembles
the transmitted signal spectrum.

6.7.8.3 BER Measurements

In order to verify the BER performance of the transceiver, we create a testbench called
commlteMIMO_test_timing_ber, which first initializes the LTE system parameters and then
iterates through a range of SNR values and calls the commlteMIMO_ fcn function in the loop
in order to compute the corresponding BER values.

Algorithm

MATLAB script: commlteMIMO_test_timing_ber

% Script for MIMO LTE (mode 4)

%

% Single codeword transmission only

%

clear all

clear functions

%% Set simulation parameters & initialize parameter structures

commlteMIMO_ params;

maxNumErrs=5e7;

maxNumBits=5e7;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,

chanMdl, corrLvl, ...

260 Understanding LTE with MATLAB®

chEstOn, numCodeWords, enPMIfback, cbIdx, snrdB, maxNumErrs, maxNumBits);

clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter

fullDecode chanMdl corrLvl chEstOn numCodeWords enPMIfback cbIdx snrdB

maxNumErrs maxNumBits

%%

disp('Simulating the LTE Mode 3: Multiple Tx & Rx antrennas with Spatial Multiplexing');

zReport_data_rate(prmLTEPDSCH, prmLTEDLSCH);

%% Geerate code and setup parallelism

disp('Generating code for commlteMIMO_ fcn.m ...');

arg1=coder.Constant(prmLTEPDSCH);

arg2=coder.Constant(prmLTEDLSCH);

arg3=coder.Constant(prmMdl);

codegen commlteMIMO_ fcn -args {16, arg1, arg2, arg3} -report

disp('Done.');

parallel_setup;

%%

MaxIter=8;

snr_vector=getSnrVector(prmLTEPDSCH.modType, MaxIter);

ber_vector=zeros(size(snr_vector));

maxNumBits=prmMdl.maxNumBits;

tic;

parfor n=1:MaxIter

fprintf(1,'Iteration %2d out of %2d: Processing %10d bits. SNR = %3d\n', ...

n, MaxIter, maxNumBits, snr_vector(n));

[ber, ̃] = commlteMIMO_ fcn_mex(snr_vector(n), prmLTEPDSCH, prmLTEDLSCH,

prmMdl);

ber_vector(n)=ber;

end;

toc;

semilogy(snr_vector, ber_vector);

title('BER - commlteMIMO SM');xlabel('SNR (dB)');ylabel('ber');grid;

Figure 6.19 shows the BER of the transceiver as a function of the SNR values after processing
of 50 million bits of user data in each of eight iterations.

6.8 Chapter Summary

In this chapter we studied the multi-antenna MIMO techniques used in the LTE standard.
MIMO techniques are integral components of LTE. The nine distinct modes used in downlink
transmission, for example, are differentiated based on the choice of MIMO technique they
feature. We have focused on MIMO algorithms of the first four transmission modes of the
LTE standard and their modeling in MATLAB. These transmission modes exploit two algo-
rithms: (i) transmit diversity (such as SFBC) and (ii) spatial multiplexing, with or without
delay-diversity coding. Transmit-diversity techniques improve the link quality and reliabil-
ity but do not increase the data rate or spectral efficiency of a system. Spatial-multiplexing
techniques make possible a substantial boost in data rates.

MIMO 261

100

10−1

10−2

10−3

0 1 2 3 4

SNR (dB)

5 6 7 8 9

10−4

10−5

Β
ΕΡ

QPSK, 1/3 turbo coding, 10 MHz BW

BER performance of transmission mode 3 as a function of SNR

Figure 6.19 BER results: LTE mode 3 spatial-multiplexing single-codeword (2× 2) MIMO channel

We first examined the MIMO multipath fading channel models and then presented the func-
tional elements of MIMO transmission schemes that are common between transmit diversity
and spatial multiplexing. This involved making updates to the OFDM functional elements
presented in the previous chapter, due to the introduction of multiple antennas. Since LTE
is a MIMO–OFDM system, we essentially transformed the 2D time–frequency represen-
tation of data in a single-antenna scheme into a 3D time–frequency–space representation.
Updated commonMIMO algorithms included resource-element mapping, channel estimation,
and channel-response extraction.
Then we studied those functional elements that are different between transmit-diversity

and spatial-multiplexing MIMO techniques. The LTE standard refers to these transmitter-side
functional elements as layer-mapping and precoding operations. We examined the receiver-
side operations, which invert the transmitter-side operations in order to recover best estimates
of the 3D resource grid. We examined three MIMO receivers – ZF, MMSE, and SD algo-
rithms – that provide estimates of the transmitted data on multiple antennas at every subcarrier
at a given point in time.
Finally, we integrated all of the functional elements to create in MATLAB a transceiver

model for the second, third, and fourth transmission modes of the LTE standard. The second
transmission mode is based on transmit diversity, the third uses open-loop spatial multiplex-
ing, and the fourth uses closed-loop spatial multiplexing. Through simulations, we performed
both qualitative assessments and BER performance measurements. The results show that the
transceiver effectively combats the effects of intersymbol interference caused by multipath
fading, and depending on the mode it can achieve high data rates.

262 Understanding LTE with MATLAB®

References

[1] Dahlman, E., Parkvall, S. and Sköld, J. (2011) 4G LTE/LTE-Advanced for Mobile Broadband, Elsevier.
[2] Jafarkhani, H. (2005) Space-Time Coding; Theory and Practice, Cambridge University Press, Cambridge.
[3] 3GPP Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) Radio Transmission and

Reception, May 2011, TS 36.104.
[4] Scaglione, P., Stoica, S., Barbarossa, G. et al. (2002) Optimal designs for space-time linear precoders and

decoders. IEEE Transactions on Signal Processing, 50, 5, 1051–1064.
[5] Browne, M. and Fitz, M. (2006) Singular value decomposition of correlated MIMO channels. IEEE Global

Telecommunications Conference (GLOBECOM) 2006.
[6] Adhikari, S. (2011) Downlink transmission mode selection and switching algorithm for LTE. Proceedings of

3rd International Conference on Communication Systems and Networks (COMSNETS), January 2011.
[7] 3GPP (2011) Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation

V10.0.0. TS 36.211, January 2011.

7
Link Adaptation

So far we have studied the modulation, coding, scrambling, channel-modeling, multicarrier,
and multi-antenna transmission schemes used in the LTE (Long Term Evolution) standard.
We have examined in detail multiple MIMO (Multiple Input Multiple Output) transmission
modes, the best operating condition for each mode, and the peak data rates achievable for the
system. We have not yet examined the mechanisms involved in the transition between various
transmission modes or the criteria for these changes. In this chapter, we will overview the
dynamic nature of the LTE standard and the way in which it chooses various parameters in
order to optimize the spectral efficiency in time-varying channel conditions.
Spectral efficiency is an important measure used to evaluate the performance of mobile com-

munications systems. The LTE standard, for example, has specific requirements in terms of
average, cell-edge, and overall spectral efficiency relative to 3G (third-generation) standards
[1]. Spectral efficiency is defined as the average data rate per bandwidth unit (Hz) per cell. This
definition by itself reveals the tradeoffs involved in designing mobile systems. For a given
bandwidth allocation, you can increase the spectral efficiency by augmenting the data rate
through the use of higher-order modulation or higher-dimension MIMO techniques; in noisy
channel conditions, however, such a selection may increase the probability of error and thus
have a detrimental effect on the effective throughput.
In order to achieve the desired spectral efficiencies consistently, the 3G and 4G standards,

including the LTE, employ techniques that dynamically change system parameters based on
channel conditions. These techniques are generally known as channel-aware scheduling or link
adaptations.
The basic idea of link adaptation is to adapt certain transmission parameters to varying

channel conditions as they are monitored and measured by the system. Typical system param-
eters that are dynamically adapted include the system bandwidth, MIMO transmission modes,
the number of transmission layers, the precoding matrix, Modulation and Coding Schemes
(MCSs), and transmission power. With proper selection of these system parameters, we can
exploit bandwidth resources more effectively instead of using a fixed parameter set that pro-
vides the best performance only in a worst-case channel condition.

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

264 Understanding LTE with MATLAB®

In this chapter, we will first review various measurement made in the mobile receiver in order
to ascertain the channel conditions as a function of time. These include Channel Quality Indica-
tor (CQI), Precoder Matrix Indicator (PMI), and Rank Indicator (RI) measurements. Then we
will discuss adaptation techniques that respond to channel measurements and change various
system parameters to maintain a given measure of quality. These include adaptations of MCS,
adaptive precoding in closed-loop spatial multiplexing modes, and adaptive MIMO based on
rank estimation. Finally, we will provide a short overview of PUCCH (Physical Uplink Con-
trol Channel) and PDCCH Physical Downlink Control Channel, which enable communication
of the channel measurements and adaptive scheduling between the UE (User Equipment; the
mobile terminal) and the eNodeB (enhanced Node Base station).

7.1 System Model

Link adaptation is all about adapting to the channel conditions and changing system param-
eters based on actual channel quality. The LTE standard enables link adaptations that can
help us make use of the spectrum more efficiently. The cost associated with this adaptation
is the additional computational complexity involved in implementing link-aware schedulers.
Figure 7.1 illustrates the typical operations involved in link adaptation, which are subdivided
into downlink and uplink operations.

Downlink Downlink

Uplink
Uplink

Channel

Channel

Frame (n)

Downlink Frame (n+1)

Frame (n)

PDSCH

PDCCH

PUCCH

PDSCH

PDCCH

CQI, PMI, RI

CQI, PMI, RI

PUSCH

Figure 7.1 Sequence of downlink and uplink operations involved in link adaptations

Link Adaptation 265

The series of operations performed in a typical link adaptation scenario can be summarized
as follows:

1. At subframe (n), the downlink transmitter forms the resource grid from the user data
(PDSCH, Physical Downlink Shared Channel) and the Downlink Control Information,
DCI (the PDCCH). The DCI contains the scheduling assignments that help the mobile
receiver correctly decode the subframe information. The information contained in the
PDCCH includes the MCSs, the precoder matrix, rank information, and the MIMO mode
used.

2. The mobile receiver can then perform the critical step of channel condition measurement
as part of the process of decoding the received resource grid. In this process, it estimates
the received channel matrix and performs various channel quality measurements. These
measurements include the CQI, the PMI, and the RI.

3. As part of uplink transmission, the mobile (UE) transmitter may embed the channel quality
measures within the PUCCH and transmit to the base station (eNodeB) as a closed-loop
feedback mechanism.

4. The base station (eNodeB) receiver can then decode the PUCCH information to obtain
channel measurements. Having this information available enables the system scheduler to
decide whether or not to adapt various system parameters in the next frame as a result of
feedback received from downlink channel quality.

5. At the base station (eNodeB) in the downlink transmitter operations for the next sub-
frame (n+ 1), the scheduling decisions based on channel conditions are encoded into the
PDCCH information and transmitted to the mobile. These include the newMCSs, precoder
matrix, rank information, and MIMO mode that are now adapted based on the actual chan-
nel quality in the last subframe (n). This full feedback process is then repeated for each
subframe.

7.2 Link Adaptation in LTE

To enable dynamic changes to MCSs and for proper operation of MIMO schemes, the LTE
standard provides mechanisms that enable information regarding the channel characteristics
to be measured by the mobile unit (UE). This information is then fed back to the base station
(eNodeB) to help with scheduling and link adaptation.
At the mobile receiver, three types of channel-state report are generated and transmitted to

the base station:

1. The CQI, a measure of downlink radio channel quality that specifies the best modulation
constellation and coding rate to match the link quality.

2. The PMI, a measure that indicates the best set of precoding matrices for use in closed-loop
single- and multi-user spatial multiplexing modes of the LTE standard.

3. The RI, which signals the number of useful transmission layers that can be used by the
transmitter in spatial multiplexing modes.

Next we will discuss each of these reports in detail and provide an overview of various
methodologies used in computing these measures.

266 Understanding LTE with MATLAB®

7.2.1 Channel Quality Estimation

The CQI report gives a measure of the mobile radio channel quality. It provides a recommen-
dation concerning the best MCS for the communication channel. The value of this measure is
computed such that the transport block error rate using this recommendation will not exceed
10%. The higher the value of the CQI measure, the higher the modulation order and the higher
the coding rate. There are two types of CQI report, based on their granularity: a wideband
CQI report assigns a single MCS value for the whole system bandwidth, while a subband CQI
report assigns multiple MCS values to different contiguous resource blocks.
There are many formulations for optimal MCS selection in the literature [2–6]. Most of

these techniques select the best MCS as a function of the post-detection SINR (Signal-to-
Interference and Noise Ratio) measure. This measure is selected such that the Packet Error
Rate (PER) experienced in the transmission is less than a given target. This in turn allows the
system to avoid frequent retransmissions. The best MCS recommendation can ultimately be
selected by quantizing the SINR value using a codebook lookup table [2].

7.2.2 Precoder Matrix Estimation

The PMI report provides a preferred precoding codebook index for use in closed-loop spatial
multiplexing of downlink transmission. Like CQI reports, a PMI report can be a single wide-
band value or multiple subband values. Multiple approaches to PMI selection are discussed
in the literature. A summary of typical selection criteria is presented in Reference [7]. These
criteria differ based on the metrics that are optimized. Approaches to optimal selection include
minimization of singular values and minimization of the Mean Squared Error (MSE) or the
capacity.

7.2.3 Rank Estimation

The rank estimation measure (RI) denotes the number of transmission layers or independent
data streams for a spatial multiplexing system. Multiple approaches to estimating the rank of
the channel matrix are available in the literature, with differing profiles of performance and
complexity. Some of these approaches [8] perform the selection based on the post-detection
SINR, the same measure used for the MCS selection. Others maximize the mutual infor-
mation between the transmitted and post-detection signals and therefore directly maximize
the capacity [11]. Another, less complex technique exploits the eigenvalues of the channel
matrix [7].

7.3 MATLAB® Examples

In this section, we review various MATLAB algorithms used to generate channel-state reports
in the receiver. As receiver operations are not specified in the standard, our guiding principles
in choosing these algorithms are reasonable computational complexity and suitability for the
single-user case. The algorithms featured here provide a starting point and showcase a general

Link Adaptation 267

framework for the implementation of channel-state measurements and link adaptations of the
LTE PHY (Physical Layer) model in MATLAB.

7.3.1 CQI Estimation

The two MATLAB functions in this section implement the channel quality estimation (CQI)
measure based on the SINR of the MIMO receiver output and the transmitted signal. The CQI
estimation is performed in two steps:

1. SINR estimation: The SINR measure is computed as a function of the decoded bits in the
receiver and the MIMO receiver output

2. Spectral efficiency lookup: The computed SINR values are mapped to a spectral efficiency
measure defined as the product of the number of modulated bits per symbol and the cod-
ing rate. For each SINR measure, distinct modulation schemes and coding rates are found
through a table lookup.

7.3.1.1 SINR Estimation

Let us define G as the optimum equalizer that transforms the received signal Y(n) into the
equalized signal X̂(n) as the best linear estimate of the transmitted signal X(n). The error signal
e(n) is then expressed as:

e(n) = X̂(n) − X(n) = GY(n) − X(n) (7.1)

For the CQI estimation, we compute a very simplified approximation of the SINR measure,
defined as the ratio of the transmitted signal power 𝜎2

x to the error signal power 𝜎
2
e .

SINR = 10 log10

(
𝜎2
x

𝜎2
e

)
(7.2)

The following function (CQIselection.m) computes the SINR measure, taking as inputs the
decoded bits at the receiver (bits), the post-detection MIMO receiver output (equalized), the
current subframe number (nS), and the PDSCH and DLSCH (Downlink Shared Channel Pro-
cessing) parameter structures (prmLTEDLSCH, prmLTEPDSCH). The function output (sinr)
is the SINR estimate. Note that to compute the SINR we need the best estimate of the trans-
mitted signal X(n), which is denoted by the variable modOut in the function. The function
computes this signal by operating on the decoded bits at the receiver (input variable bits). The
receiver output bits are best estimates of the transmitted input bits in every subframe. We have
used this signal throughout this book to compute and monitor the bit-error rate of the sys-
tem. The function applies the first few functions of the transmitter on this signal in order to
compute the best estimate of the modulated signal. These operations are CRC (Cyclic Redun-
dancy Check) attachment, channel coding, scrambling, and modulation. Finally, it computes
the SINR measure, as defined by Equation 7.2.

268 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function sinr=CQIselection(bits, equalized, nS, prmLTEDLSCH, prmLTEPDSCH)
%#codegen
tbCrcOut1 =CRCgenerator(bits);
% Channel coding includes - CB segmentation, turbo coding, rate matching,
% bit selection, CB concatenation - per codeword
data = lteTbChannelCoding(tbCrcOut1, nS, prmLTEDLSCH, prmLTEPDSCH);
%Scramble codeword
scramOut = lteScramble(data, nS, 0, prmLTEPDSCH.maxG);
% Modulate
modOut = Modulator(scramOut, prmLTEPDSCH.modType);
error=modOut-equalized;
sinr=10*log10(var(modOut)./var(error));

7.3.1.2 Spectral Efficiency Lookup

The following function implements a transformation that maps the SINR estimate (input vari-
able sinr) to the proposed modulation scheme and the coding rate (output variables Ms and
Cr, respectively). Using a 4 bit (16-interval) scalar quantizer, we first map the SINR values to
a CQI index. The dsp.ScalarQuantizerEncoder System object of the DSP System Toolbox is
used here to perform the mapping operation. The threshold values correspond to the boundary
points of the scalar quantizer. Since the quantizer is defined as unbounded (input values have
a range from −inf to +inf), only 15 threshold values are needed to subdivide the real axis into
16 regions represented by four CQI bits. The threshold values mapping the SINR values to the
spectral efficiency are based on a simple lookup table [9].

Algorithm

MATLAB function

function [Ms, Cr]=CQI2indexMCS(sinr)
%#codegen
% Table of SINR threshold values, 15 boundary points for an unbounded quantizer
thresh=[-6.7,-4.7,-2.3,0.2,2.4,4.3,5.9,8.1,10.3,11.7,14.1,16.3,18.7,21,22.7];
% Table of coding rate (16 value)
Map2CodingRate=[0.076, 0.076, 0.117, 0.188, 0.301, 0.438, 0.588, 0.369, 0.479,...
0.602, 0.455, 0.554, 0.650, 0.754, 0.853, 0.926];
% Table of modulation type (1=QPSK, 2=QAM16, 3=QAM64)
Map2Modulator=[1*ones(7,1);2*ones(3,1);3*ones(6,1)];
persistent hQ
if isempty(hQ)

hQ=dsp.ScalarQuantizerEncoder(...
'Partitioning', 'Unbounded',...

Link Adaptation 269

'BoundaryPoints', thresh,...
'OutputIndexDataType','uint8');

end;
indexCQI=step(hQ, sinr);
index1=indexCQI+1; % 1-based indexing
% Map CQI index to modulation type
Ms = Map2Modulator (index1);
% Map CQI index to coding rate
Cr = Map2CodingRate (index1);
if Cr < 1/3, Cr=1/3;end;

In order to compute the modulation scheme (Ms) and the coding rate (Cr) outputs, we per-
form a table lookup operation with the CQI index. For the first seven values of the CQI index
(indices 0–6), we map to a QPSK (Quadrature Phase Shift Keying) modulation with a mod-
ulation rate of 2 bits per symbol. The next three CQI indices (7, 8, and 9) are mapped to
the 16QAM (Quadrature Amplitude Modulation) modulator with a modulation rate of 4 bits
per symbol. Finally, the last six CQI indices (10–15) are mapped to 64QAM with a 6-bits-
per-symbol modulation rate. Technically, the CQI index 0 signals an out-of-range message
and does not participate in modulation mapping. For simplicity, we include this index in
our MATLAB function with the QPSK set. Note also that the 16 mapping values for the
coding-rate (Cr) mapping of spectral efficiency measures to modulation and coding rates
are specified by the LTE standard document [10]. The combined information is provided
in Table 7.1.

Table 7.1 Lookup table for mapping SINR estimate to modulation scheme and coding rate

CQI index Modulation Coding rate Spectral efficiency (bps/Hz) SINR estimate (dB)

1 QPSK 0.0762 0.1523 −6.7
2 QPSK 0.1172 0.2344 −4.7
3 QPSK 0.1885 0.3770 −2.3
4 QPSK 0.3008 0.6016 0.2

5 QPSK 0.4385 0.8770 2.4

6 QPSK 0.5879 1.1758 4.3

7 16QAM 0.3691 1.4766 5.9

8 16QAM 0.4785 1.9141 8.1

9 16QAM 0.6016 2.4063 10.3

10 64QAM 0.4551 2.7305 11.7

11 64QAM 0.5537 3.3223 14.1

12 64QAM 0.6504 3.9023 16.3

13 64QAM 0.7539 4.5234 18.7

14 64QAM 0.8525 5.1152 21.0

15 64QAM 0.9258 5.5547 22.7

270 Understanding LTE with MATLAB®

7.3.2 PMI Estimation

TheMATLAB function in this section implements a PMI codebook index selection. It employs
theMinimumMean Squared Error (MMSE) criterion to calculate as the output (cbIdx) the PMI
codebook index per subframe. The input arguments of the function include the 3D channel
matrix at the receiver (h), a Boolean signal indicating whether or not PMI closed-loop feedback
is performed (enPMIfback), the number of transmit antennas (numTx), the number of layers
(that is to say, the number of operational transmit antennas with sufficient rank) (numLayers),
and the noise variance (nVar). If the PMI closed-loop feedback is turned off, the function has as
output a constant value of 1 for the codebook index. Otherwise, it computes a single codebook
index for each subframe by minimizing a distance measure.

Algorithm

MATLAB function

function cbIdx = PMICbSelect(h, enPMIfback, numTx, numLayers, nVar)
%#codegen
% Codebook selection using minimum MSE criterion
if (enPMIfback)

if (numTx == 2)
cbLen = 2; % Only indices 1 and 2 are used for 2-layer closed-loop Spatial MUX
MSEcb = zeros(cbLen, 1);
for cbIdx = 1:cbLen

Wn = PrecoderMatrix(cbIdx, numTx, numLayers);
MSEcb(cbIdx) = Sinr_MMSE(h, nVar, Wn);

end
[̃, cbIdx] = min(MSEcb); % 0-based, note 0 and 3 are not used

else % for numTx=4
cbLen = 2^numLayers;
MSEcb = zeros(cbLen, 1);
for cbIdx = 1:cbLen

Wn = PrecoderMatrix(cbIdx-1, numTx, numLayers);
MSEcb(cbIdx) = Sinr_MMSE(h, nVar, Wn);

end
[̃, cbIdx] = min(MSEcb); % 1-based
cbIdx = cbIdx-1; % 0-based

end
else

cbIdx = 1;
end
end
% Helper function
function out = Sinr_MMSE(chEst, nVar, Wn)
%#codegen
% post-detection SNR computation
% Based on received channel estimates

Link Adaptation 271

% Per layer noise variance
% Precoder matrix
% Uses the MMSE detector.
% Get params
persistent Gmean
if isempty(Gmean), Gmean=dsp.Mean('RunningMean', true);end
noisFac = diag(nVar);
numData = size(chEst, 1);
numLayers = size(Wn,1);
F = inv(Wn);
%% MMSE receiver
for n = 1:numData

h = chEst(n, :, :); % numTx x numRx
h = reshape(h(:), numLayers, numLayers).'; % numRx x numTx
Ht= inv((F'*(h'*h)*F) + noisFac);
% Post-detection SINR
g=real((1./(diag(Ht).*(nVar.')))-1);
Gamma=step(Gmean,g);

end
out=mean(Gamma);
reset(Gmean);
end

The measure chosen here is the MSE between the post-detection MIMO receiver estimate
and the transmitted modulator. This measure is formulated as a quadratic form involving the
MIMO channel matrix and the precoder matrix. Each precoder matrix is computed by iter-
ating through all PMI codebook entries; in other words, through a full search. This measure
is computed for each codebook index and for each time sample (first dimension) of the 3D
channel matrix. The codebook index that minimizes the MSE measure is the selected code-
book index output. Note that for a four-antenna transmission, we have to search through
16 codebook indices, and for a two-antenna case, a subset of a codebook represented by a
2 bit index.

7.3.3 RI Estimation

The MATLAB function in this section implements an RI estimation algorithm based on the
condition number of the channel matrix. The condition number is defined as the ratio of maxi-
mum and minimum eigenvalues of the channel matrix. It is a good indicator of the accuracy of
matrix inversion and of the availability of a solution for a system of linear equation. Condition
number values near 1 indicate a well-conditioned matrix, whereas very high values indicate
an ill-conditioned matrix, for which the system of linear equations associated with the mea-
sure cannot be solved. A simple call to the cond function in MATLAB provides us access to a
numerically reliable condition number for the channel matrix.

272 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function y = RIestimate(Q)
%#codegen
y=cond(Q); % Condition number of a matrix

The rank estimation operation must be performed in the receiver on each 2D channel matrix.
This 2D matrix is a sample of the 3D channel matrix computed at each sample time (the first
dimension). Therefore, the best place to perform the operation is within the for loop of MIMO
receiver operation, where we iterate through the first dimension of the 3D channel matrix to
compute the post-detection MIMO receiver output sample by sample. As a result, we need to
modify our MIMO receiver functions to include the rank estimation within the body of the
function and to provide the estimates as an additional output.

7.3.3.1 RI Computation in MIMO Receiver Functions

The following MIMO receiver functions have been updated to include the rank estimation
within their processing loop. In Chapter 6, we developed three differentMIMO receivers based
on either a Zero-Forcing (ZF), an MMSE, or a Sphere Decoder (SD) algorithm.
The following function computes the RI estimate sample by sample inside the ZF MIMO

receiver. The rank estimation output (ri) is a column vector composed of all condition numbers
computed forMIMO channels, with one value per sample of post-detection receiver output (y).

Algorithm

MATLAB function

function [y, ri] = MIMOReceiver_ZF(in, chEst, Wn)
%#codegen
% MIMO Receiver:
% Based on received channel estimates, process the data elements
% to equalize the MIMO channel. Uses the ZF detector.
% Get params
numData = size(in, 1);
y = complex(zeros(size(in)));
ri=zeros(numData,1);
iWn = inv(Wn);
%% ZF receiver
for n = 1:numData

h = squeeze(chEst(n, :, :)); % numTx x numRx
h = h.'; % numRx x numTx

ri(n) = RIestimate(h);

Link Adaptation 273

Q = inv(h);
x = Q * in(n, :).';%#ok
tmp = iWn * x; %#ok
y(n, :) = tmp.';

end

Similarly, the following function computes the RI estimator output (ri) sample by sample
inside theMMSEMIMO receiver. The rank estimation output (ri) is a column vector composed
of all condition numbers computed for MIMO channels, with one value per sample of post-
detection receiver output (y).

Algorithm

MATLAB function

function [y, ri] = MIMOReceiver_MMSE(in, chEst, nVar, Wn)
%#codegen
% MIMO Receiver:
% Based on received channel estimates, process the data elements
% to equalize the MIMO channel. Uses the MMSE detector.
% Get params
numLayers = size(Wn,1);
% noisFac = numLayers*diag(nVar);
noisFac = diag(nVar);
numData = size(in, 1);
y = complex(zeros(size(in)));
ri=zeros(numData,1);
iWn = inv(Wn);
%% MMSE receiver
for n = 1:numData

h = chEst(n, :, :); % numTx x numRx
h = reshape(h(:), numLayers, numLayers).'; % numRx x numTx
ri(n) = RIestimate(h);
Q = (h'*h + noisFac)\h';
x = Q * in(n, :).';
tmp = iWn * x; %#ok
y(n, :) = tmp.';

end

Finally, the following function computes the RI estimator output (ri) sample by sample inside
the sphere-decoder MIMO receiver. The rank estimation output (ri) is a column vector com-
posed of all condition numbers computed for MIMO channels, with one value per sample of
post-detection receiver output (y).

274 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function [y, ri, bittable] = MIMOReceiver_SphereDecoder(in, chEst, prmLTE, nVar, Wn)
%#codegen
% MIMO Receiver:
% Based on received channel estimates, process the data elements
% to equalize the MIMO channel. Uses the Sphere detector.
% Soft-Sphere Decoder
symMap=prmLTE.SymbolMap;
numBits=prmLTE.Qm;
constell=prmLTE.Constellation;
bittable = de2bi(symMap, numBits, 'left-msb');
iWn=Wn.';
nVar1=(-1/mean(nVar));
ri=zeros(numData,1);
persistent SphereDec
if isempty(SphereDec)

% Soft-Sphere Decoder
SphereDec = comm.SphereDecoder('Constellation', constell,...

'BitTable', bittable, 'DecisionType', 'Soft');
end
% SSD receiver
temp = complex(zeros(size(chEst)));
% Account for precoding
for n = 1:size(chEst,1)

h= squeeze(chEst(n, :, :));
temp(n, :, :) = iWn * h;
ri(n) = RIestimate(h);

end
hD = temp;
y = nVar1 * step(SphereDec, in, hD);

The following function uses a threshold approach to update the transmission mode as a func-
tion of an average rank estimation measure.

Algorithm

MATLAB function

function y=RIselection(ri, threshold)
Ri=mean(ri);
% RI estimation
if Ri > threshold, y = 4; else y=2; end

Link Adaptation 275

7.4 Link Adaptations between Subframes

In Sections 7.5–7.8, we look at various ways of using the Channel-State Information (CSI:
CQI, PMI, and RI estimates) to adapt various transceiver parameters in successive subframes.
In this section we highlight what can be regarded as some very simple scheduling scenar-
ios. These algorithms are meant to provide a framework for the implementation of adaptation
algorithms in MATLAB. In most realistic implementations, however, scheduling decisions are
based on algorithms that take into account a variety of factors, including the CSI, quality of
service, and type of data being transmitted.
In the following link adaptation exercises, we let the channel-estimate measures directly

affect the scheduled system parameters of the following subframe. In all cases we apply a
given adaptation to all resource blocks of the following subframe. This is known as a wideband
adaptation. Alternatively, the LTE standard allows different adaptations to be set to different
resource blocks in each subframe. This is known as a subband adaptation. In order to reduce
the complexity of the algorithm, subband adaptations are not featured in this chapter.
Next, we show four types of adaptation applied to a single-codeword closed-loop spatial mul-

tiplexing system (single-codeword model for LTE transmission mode 4). We will first show an
adaptive modulation and then an adaptive modulation and coding mechanism by using the CQI
measure. Then we will combine adaptive modulation and coding with adaptive precoder selec-
tion based on the PMI measure. Finally, we will combine all adaptations by adding adaptive
layer mapping using the RI measure.

7.4.1 Structure of the Transceiver Model

The following MATLAB script is the testbench calling the MIMO transceiver function. First
it calls the initialization function (commlteMIMO_initialize) to set all the relevant parameter
structures (prmLTEDLSCH, prmLTEPDSCH, prmMdl), then it uses a while loop to perform
subframe processing by calling the MIMO transceiver function.

Algorithm

MATLAB script

% Script for MIMO LTE (mode 4)
%
% Single codeword transmission
%
clear functions
%% Set simulation parameters & initialize parameter structures
commlteMIMO_ params;
[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,
chanMdl, Doppler, corrLvl, ...

chEstOn, numCodeWords, enPMIfback, cbIdx, snrdB, maxNumErrs, maxNumBits);
clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter
fullDecode chanMdl Doppler corrLvl chEstOn numCodeWords enPMIfback cbIdx snrdB
maxNumErrs maxNumBits

276 Understanding LTE with MATLAB®

%%
disp('Simulating the LTE Mode 4: Multiple Tx & Rx antennas with Spatial Multiplexing');
zReport_data_rate(prmLTEPDSCH, prmLTEDLSCH);
hPBer = comm.ErrorRate;
snrdB=prmMdl.snrdB;
maxNumErrs=prmMdl.maxNumErrs;
maxNumBits=prmMdl.maxNumBits;
%% Simulation loop
nS = 0; % Slot number, one of [0:2:18]
Measures = zeros(3,1); %initialize BER output
while (Measures(3) < maxNumBits)

% Insert one subframe step processing
%% including adaptations here

end
BER=Measures(1);
BITS=Measures(3);

Note that we have left the body of the while loop as a placeholder. In this script, in place of
commented lines that read “Insert one subframe step processing including adaptations here,”
we will place three different code segments that implement the three different adaptation
scenarios.

7.4.2 Updating Transceiver Parameter Structures

The following function implements the adaptation mechanism by updating the three parameter
structures (prmLTEDLSCH, prmLTEPDSCH, prmMdl) used in transceiver models. It takes as
input the initial parameter structures (given as input arguments p1, p2, and p3) and a variable
number of additional input arguments. As output it generates the updated parameter structures.
If only one more input argument is given besides the parameter structures (p1, p2, and p3),

we update the modulation scheme by setting the (modType) parameter. If two additional input
arguments are given, the first updates themodulation scheme and the second updates the coding
rate (cRate). So far we have only used the CQI measures for adaptive modulation and coding.
With three additional input arguments, besides updating modType and cRate we also adapt the
PMI codebook index (cbIdx). Finally, by providing four additional input arguments we adapt
all parameters, including the final one (txMode), which determines whether we are using a
spatial-multiplexing mode (txMode= 4) or a transmit-diversity mode (txMode= 2).

Algorithm

MATLAB function

function [p1, p2, p3] = commlteMIMO_update(p1,p2, p3, varargin)
switch nargin

case 1, modType=varargin{1}; cRate=p2.cRate; cbIdx=p3.cbIdx; txMode=p1.txMode;

Link Adaptation 277

case 2, modType=varargin{1}; cRate=varargin{2}; cbIdx=p3.cbIdx; txMode=p1.txMode;
case 3, modType=varargin{1}; cRate=varargin{2}; cbIdx=varargin{3};

txMode=p1.txMode;
case 4, modType=varargin{1}; cRate=varargin{2}; cbIdx=varargin{3};

txMode=varargin{4};
otherwise

error('commlteMIMO_update has 1 to 4 arguments!');
end
% Update PDSCH parameters
tmp = prmsPDSCH(txMode, p1.chanBW, p1.contReg, modType,p1.numTx, p1.numRx, ...

p1.numCodeWords,p1.Eqmode);
p1=tmp;
[SymbolMap, Constellation]=ModulatorDetail(p1.modType);
p1.SymbolMap=SymbolMap;
p1.Constellation=Constellation;
% Update DLSCH parameters
p2 = prmsDLSCH(cRate, p2.maxIter, p2.fullDecode, p1);
% Update channel model parameters
tmp = prmsMdl(txMode, p1.chanSRate, p3.chanMdl, p3.Doppler, p1.numTx, p1.numRx, ...

p3.corrLvl, p3.chEstOn, p3.enPMIfback, cbIdx, p3.snrdB, p3.maxNumErrs,
p3.maxNumBits);
p3=tmp;

7.5 Adaptive Modulation

In this section we take advantage of the CQI channel-state report to adaptively change
the modulation scheme of the transceiver in successive subframes. We implement a wideband
modulation selection, in which in any given subframe all resource blocks will have the same
modulation scheme and the change occurs between subframes.
To understand the design tradeoffs, we need to compare adaptive modulation with alterna-

tive implementations. We feature three algorithms that apply different adaptation scenarios:
(i) baseline (with no adaptation), (ii) adaptation through random changing of the modulation
type, and (iii) adaptation by exploitation of the CQI channel measurements. Next we show the
operations performed in each scenario in the body of the processing while loop.

7.5.1 No Adaptation

The followingMATLAB script segment shows the body of the processing while loop. Without
any link adaptation, the while loop includes only five operations: (i) calling the transceiver step
function to process one subframe of data; (ii) reporting the average and instantaneous data rates
together with average values of the coding rate and the modulation rate (number of modulation
bits per symbol); (iii) measuring the BER (Bit Error Rate); (iv) visualizing the post-detection
received signals and the transmitted and received OFDM (Orthogonal Frequency Division
Multiplexing) signals; and (v) updating the subframe number.

278 Understanding LTE with MATLAB®

Algorithm

MATLAB script segment

%% One subframe step processing
[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr] = ...

commlteMIMO_SM_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);
%% Report average data rates

ADR=zReport_data_rate_average(prmLTEPDSCH, prmLTEDLSCH);
%% Calculate bit errors
Measures = step(hPBer, dataIn, dataOut);
%% Visualize results
if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);
end;
% Update subframe number
nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;
%% No adaptations here

7.5.2 Changing the Modulation Scheme at Random

The following MATLAB script segment shows the body of the processing while loop. In addi-
tion to operations performed in the case of no adaptations, thewhile loop includes the following
two operations: (i) it assigns to the modulation-type parameter (modType) a random integer
value of 1, 2, or 3, corresponding to QPSK, 16QAM, and 64QAM, respectively; and (ii) it
calls the commlteMIMO_update function, which updates and recomputes all LTEPDSCH and
LTEDLSCH parameters based on the new modulation type.

Algorithm

MATLAB script segment

%% One subframe step processing
[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr] = ...

commlteMIMO_SM_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);
%% Report average data rates

ADR=zReport_data_rate_average(prmLTEPDSCH, prmLTEDLSCH);
%% Calculate bit errors
Measures = step(hPBer, dataIn, dataOut);
%% Visualize results
if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);
end;
% Change of modulation scheme randomly
modType=randi([1 3],1,1);

Link Adaptation 279

[prmLTEPDSCH, prmLTEDLSCH] = commlteMIMO_update(prmLTEPDSCH, prmLT-
EDLSCH, modType);

% Update subframe number
nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;
%% No adaptations here

7.5.3 CQI-Based Adaptation

The following MATLAB script segment shows the body of the processing while loop. In addi-
tion to operations performed in the case of no adaptations, thewhile loop contains the following
four adaptation operations: (i) CQI measure reporting, which computes the SINR measure by
calling the CQIselection function; (ii) new modulation-type selection, carried out by calling
the CQI2indexMCS function that maps the SINR measure into a modulation type; (ii) calling
the commlteMIMO_update function that updates and recomputes LTEPDSCH, LTEDLSCH,
and prmMdl parameters based on the new modulation type; and (iv) visualizing the variations
in the channel quality with time by calling the zVisSinr function that plots the present and the
24 past values of the SINR measure.

Algorithm

MATLAB script segment

%% One subframe step processing
[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr] = ...

commlteMIMO_SM_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);
%% Report average data rates
ADR=zReport_data_rate_average(prmLTEPDSCH, prmLTEDLSCH);
%% CQI feedback
sinr=CQIselection(dataOut, yRec, nS, prmLTEDLSCH, prmLTEPDSCH);
indexMCS=CQI2indexMCS(sinr);
%% Calculate bit errors
Measures = step(hPBer, dataIn, dataOut);
%% Visualize results
if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);
zVisSinr(sinr);

end;
% Update subframe number
nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;
% Adaptive change of modulation
modType=indexMCS;
[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_update

(prmLTEPDSCH, prmLTEDLSCH, prmMdl, modType);

280 Understanding LTE with MATLAB®

7.5.4 Verifying Transceiver Performance

The parameters used in simulation are summarized in the following MATLAB script, called
commlteMIMO_params. During the simulation, all of these parameters remain constant except
for the modulation scheme specified by the variable modType.

Algorithm

MATLAB script

% PDSCH
txMode = 4; % Transmission mode one of {1, 2, 4}
numTx = 2; % Number of transmit antennas
numRx = 2; % Number of receive antennas
chanBW = 6; % [1,2,3,4,5,6] maps to [1.4, 3, 5, 10, 15, 20]MHz
contReg = 1; % {1,2,3} for >=10MHz, {2,3,4} for <10Mhz
modType = 3; % [1,2,3] maps to ['QPSK','16QAM','64QAM']
% DLSCH
cRate = 1/3; % Rate matching target coding rate
maxIter = 6; % Maximum number of turbo decoding iterations
fullDecode = 0; % Whether "full" or "early stopping" turbo decoding is performed
% Channel
chanMdl = 'frequency-selective'; % Channel model
Doppler = 70; % Average Doppler shift
% one of {'flat-low-mobility', 'flat-high-mobility','frequency-selective-low-mobility',
% 'frequency-selective-high-mobility', 'EPA 0Hz', 'EPA 5Hz', 'EVA 5Hz', 'EVA 70Hz'}
corrLvl = 'Medium';
% Simulation parameters
Eqmode = 2; % Type of equalizer used [1,2,3] for ['ZF', 'MMSE','Sphere Decoder']
chEstOn = 1; % use channel estimation or ideal channel
snrdB = 20; % Signal to Noise Ratio in dB
maxNumErrs = 2e7; % Maximum number of errors found before simulation stops
maxNumBits = 2e7; % Maximum number of bits processed before simulation stops
visualsOn = 0; % Whether to visualize channel response and constellations
numCodeWords = 1; % Number of codewords in PDSCH
enPMIfback = 0; % Enable/Disable Precoder Matrix Indicator (PMI) feedback
cbIdx = 1; % Initialize PMI index

The function zReport_data_rate_average reports the average and instantaneous values of
data rates, the coding rate, and the modulation rate. The average values are computed as run-
ning means by the dsp.Mean System object of the DSP System Toolbox. The instantaneous
data rate is computed as the sum of input bits in all 10 subframes of a frame multiplied by a
constant factor of 100 frames per second.

Link Adaptation 281

Algorithm

MATLAB function

function t = zReport_data_rate_average(p2, p1)
persistent Rmean Rmod Rcod
if isempty(Rmean), Rmean=dsp.Mean('RunningMean', true);end
if isempty(Rmod), Rmod=dsp.Mean('RunningMean', true);end
if isempty(Rcod), Rcod=dsp.Mean('RunningMean', true);end
y=(1/10.0e-3)*(p1.TBLenVec(1)+p1.TBLenVec(2)+8*p1.TBLenVec(3));
z=y/1e6;
t=step(Rmean,z);
mm=step(Rmod,2*p2.modType);
cc=step(Rcod,p1.cRate);
Mod={'QPSK','16QAM','64QAM'};
fprintf(1,'Modulation = %s\n',Mod{p2.modType});
fprintf(1,'Instantaneous Data rate = %.2f Mbps\n',z);
fprintf(1,'Average Data rate = %.2f Mbps\n',t);
fprintf(1,'Instantaneous Modulation rate = %4.2f\n',2*p2.modType);
fprintf(1,'Average Modulation rate = %4.2f\n',mm);
fprintf(1,'Instantaneous Coding rate = %.4f\n',p1.cRate);
fprintf(1,'Average Coding rate = %.4f \n\n',cc);
end

By executing theMATLAB script of theMIMO transceiver model with adaptive modulation,
we can look at various signals in order to assess the performance of the system. As Figure 7.2
illustrates, changes in the modulation scheme affect the instantaneous data rate and thus the
average data rate.

7.5.5 Adaptation Results

For each of the adaptation scenarios, we compute the BERs by processing 20 million bits.
Table 7.2 summarizes the results. As expected, adaptive modulation that responds to chan-
nel quality performs best. In scenarios without adaptations, as we use higher modulation rates,
such as 64QAM, we obtain high data rates at the cost of higher BERs. When using lower mod-
ulation rates, such as QPSK, we obtain lower BERs but lower data rates. When selecting the
modulation scheme randomly, without any correlation to the channel quality, both the average
data rate and the BER are average values of the cases without any adaptations.
However, as we select a modulation scheme based on channel quality, we obtain the best

compromise in conditions of both low and high channel qualities. In subframes with higher
channel quality, we choose higher modulation rates. Although we are using modulation
schemes with smaller minimum constellation distances, as the channel is deemed clean, the
probability of error in these subframes is low, so we enjoy the highest rate without too much

282 Understanding LTE with MATLAB®

Figure 7.2 Link adaptation: data rates, modulation, and coding modes subframe by subframe

Table 7.2 Adaptive modulation: BER, data rates, and modulation rates in different scenarios

Type of modulation Average data rate (Mbps) Modulation rate Coding rate Bit error rate

QPSK – no adaptation 20.61 2 0.3333 1.2e−06

16QAM – no adaptation 39.23 4 0.3333 1.4e−06

64QAM – no adaptation 61.66 6 0.3333 0.0033

Random selection 40.75 2 or 4 or 6 0.3333 0.0014

Adaptive modulation 52.61 2 or 4 or 6 0.3333 0.0009

cost in bit errors. In subframes with lower channel quality, we revert to lower modulation
rates. These rates are associated with higher distances between constellation points and as
a result the probability of error is low. These subframes result in a reduction in the overall
rates but maintain the quality within an acceptable range. As a result, the average BER with
adaptive modulation (0.0009) is lower than the random selection (0.0016) and the average
data rate with adaptive modulation (52.61Mbps) is higher than that with random selection
(40.75Mbps). We observe that with adaptation based on channel quality we obtain the best
tradeoff in terms of highest rate and reasonable error rate.

Link Adaptation 283

7.6 Adaptive Modulation and Coding Rate

In this section, we use the CQI channel-state report to adaptively change both the modulation
scheme and the coding rate of the transceiver in successive subframes. We will compare the
channel quality-based (CQI-based) adaptive approach with two algorithms that apply differ-
ent adaptation scenarios: (i) baseline (without adaptation) and (ii) adaptation through random
changing of the modulation type and coding rate.
In the scenario where no adaptation is performed, we examine each of the three LTE mod-

ulation schemes with a coding rate equal to the average coding rate used in the CQI-based
adaptive scenario. In the random-adaptation scenario, in each subframe we randomly select
one of the LTE modulation schemes and choose a random value for the coding rate within the
same range of values used in the CQI-based adaptive scenario.

7.6.1 No Adaptation

The followingMATLAB script segment shows the body of the processing while loop. Since no
adaptation is performed here, the MATLAB code is identical to that presented in Section 7.5.

Algorithm

MATLAB script segment

%% One subframe step processing
[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr] = ...

commlteMIMO_SM_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);
%% Report average data rates

ADR=zReport_data_rate_average(prmLTEPDSCH, prmLTEDLSCH);
%% Calculate bit errors
Measures = step(hPBer, dataIn, dataOut);
%% Visualize results
if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);
end;
% Update subframe number
nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;
%% No adaptations here

7.6.2 Changing Modulation Scheme at Random

The following MATLAB code segment shows the body of the processing while loop in the
case where the modulation and coding rate are randomly selected. In addition to operations
performed in the case of no adaptations, the while loop includes the following three operations:
(i) it assigns to the modulation-type parameter (modType) a random integer value of 1, 2, or 3,

284 Understanding LTE with MATLAB®

corresponding to QPSK, 16QAM, and 64QAM, respectively; (ii) it assigns to the coding-rate
parameter (cRate) a normal random value in the range between 1/3 and 0.95; and (iii) it calls
the commlteMIMO_update function that updates and recomputes all parameters based on the
new modulation type and the coding rate.

Algorithm

MATLAB script segment

%% One subframe step processing
[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr] = ...

commlteMIMO_SM_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);
%% Report average data rates

ADR=zReport_data_rate_average(prmLTEPDSCH, prmLTEDLSCH);
%% Calculate bit errors
Measures = step(hPBer, dataIn, dataOut);
%% Visualize results
if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);
end;
% Change of modulation and coding rates randomly
Average_cRate=0.4932;
modType=randi([1 3],1,1);
cRate = Average_cRate + (1/6)*randn;
if cRate > 0.95, cRate=0.95;end; if cRate < 1/3, cRate=1/3;end;
[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_update(...

prmLTEPDSCH, prmLTEDLSCH, prmMdl, modType, cRate);
% Update subframe number
nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;

7.6.3 CQI-Based Adaptation

The following MATLAB script segment shows the body of the processing while loop
that implements the CQI-based adaptive modulation and coding. In addition to operations
characterizing the no-adaptation scenario, the following three tasks are performed: (i) by
calling the functions CQIselection and CQI2indexMCS in sequence, the CQI report is
computed, estimating the best modulation scheme (modType) and coding rate (cRate) for the
following subframe; (ii) the commlteMIMO_update function that updates and recomputes the
LTEPDSCH, LTEDLSCH, and prmMdl parameters based on the newmodulation type and cod-
ing rate is called; and (iii) the variations in channel quality with time are visualized by calling
the zVisSinr function, which plots a vector comprising the present and the 24 past values of the
SINR measure.

Link Adaptation 285

Algorithm

MATLAB script segment

%% One subframe step processing
[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr] = ...

commlteMIMO_SM_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);
%% Report average data rates
ADR=zReport_data_rate_average(prmLTEPDSCH, prmLTEDLSCH);
%% CQI feedback
sinr=CQIselection(dataOut, yRec, nS, prmLTEDLSCH, prmLTEPDSCH);
[modType, cRate]=CQI2indexMCS(sinr);
%% Calculate bit errors
Measures = step(hPBer, dataIn, dataOut);
%% Visualize results
if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);
zVisSinr(sinr);

end;
% Adaptive change of modulation and coding rate
[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_update(...

prmLTEPDSCH, prmLTEDLSCH, prmMdl, modType, cRate);
% Update subframe number
nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;

7.6.4 Verifying Transceiver Performance

The parameters used in the simulation are the same as used in the adaptive-modulation case
and are summarized in the script commlteMIMO_params. During the simulation, all of these
parameters remain constant except the modulation scheme (modType) and the coding rate
(cRate). By executing the MATLAB script of the MIMO transceiver model with adaptive
modulation and coding rate, we can assess the performance of the system. As the simula-
tion is running, the message shown in Figure 7.3 appears on the MATLAB screen. As we can
see, changes in both the modulation scheme and the coding rate affect the instantaneous data
rate and thus the average data rate of the transceiver.

7.6.5 Adaptation Results

For each of the three adaptation scenarios, we compute the BER by processing 20 million
bits. For the first four experiments (no adaptations in the case of QPSK, 16QAM, and 64QAM
modulation and a random selection of modulation in each subframe), we choose a constant
coding rate of 0.4932. This coding rate is the average of rates in the adaptive case and is
chosen in order to make fair comparisons. Table 7.3 summarizes the results.

286 Understanding LTE with MATLAB®

Figure 7.3 Adaptive modulation and coding: data rates, modulation, and coding modes subframe
by subframe

Table 7.3 Adaptive modulation and coding: BER, data rates, modulation, and coding rates in
different scenarios

Type of modulation Average data rate (Mbps) Modulation Coding rate Bit error rate

QPSK – no adaptation 28.34 2 0.4932 2.8e−06

16QAM – no adaptation 57.34 4 0.4932 7.9e−04

64QAM – no adaptation 87.01 6 0.4932 3.6e−02

Random selection 56.81 2 or 4 or 6 0.5037 2.5e−02

Adaptive modulation and
coding

64.73 2 or 4 or 6 0.333–0.94 4.7e−03

The results in this case are very similar to those in the case where only adaptive modula-
tion is used. With fixed modulation and coding rates, we obtain higher rates and higher-order
modulations at the cost of a much lower achievable BER. Changing the modulation based on
random selection provides the average results of the three fixed modulation cases. Adaptive
modulation and coding based on channel quality provides the best compromise. The average

Link Adaptation 287

data rate in the CQI-based adaptive approach (64.73Mbps) is higher than in the case of random
selection (56.81Mbps). The BER of adaptive coding (0.0047) is lower than that in the case of
random selection (0.0250).

7.7 Adaptive Precoding

In this section we use the PMI channel-state report to adaptively change the precoding matrix
index in successive subframes. This adaptation is only available in the closed-loop spatial
multiplexing mode of transmission. We use a parameter called enPMIfback, which enables
or disables the PMI mechanism. When this parameter is turned on, the PMI index is selected
within the receiver and fed back to the transmitter for use at the next time step. Otherwise,
the fixed user-specified codebook index is used for the duration of the simulation. The feed-
back granularity is modeled once for the whole subframe (wideband) and applied to the next
transmission subframe.

Algorithm

MATLAB function

function [dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr_ref, cbIdx]...
= commlteMIMO_SM_PMI_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl)

%% TX
persistent hPBer1
if isempty(hPBer1), hPBer1=comm.ErrorRate; end;
% Generate payload
dataIn = genPayload(nS, prmLTEDLSCH.TBLenVec);
% Transport block CRC generation
tbCrcOut1 =CRCgenerator(dataIn);
% Channel coding includes - CB segmentation, turbo coding, rate matching,
% bit selection, CB concatenation - per codeword
[data, Kplus1, C1] = lteTbChannelCoding(tbCrcOut1, nS, prmLTEDLSCH, prmLTEPDSCH);
%Scramble codeword
scramOut = lteScramble(data, nS, 0, prmLTEPDSCH.maxG);
% Modulate
modOut = Modulator(scramOut, prmLTEPDSCH.modType);
% Map modulated symbols to layers
numTx=prmLTEPDSCH.numTx;
LayerMapOut = LayerMapper(modOut, [], prmLTEPDSCH);
usedCbIdx = prmMdl.cbIdx;
% Precoding
[PrecodeOut, Wn] = SpatialMuxPrecoder(LayerMapOut, prmLTEPDSCH, usedCbIdx);
% Generate Cell-Specific Reference (CSR) signals
csr = CSRgenerator(nS, numTx);
csr_ref=complex(zeros(2*prmLTEPDSCH.Nrb, 4, numTx));
for m=1:numTx

csr_ pre=csr(1:2*prmLTEPDSCH.Nrb,:,:,m);
csr_ref(:,:,m)=reshape(csr_ pre,2*prmLTEPDSCH.Nrb,4);

288 Understanding LTE with MATLAB®

end
% Resource grid filling
txGrid = REmapper_mTx(PrecodeOut, csr_ref, nS, prmLTEPDSCH);
% OFDM transmitter
txSig = OFDMTx(txGrid, prmLTEPDSCH);
%% Channel
% MIMO Fading channel
[rxFade, chPathG] = MIMOFadingChan(txSig, prmLTEPDSCH, prmMdl);
% Add AWG noise
sigPow = 10*log10(var(rxFade));
nVar = 10.^(0.1.*(sigPow-snrdB));
rxSig = AWGNChannel(rxFade, nVar);
%% RX
% OFDM Rx
rxGrid = OFDMRx(rxSig, prmLTEPDSCH);
% updated for numLayers -> numTx
[dataRx, csrRx, idx_data] = REdemapper_mTx(rxGrid, nS, prmLTEPDSCH);
% MIMO channel estimation
if prmMdl.chEstOn

chEst = ChanEstimate_mTx(prmLTEPDSCH, csrRx, csr_ref, prmMdl.chEstOn);
hD = ExtChResponse(chEst, idx_data, prmLTEPDSCH);

else
idealChEst = IdChEst(prmLTEPDSCH, prmMdl, chPathG);
hD = ExtChResponse(idealChEst, idx_data, prmLTEPDSCH);

end
% PMI codebook selection
if (prmMdl.enPMIfback)
cbIdx = PMICbSelect(hD, prmMdl.enPMIfback, prmLTEPDSCH.numTx, ...

prmLTEPDSCH.numLayers, nVar);
else

cbIdx=prmMdl.cbIdx;
end
% Frequency-domain equalizer
if (numTx==1)

% Based on Maximum-Combining Ratio (MCR)
yRec = Equalizer_simo(dataRx, hD, nVar, prmLTEPDSCH.Eqmode);

else
% Based on Spatial Multiplexing
yRec = MIMOReceiver(dataRx, hD, prmLTEPDSCH, nVar, Wn);

end
% Demap received codeword(s)
[cwOut, ̃] = LayerDemapper(yRec, prmLTEPDSCH);
if prmLTEPDSCH.Eqmode < 3

% Demodulate
demodOut = DemodulatorSoft(cwOut, prmLTEPDSCH.modType, max(nVar));

else

Link Adaptation 289

demodOut = cwOut;
end
% Descramble received codeword
rxCW = lteDescramble(demodOut, nS, 0, prmLTEPDSCH.maxG);
% Channel decoding includes - CB segmentation, turbo decoding, rate dematching
[decTbData1, ̃,̃] = lteTbChannelDecoding(nS, rxCW, Kplus1, C1, prmLTEDLSCH,
prmLTEPDSCH);
% Transport block CRC detection
[dataOut, ̃] = CRCdetector(decTbData1);
end

7.7.1 PMI-Based Adaptation

The following MATLAB script segment shows the body of the processing while loop that
implements the PMI codebook index selection without adaptive modulation and coding. The
script uses the last output argument (cbIdx) of the commlteMIMO_SM_PMI_step function,
which is the updated PMI codebook index in the current subframe. By providing this index as
the third input argument to the commlteMIMO_update function, we set the PMI index for the
following subframe.

Algorithm

MATLAB script segment

%% One subframe step processing
[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr_ref, cbIdx]...
= commlteMIMO_SM_PMI_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);
%% Report average data rates

ADR=zReport_data_rate_average(prmLTEPDSCH, prmLTEDLSCH);
fprintf(1,'PMI codebook index = %2d\n', cbIdx);
%% Calculate bit errors
Measures = step(hPBer, dataIn, dataOut);
%% Visualize results
if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);
end;
%% Update subframe number
nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;
% Adaptive PMI
modType=prmLTEPDSCH.modType;
cRate=prmLTEDLSCH.cRate;
[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_update(...

prmLTEPDSCH, prmLTEDLSCH, prmMdl, modType, cRate, cbIdx);
%% including adaptations here

290 Understanding LTE with MATLAB®

Figure 7.4 Adaptive PMI: change of PMI codebook index subframe by subframe

7.7.2 Verifying Transceiver Performance

The parameters used in the simulation are the same as those used in the adaptive PMI, as sum-
marized in the script commlteMIMO_params. During the simulation, all of these parameters
remain constant except the PMI codebook index (cbIdx). By executing the MATLAB script of
the MIMO transceiver model, we can assess the performance of the system. As the simulation
is running, the message in Figure 7.4 appears on the MATLAB screen, showing variations in
the PMI codebook index.

Table 7.4 Adaptive precoding: BER, data rates, modulation, and coding rates in different
scenarios

Type of modulation Average data rate (Mbps) Modulation rate Coding rate Bit error rate

No modulation and
coding adaptation

35.16 4 1/3 0.1278

No modulation and
coding adaptation
+ adaptive PMI

35.16 4 1/3 0.01191

Link Adaptation 291

7.7.3 Adaptation Results

For each of the adaptation scenarios, we compute the BERs by processing 20 million bits.
Table 7.4 illustrates the results. These PMI index variations do not affect the modulation
scheme, the coding rate, the instantaneous data rate, or the average data rate of the transceiver.
As we expect the relative effect on the BER reflects the benefits of adaptive precoding.

7.8 Adaptive MIMO

In this section we use the RI channel-state report to adaptively toggle the transmission mode
between transmit diversity and spatial multiplexing. If the estimated rank is equal to the number
of transmit antennas, we perform spatial multiplexing. For the sake of simplicity, if the rank is
less than the number of transmit antennas then we revert to transmit-diversity mode. We will
use the same number of antennas but we forego the increased data rate associated with spatial
multiplexing in favor of the greater link reliability associated with transmit diversity.
By applying a threshold to the condition number, we propose a wideband rank value for

the whole subframe. The function takes as input a 2D channel matrix at the receiver (h). This
is either a 2× 2 or a 4× 4 matrix, depending on whether two- or four-antenna transmission
is used.

Algorithm

MATLAB function

function [dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr_ref, cbIdx, ri]...
= commlteMIMO_SM_PMI_RI_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH,

prmMdl)
%% TX
persistent hPBer1
if isempty(hPBer1), hPBer1=comm.ErrorRate; end;
% Generate payload
dataIn = genPayload(nS, prmLTEDLSCH.TBLenVec);
% Transport block CRC generation
tbCrcOut1 =CRCgenerator(dataIn);
% Channel coding includes - CB segmentation, turbo coding, rate matching,
% bit selection, CB concatenation - per codeword
[data, Kplus1, C1] = lteTbChannelCoding(tbCrcOut1, nS, prmLTEDLSCH, prmLTEPDSCH);
%Scramble codeword
scramOut = lteScramble(data, nS, 0, prmLTEPDSCH.maxG);
% Modulate
modOut = Modulator(scramOut, prmLTEPDSCH.modType);
% Map modulated symbols to layers
if (prmLTEPDSCH.txMode ==4)
LayerMapOut = LayerMapper(modOut, [], prmLTEPDSCH);
usedCbIdx = prmMdl.cbIdx;
% Precoding

292 Understanding LTE with MATLAB®

[PrecodeOut, Wn] = SpatialMuxPrecoder(LayerMapOut, prmLTEPDSCH, usedCbIdx);
else
% TD with SFBC
PrecodeOut = TDEncode(modOut(:,1),prmLTEPDSCH.numTx);
end
% Generate Cell-Specific Reference (CSR) signals
numTx=prmLTEPDSCH.numTx;
csr = CSRgenerator(nS, numTx);
csr_ref=complex(zeros(2*prmLTEPDSCH.Nrb, 4, numTx));
for m=1:numTx

csr_ pre=csr(1:2*prmLTEPDSCH.Nrb,:,:,m);
csr_ref(:,:,m)=reshape(csr_ pre,2*prmLTEPDSCH.Nrb,4);

end
% Resource grid filling
txGrid = REmapper_mTx(PrecodeOut, csr_ref, nS, prmLTEPDSCH);
% OFDM transmitter
txSig = OFDMTx(txGrid, prmLTEPDSCH);
%% Channel
% MIMO Fading channel
[rxFade, chPathG] = MIMOFadingChan(txSig, prmLTEPDSCH, prmMdl);
% Add AWG noise
sigPow = 10*log10(var(rxFade));
nVar = 10.^(0.1.*(sigPow-snrdB));
rxSig = AWGNChannel(rxFade, nVar);
%% RX
% OFDM Rx
rxGrid = OFDMRx(rxSig, prmLTEPDSCH);
% updated for numLayers -> numTx
[dataRx, csrRx, idx_data] = REdemapper_mTx(rxGrid, nS, prmLTEPDSCH);
% MIMO channel estimation
if prmMdl.chEstOn

chEst = ChanEstimate_mTx(prmLTEPDSCH, csrRx, csr_ref, prmMdl.chEstOn);
hD = ExtChResponse(chEst, idx_data, prmLTEPDSCH);

else
idealChEst = IdChEst(prmLTEPDSCH, prmMdl, chPathG);
hD = ExtChResponse(idealChEst, idx_data, prmLTEPDSCH);

end
% Frequency-domain equalizer
if (numTx==1)

% Based on Maximum-Combining Ratio (MCR)
yRec = Equalizer_simo(dataRx, hD, nVar, prmLTEPDSCH.Eqmode);

else
if (prmLTEPDSCH.txMode ==4)

% Based on Spatial Multiplexing
[yRec, ri] = MIMOReceiver_ri(dataRx, hD, prmLTEPDSCH, nVar, Wn);

else
% Based on Transmit Diversity with SFBC combiner

[yRec, ri] = TDCombine_ri(dataRx, hD, prmLTEPDSCH.numTx, prmLTEPDSCH.numRx);
end

Link Adaptation 293

end
% PMI codebook selection
if (prmMdl.enPMIfback)
cbIdx = PMICbSelect(hD, prmMdl.enPMIfback, prmLTEPDSCH.numTx, ...

prmLTEPDSCH.numLayers, snrdB);
else

cbIdx = prmMdl.cbIdx;
end
% Demap received codeword(s)
[cwOut, ̃] = LayerDemapper(yRec, prmLTEPDSCH);
if prmLTEPDSCH.Eqmode < 3

% Demodulate
demodOut = DemodulatorSoft(cwOut, prmLTEPDSCH.modType, max(nVar));

else
demodOut = cwOut;

end
% Descramble received codeword
rxCW = lteDescramble(demodOut, nS, 0, prmLTEPDSCH.maxG);
% Channel decoding includes - CB segmentation, turbo decoding, rate dematching
[decTbData1, ̃,̃] = lteTbChannelDecoding(nS, rxCW, Kplus1, C1, prmLTEDLSCH,
prmLTEPDSCH);
% Transport block CRC detection
[dataOut, ̃] = CRCdetector(decTbData1);
end

7.8.1 RI-Based Adaptation

The following MATLAB script segment shows the body of the processing while loop that
implements the RI-based adaptation without any previously presented adaptation. The script
uses the updated rank-estimation index in the current subframe, as represented by the last out-
put argument (ri) of the commlteMIMO_SM_PMI_RI_step function. By providing this index
as the fourth input argument to the commlteMIMO_update function, we set the RI index for
the following subframe.

Algorithm

MATLAB script segment

%% One subframe step
[dataIn, dataOut, txSig, rxSig, dataRx, yRec, csr, cbIdx, ri] ...
= commlteMIMO_SM_PMI_RI_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH,

prmMdl);

Ri=RIselection(ri, threshold);

294 Understanding LTE with MATLAB®

ADR_a=zReport_data_rate_average(prmLTEPDSCH, prmLTEDLSCH);
fprintf(1,'PMI codebook index = %2d\nTransmission mode = %2d\n', cbIdx, Ri);

%% Calculate bit errors
Measures = step(hPBer, dataIn, dataOut);
%% Visualize results
if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);
end;
% Update subframe number
nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;
% Adaptive RI
modType=prmLTEPDSCH.modType;
cRate=prmLTEDLSCH.cRate;
cbIdx=prmMdl.cbIdx;
[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_update(...

prmLTEPDSCH, prmLTEDLSCH, prmMdl, modType, cRate, cbIdx, Ri);

7.8.2 Verifying Transceiver Performance

The parameters used in the simulation are the same as those used in the adaptive modulation
case, as summarized in the script commlteMIMO_params. During the simulation, all of these
parameters remain constant except the rank-estimation index (ri). As the simulation is running,
themessage shown in Figure 7.5 appears on theMATLAB screen. Aswe can see, transmission-
mode changes based on RI estimation affect the instantaneous data rate and thus the average
data rate of the transceiver.

7.8.3 Adaptation Results

The results indicate that, as expected, we obtain higher data rates when using spatial
multiplexing than when using transmit diversity (Table 7.5). By using the rank-estimation
method, we obtain an average rate that is closer to that obtained with spatial multiplexing.
This reflects the greater proportion of full-rank subframes (86.5%) as compared to lower-rank
subframes (13.5%).

7.9 Downlink Control Information

As we saw earlier, link adaptation involves the following three components: (i) channel-state
estimation at the receiver; (ii) scheduling operations to create scheduling assignments; and
(iii) transmission of the scheduling assignments in the following subframe. In downlink, the
scheduling assignments are captured as DCI. There are multiple DCI formats for various LTE-
standard transmission modes. A DCI format may contain many types of information, includ-
ing multi-antenna characteristics such as the precoding matrix indicator index, modulation
scheme, and transport block size and HARQ (Hybrid Automatic Repeat Request) process
details such as the process number, the redundancy version, and a new data indicator.

Link Adaptation 295

Figure 7.5 Adaptive MIMO: change of transmission mode subframe by subframe

Table 7.5 Adaptive rank estimation and MIMO:BER, data rates, modulation, and coding rates
in different scenarios

Type of modulation Average data rate (Mbps) Modulation rate Coding rate Bit error rate

Fixed mode: transmit
diversity

15.26 4 2/3 3.4e−07

Fixed mode: spatial
multiplexing

19.85 4 1/3 1.3e−03

Adaptive mode based
on RI feedback

19.23 4 1/3 7.1e−04

In this bookwe focus on user-plane information and the single-user processing case. As such,
we will not discuss in detail the DCI formats or their implementation in MATLAB. However,
we will present two topics with reference to the control information: (i) how CQI information
is mapped to the MCS information and (ii) how the PDCCH is encoded before it is transmitted
within the first few OFDM symbols of the downlink resource grid. Finally, we perform a quick
review of the reliability of the PDCCH transmission by comparing its BER with that of the
PDSCH, which we have examined in detail in this book.

296 Understanding LTE with MATLAB®

7.9.1 MCS

The scheduler provides the downlink transmitter with the modulation type and coding rate of
the data in the current subframe. This information is encoded as a 5 bitMCS index and incorpo-
rated in all different DCI formats. TheMCS index jointly codes the modulation scheme and the
transport block size (tbSize). The coding rate (R) is defined as the ratio of the number of input
bits (K) to the number of output bits (N): K/N. Since a 24 bit CRC is used prior to DLSCH pro-
cessing, the number of input bits at the encoder is equal to tbSise+ 24. The number of DLSCH
coder output bits (N) is equal to the size of each PDSCH codeword (numPDSCHbits); that is,
N = numPDSCHbits. Since the number of bits in each PDDSCH codeword is completely spec-
ified by the number of resource blocks, knowledge of the transport block size (tbSize) gives
the coding rate as R = tbSise+24

numPDSCHbits
.

The following MATLAB function shows how the CQI information (modulation scheme and
target coding rate) can be mapped to the transport block size, the index of the transport-block-
size lookup table, and the actual coding rate.

Algorithm

MATLAB function

function [tbSize, TBSindex, ActualRate] = getTBsizeMCS(modType, TCR, Nrb,
numLayers, numPDSCHBits)
% Get the transport block size for a specified configuration.
% Inputs:
% modType : 1 (QPSK), 2 (16QAM), 3 (64QAM)
% TCR : Target Code Rate
% Nrb : number of resource blocks
% numLayers : number of layers
% numPDSCHBits: number of PDSCH bits (G)
% Output:
% tbSize : transport block length
% Example: R.10 of A.3.3.2.1 in 36.101
% tbLen = getTBsizeRMC(1, 1/3, 50, 1, 12384)
% Reference:
% 1) Section 7.1.7 of 36.213, for TB sizes.
% Uses preloaded Tables 7.1.7.1-1, 7.1.7.2.1-1, 7.1.7.2.2 and 7.1.7.2.5.
% 2) Section A.3.1 of 36.101 for TB size selection criteria.
switch modType

case 1 % QPSK
numTBSizes = 10;
stIdx = 0;

case 2 % 16QAM
numTBSizes = 7;
stIdx = 9;

case 3 % 64QAM
numTBSizes = 12;
stIdx = 15;

Link Adaptation 297

end
numBitsPerLayer=numPDSCHBits/numLayers;
% Load saved entries for Tables 7.1.7.2.1-1, 7.1.7.2.2 and 7.1.7.2.5.
load TBSTable.mat
tbVec = baseTBSTab(stIdx+(1:numTBSizes), Nrb); % for 1-based indexing
ProposedRates=(tbVec+24)./numBitsPerLayer;
ProposedRates(ProposedRates<1/3)=10;
[̃, c] = min(abs(TCR-ProposedRates));
tbSize = tbVec(c);
if (numLayers==2) % Section 7.1.7.2.2

if (Nrb <= 55)
tbSize = baseTBSTab(TBSindex, 2*Nrb);

else
index=(layer2TBSTab(:,1)==tbSize);
tbSize = layer2TBSTab(index, 2);

end
elseif (numLayers==4) % Section 7.1.7.2.5

if (Nrb <= 27)
tbSize = baseTBSTab(TBSindex, 4*Nrb);

else
index=(layer4TBSTab(:,1)==tbSize);
tbSize = layer4TBSTab(index, 2);

end
end
ActualRate=(tbSize+24)./numPDSCHBits;
TBSindex= stIdx+c;

The following function shows how the transport-block-size index and the modulation type
are mapped to a unique MCS index that can be encoded using a 5 bit scalar quantizer.

Algorithm

MATLAB function

function MCSindex=map2MCSindex(TBSindex, modType)
%#codegen
% Assume 1-based indexing
if ((TBSindex < 1) || (TBSindex >27)),
error('map2MCSindex function: Wrong TBSindex.');end
switch TBSindex

case 10
switch modType

case 1
MCSindex=10;

case 2

298 Understanding LTE with MATLAB®

MCSindex=11;
otherwise

error('Wrong combination of TBSindex and modulation type');
end

case 16
switch modType

case 2
MCSindex=17;

case 3
MCSindex=18;

otherwise
error('Wrong combination of TBSindex and modulation type');

end
otherwise

if TBSindex <10
MCSindex=TBSindex;

elseif ((TBSindex >10) && (TBSindex <16))
MCSindex=TBSindex+1;

else
MCSindex=TBSindex+2;

end
end

7.9.2 Rate of Adaptation

The scheduling decision affecting the downlink can be updated once every subframe. But the
DCI containing the MCS, for example, does not need to adapt every 1ms. The granularity
and rate of adaptation are left to the discretion of the scheduling algorithm, which takes into
account various factors, including the totality of the link quality for all users, the base-station
interference profile, quality-of-service requirements, service, and service priorities [9].

7.9.3 DCI Processing

In this section we will examine the performance of the transceiver applied to the DCI. DCI is
encoded and transmitted in the first few OFDM symbols of each subframe. Reliable decoding
of the DCI is a critical requirement for proper recovery of the user data placed within the
ensuing OFDM symbols of the subframe. Since DCI is usually transmitted in small packets, a
convolutional code is used to encode them. The LTE standard specifies a combination of tail-
biting convolutional encoding and transmit diversityfor reliable link performance by the DCI.
To stay true to our user-plane processing focus, we will not discuss in detail all the com-

ponents of the DCI (which including the Physical Hybrid ARQ Indicator Channel (PHICH)
and the Physical Control-Format Indicator Channel (PCFICH). We will also forego a detailed
description of the placement of the information within the resource grid and the OFDM trans-
mission. Instead, we will focus on the signal processing chain prior to transmission of the
signal through a combination flat-fading andAWGN (AdditiveWhite Gaussian Noise) channel
in order to evaluate the performance of the control information.

Link Adaptation 299

7.9.3.1 Transceiver Function

The following MATLAB function (commlteMIMO_DCI_step) summarizes the DCI process-
ing chain. In the transmitter, we first apply a DCI-specific CRC generation. The DCI data
are processed by a tail-biting convolutional encoder with the same trellis structure as the one
used in the user plane for turbo coding. Then we apply to the encoded bits the same rate-
matching, scrambling, and modulation operations that were performed on the user-plane bits.
Finally, transmit diversity is performed on the modulated signal. In this function we forego
the resource-grid-mapping and OFDM-signal-generation operations. We apply channel mod-
eling directly to the outputs of the transmit diversity encoder. At the receiver, we perform
the inverse operation to that of the transmitter, including ideal-channel estimation, transmit-
diversity combining, soft-decision demodulation, descrambling, rate dematching, and Viterbi
decoding. Finally, by performing the DCI-specific CRC detection we find the best output esti-
mate of the DCI bits. The function commlteMIMO_DCI_step represents a simplified version
of the transceiver operations applied to the DCI.

Algorithm

MATLAB function

function [dataIn, dataOut, modOut, rxSig]...
= commlteMIMO_DCI_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl)

%% TX
numBitsDCI = 205;
% Generate payload
dataIn = genPayload(nS, numBitsDCI);
% Transport block CRC generation
CrcOut1 = CRCgeneratorDCI(dataIn);
% Channel coding includes - tail biting convolutional coding, rate matching
data = TailbitingConvEnc(CrcOut1, prmLTEDLSCH.cRate);
%Scramble codeword
scramOut = lteScramble(data, nS, 0, prmLTEPDSCH.maxG);
% Modulate
modOut = Modulator(scramOut, prmLTEPDSCH.modType);
% Transmit diversity encoder
PrecodeOut = TDEncode(modOut, prmLTEPDSCH.numTx);
%% Channel
% MIMO fading channel
[fadeOut, pathGain] = MIMOFadingChan(PrecodeOut, prmLTEPDSCH, prmMdl);
nVar = real(var(fadeOut(:)))/(10.^(0.1*snrdB));
pathG = squeeze(pathGain);
% AWGN
recOut = AWGNChannel(fadeOut, nVar);
%% RX
% Transmit diversity combiner
rxSig = TDCombine(recOut, pathG, prmLTEPDSCH.numTx, prmLTEPDSCH.numRx);
% Demodulate

300 Understanding LTE with MATLAB®

demodOut = DemodulatorSoft(rxSig, prmLTEPDSCH.modType, nVar);
% Descramble both received codewords
rxCW1 = lteDescramble(demodOut, nS, 0, prmLTEPDSCH.maxG);
% Channel decoding includes - tail biting Viterbi decoding, rate dematching
L=numel(CrcOut1);
decData1=TailbitingViterbiSoft(rxCW1, L);
% Transport block CRC detection
[dataOut, ̃] = CRCdetectorDCI(decData1);
end

The transceiver function features two functions: TailbitingConvEnc and TailbitingViter-
biSoft. These implement tail-biting convolutional coding and its inverse Viterbi decoding with
System objects from the Communications System Toolbox. In the encoder, we create two
convolutional coders: one that maintains the state of the encoder and one that streams each
frame of data using the state provided by the encoder. Finally, we compute the output using
the rate-matching operations introduced in the previous chapter.

Algorithm

MATLAB function

function y=TailbitingConvEnc(u, codeRate)
%#codegen
trellis=poly2trellis(7, [133 171 165]);
L=numel(u);
C=6;
persistent ConvEncoder1 ConvEncoder2
if isempty(ConvEncoder1)

ConvEncoder1=comm.ConvolutionalEncoder('TrellisStructure', trellis,
'FinalStateOutputPort', true, ...

'TerminationMethod','Truncated');
ConvEncoder2 = comm.ConvolutionalEncoder('TerminationMethod','Truncated',

'InitialStateInputPort', true,...
'TrellisStructure', trellis);

end
u2 = u((end-C+1):end); % Tail-biting convolutional coding
[̃, state] = step(ConvEncoder1, u2);
u3 = step(ConvEncoder2, u,state);
y = fcn_RateMatcher(u3, L, codeRate); % Rate matching

In the decoder, we first perform rate dematching and then concatenate the received likelihood
measures and perform soft-decision Viterbi decoding based on the state value that is embedded
within the concatenated input signal. We compute the output by extracting the subset of the
Viterbi-decoding output samples.

Link Adaptation 301

Algorithm

MATLAB function

function y=TailbitingViterbiSoft(u, L)
%#codegen
trellis=poly2trellis(7, [133 171 165]);
Index=[L+1:(3*L/2) (L/2+1):L];
persistent Viterbi
if isempty(Viterbi)

Viterbi=comm.ViterbiDecoder(...
'TrellisStructure', trellis,

'InputFormat','Unquantized','TerminationMethod','Truncated','OutputDataType','logical');
end
uD = fcn_RateDematcher(u, L); % Rate de-matching
uE = [uD;uD]; % Tail-biting
uF = step(Viterbi, uE); % Viterbi decoding
y = uF(Index);

7.9.3.2 Testbench for the DCI Transceiver

The following function (commlteMIMO_DCI) represents the testbench for evaluating perfor-
mance. The function takes as its inputs the Eb/N0 value, the specified maximum number
of errors observed, and the maximum number of bits processed. As its outputs, it produces
the BER measure and the actual number of process bits. First it calls the initialization func-
tion (commlteMIMO_initialize) in order to set all the relevant parameter structures (prmLT-
EDLSCH, prmLTEPDSCH, prmMdl). Then the testbench uses a while loop to perform sub-
frame processing by calling the DCI-processing-chain function.

Algorithm

MATLAB function

function [ber, bits]=commlteMIMO_DCI(EbNo, maxNumErrs, maxNumBits)
%
clear functions
%% Set simulation parameters & initialize parameter structures
commlteMIMO_ params_DCI;
codeRate=cRate;
k=2*modType;
snrdB = EbNo + 10*log10(codeRate) + 10*log10(k);
[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteMIMO_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode, chan-
Mdl, Doppler, corrLvl, ...

chEstOn, numCodeWords, enPMIfback, cbIdx, snrdB, maxNumErrs, maxNumBits);

302 Understanding LTE with MATLAB®

clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter
fullDecode chanMdl Doppler corrLvl chEstOn numCodeWords enPMIfback cbIdx
%%
hPBer = comm.ErrorRate;
%% Simulation loop
nS = 0; % Slot number, one of [0:2:18]
Measures = zeros(3,1); %initialize BER output
while ((Measures(2)< maxNumErrs) && (Measures(3) < maxNumBits))

[dataIn, dataOut, modOut, rxSig] = ...
commlteMIMO_DCI_step(nS, snrdB, prmLTEDLSCH, prmLTEPDSCH, prmMdl);

% Calculate bit errors
Measures = step(hPBer, dataIn, dataOut);
% Visualize results
if visualsOn, zVisConstell(prmLTEPDSCH, modOut, rxSig, nS); end;

end
ber=Measures(1);
bits=Measures(3);
reset(hPBer);

7.9.3.3 BER Measurements

What characterizes the DCI transceiver is the combination of a low-constellation modulator
(QPSK), a tail-biting convolutional encoder, and transmit-diversity coding. As illustrated by
Figure 7.6, this combination provides a high BER performance for the processing of DCI
information as designated by the LTE standard to process the DCI. This is critical, as excessive
errors in the control information will have catastrophic effects on the quality of the recovered
user data.
Figure 7.6 illustrates the result of processing or testbenching with Eb/N0 values of between

0 and 4 dB and the maximum number of errors set to 1000 and the maximum number of bits to
1e7. We process the transmitted data using a flat-fading channel in which the CSI is completely
known. This implements an ideal channel estimator. Note that the BER measure is quite low
even at low SNR (Signal-to-Noise Ratio) values. For example, at an Eb/N0 of 0 dB we have a
BER of 1e−4, and at 2 dB we have a BER of around 1e−6.
These results are compatible with the high performance of the PDSCH processing discussed

in Chapter 4. Even without transmit diversity, the combination of LTE turbo coding, scram-
bling, and modulation processed by the channel model presented here allows us to obtain BER
performances that are compatible with DCI processing.

7.10 Chapter Summary

In this chapter we studied some of the LTE-standard specifications related to link adaptations.
The operations related to link adaptation are performed in the receiver and involve the selec-
tion and feedback of various system parameters for use in the transmitter in the following
subframes. They are applied to system parameters specifying: (i) the modulation and coding
schemes, (ii) the number of transmission layers used in spatial multiplexing, and (iii) the choice

Link Adaptation 303

10−1

10−2

10−3

10−4

B
E

R

10−5

10−6

0 0.5 1.5 2.5 3.51 2

Eb/N0 (dB)

3 4

Without transmit diversity
With transmit diversity

Figure 7.6 BER performance of the DCI: combination of AWGN and a flat-fading channel model
with ideal channel-response estimation

of precoding matrices used in closed-loop spatial-multiplexing modes. The selection criteria
for link adaptation are usually maximizing user data rates and increased spectral efficiency.
We reviewed the channel-quality measurements needed to perform the adaptations. These

include CQI, PMI, and RI measurements. We then introduced algorithms that implement adap-
tations based on the channel-quality measures, including algorithms for adaptive modulation
and coding, adaptive precoding for determination of the best precoder matrix, and adaptive
MIMO for resolving occasional rank deficiencies in spatial multiplexing modes of transmis-
sion. Finally, we reviewed the signal-processing chain involved in the transmission of DCI.
We showed that by exploiting a combination of transmit diversity and tail-biting convolu-
tional coding, the LTE standard provides a reliable mechanism for the transmission of control
information.

References

[1] 3GPP (2009) Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN) v9.0.0. TR
25.913, December 2009.

[2] Ding, L., Tong, F., Chen, Z., and Liu, Z. (2011) A novel MCS selection criterion for VOIP in LTE. Interna-
tional Conference on Wireless Communications, Networking and Mobile Computing - WiCom, pp. 1–4.

[3] Pande, A., Ramamurthi, V., and Mohapatra, P. (2011) Quality-oriented video delivery over LTE using adap-
tive modulation and coding. IEEE Global Telecommunications Conference (GLOBECOM), pp. 1–5.

[4] Tan, P., Wu, Y. and Sun, S. (2008) Link adaptation based on adaptive modulation and coding for multiple-
antenna OFDM system. IEEE Journal on Selected Areas in Communications, 26, 8, 1599–1606.

[5] Kim, J., Lee, K., Sung, C. and Lee, I. (2009) A simple SNR representation method for AMC schemes of
MIMO systems with ML detector. IEEE Transactions on Communications, 57, 2971–2976.

[6] Flahati, S., Svensson, A., Ekman, T. and Sternad, M. (2004) Adaptive modulation systems for predicted
wireless channels. IEEE Transactions on Communications, 52, 307–316.

304 Understanding LTE with MATLAB®

[7] Ohlmer, E. and Fettweis, G. (2009) Link adaptation in linearly precoded closed-loopMIMO-OFDM systems
with linear receivers. IEEE International Conference on Communications (ICC), June 2009.

[8] Love, D. and Heath, R. (2005) Limited feedback unitary precoding for spatial multiplexing systems. IEEE
Transactions on Information Theory, 51, 8, 2967–2976.

[9] Ghosh, A. and Ratasuk, R. (2011) Essentials of LTE and LTE-A, Cambridge University Press.
[10] 3GPP (2013) Physical Layer Procedures v11.3.0. TR 25.213, June 2013.
[11] Jiang, M., Prasad, N., Yue, G., and Rangarajan, S. (2011) Efficient link adaptation for precoded multi-rank

transmission and turbo SIC receivers. IEEE ICC, 2011.

8
System-Level Specification

So far we have presented the four main enabling technologies of the LTE (Long Term
Evolution) standard individually: OFDM (Orthogonal Frequency Division Multiplexing)
multicarrier transmission, MIMO (Multiple Input Multiple Output) multi-antenna techniques,
channel coding based on turbo coders, and link adaptations. OFDM in downlink and its
single-carrier counterpart SC-FDM (Single-Carrier Frequency Division Multiplexing) in
uplink provide the backbone of the LTE transmission strategy. As examined in Chapter 7,
adaptive modulation and coding provide superior spectral efficiency. Arguably the defining
feature that sets LTE apart from the previous standards is the incorporation of various types
of MIMO technique. At any given time, the operating mode of the LTE downlink transceiver
system is uniquely defined by one of the nine MIMO multi-antenna techniques specified in
the LTE standard. As a result, when evaluating the performance of an LTE system we should
pay special attention to the type of MIMO technique used and the corresponding channel
operating conditions.
In this chapter we will put together a simulation model for the PHY (Physical Layer) of

the LTE standard. So far, our pedagogic step-by-step approach has demanded that we focus
on a single transmission mode at a time. In this chapter, we develop a simulation model that
incorporates multiple transmission modes in both the transmitter and the receiver. We also
evaluate various aspects related to the performance of the system.
We will highlight both the common set of processing performed in multiple modes and the

specific features used in any particular transmission mode. To stay true to our focus on exam-
ining user-plane processing and single-carrier operations, our simulation model will include
the first four transmission modes of the LTE standard. Then we will evaluate the performance
of the system under changing operating conditions; this includes examining system quality
and throughput when using different types of MIMO mode, channel model, channel estima-
tion technique, and MIMO receiver algorithm. Finally, we will create a Simulink model for
our LTE PHY system. We will show how easy it is to incorporate the MATLAB® algorithms
developed throughout this book as distinct blocks within the Simulink model. Expressing the
design as a Simulink model has the added benefit of having Simulink as the simulation test-
bench. Instead of developing MATLAB scripts to perform various operations in the loop and

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

306 Understanding LTE with MATLAB®

call the algorithms and visualization functions iteratively, we will use the Simulink model
to perform these tasks. In the final section of this chapter, we will undertake a qualitative
assessment of the performance of our LTE model. We will use the LTE Simulink model to
stream audio signals as the inputs to the downlink transmitter and will listen to and assess the
quality of the recovered voice at the receiver after a certain amount of processing delay.

8.1 System Model

In this section, we compose a system model for the PHY of the LTE standard by integrat-
ing various enabling technologies. The system model is composed of a transmitter, a channel
model, and a receiver. The processing chain in the transmitter is specified in detail by the stan-
dard. The standard also specifies various channel models for performance evaluations. The
receiver operations, however, are not specified, which provides the opportunity for various
system designers to distinguish their implementation with distinct performance profiles.
Figure 8.1 illustrates the overall structure of the LTE downlink transceiver. The payload bits

provided by the transport channel are processed by the transmitter. The transmitter output is
composed of a sequence of the symbols transmitted on various available transmit antennas.
The channel operates on the transmitted symbols of multiple transmit antennas to produce
the set of received symbols arriving at each of the receive antennas. The receiver operates
on the received symbols. By implementing various strategies aimed at inverting the operations
of the transmitter, the receiver generates its best estimate of the transmitted payload bits.

8.1.1 Transmitter Model

In the transmitter, the signal processing chain is applied to the payload bits provided by the
transport channel. The processing depends on the transmission mode, defined by the downlink
scheduler. The transmission mode manifests itself as the choice of MIMO technique used at
any given subframe. In this book, we have focused on the first four of the nine transmission
modes used in the LTE standard. Figure 8.2 illustrates the processing chain in the downlink
transmitter.
In each subframe, the scheduler selects one of the four transmission modes: the first imple-

ments a single-antenna transmission and can be referred to as a SIMO (Single Input Multiple
Output) mode. The second employs transmit diversity, where redundant information is trans-
mitted on multiple antennas to boost the overall link reliability. The third and fourth both
employ spatial-multiplexing MIMO techniques to boost data rates. The third mode uses open-
loop spatial multiplexing and is intended for transmission in high-mobility scenarios, while
the fourth uses closed-loop spatial multiplexing intended mostly for low-mobility scenarios
and is responsible for the highest data rates achievable by the LTE standard.

x
→

(1), x
→

(2), ..., x
→

(n) y
→

(1), y
→

(2), ..., y
→

(n)0100010011... 0100010011...

Transport block
payload bits

Recovered
payload bits

Transmitted
symbols

Received
symbols

Transmitter Channel Receiver

Figure 8.1 LTE downlink PHY transceiver model

System-Level Specification 307

Transport block payload bits

DLSCH
processing

PDSCH
processing

0100010011...

Downlink scheduler

Mode 1

SIMO

CRC generation

Turbo coding

Rate matching

CRC generation

Turbo coding

Rate matching

CRC generation

Turbo coding

Rate matching

CRC generation (1,2)

Turbo coding (1,2)

Rate matching (1,2)

Scrambling

Modulation

Cell-specific

reference generation

Resource element

mapping

OFDM transmission

Scrambling

Modulation

Transmit diversity

encoder

Cell-specific

reference generation

Resource element

mapping

OFDM transmission

switch

Transmitted symbols

Scrambling

Modulation

Layer mapping

Open-loop

precoding

Cell-specific

reference generation

Resource element

mapping

OFDM transmission

Scrambling (1,2)

Modulation (1,2)

Layer mapping

Closed-loop

precoding

Cell-specific

reference generation

Resource element

mapping

OFDM transmission

Mode 2 Mode 3

Open-loop

spatial multiplexing

Mode 4

Closed-loop

spatial multiplexingTransmit Diversity

x→(1), x
→

(2), x
→

(3),..., x
→

(n),...

Figure 8.2 LTE downlink system model: transmission modes 1–4, transmitter operations

308 Understanding LTE with MATLAB®

In each transmission mode, we go through a series of operations that are a combination
of Downlink Shared Channel (DLSCH) and Downlink Shared Physical Channel (PDSCH)
processing steps. Many of the PDSCH and DLSCH operations are common to all transmission
modes. The distinctive MIMO-specific operations in each mode are the elements that set it
apart from the others.
Common operations include the transport block CRC (Cyclic Redundancy Check) attach-

ment, code-block segmentation and attachment, turbo coding, rate matching, and code-block
concatenation to generate codewords. The codewords constitute the inputs of the PDSCH pro-
cessing chain. The LTE downlink specification supports one or two codewords. To make the
MATLAB algorithm easier to read, we show here only the closed-loop spatial-multiplexing
case (mode 4) with either one or two codewords. In the PDSCH, common operations are
scrambling, modulation of scrambled bits to generate modulation symbols, mapping of modu-
lation symbols to resource elements, and generation of OFDM signal for transmission on each
antenna port.
Different transmission modes are differentiated by their respective MIMO operations. In the

case of the SIMO mode, no particular MIMO operations are performed and the modulation
symbols map directly to the resource grid. In the second mode, transmit diversity is applied to
the modulated symbols. This operation can be viewed as a combined form of layer mapping
and precoding. A transmit-diversity encoder subdivides the modulated stream into different
substreams intended for different transmit antennas. This is analogous to a layer-mapping
operation. Transmit diversity also assigns to each transmit antenna orthogonally transformed
substreams that can be regarded as a special type of precoding.
In spatial multiplexing modes 3 and 4, we explicitly perform layer mapping and precoding

operations on the modulated symbols. The outputs of MIMO operations are then placed as
resource elements in the resource grid. In mode 3, the open-loop precoding implies that the
precoder matrix is independently generated at the transmitter and the receiver and does not
require transmission of any precoding data. In closed-loop spatial multiplexing, we use either
a constant precoder throughout the simulation or a closed-loop feedback in the receiver to
signal which precoder matrix index needs to be transmitted in the following subframe.

8.1.2 MATLAB Model for a Transmitter Model

The following MATLAB function shows the LTE downlink transmitter operations for the
transmission mode used in any given subframe. It can be viewed as a combination of the
SIMO, transmit-diversity, open-loop, and closed-loop spatial-multiplexing transmitters devel-
oped in the previous chapters. The function takes as input the subframe number (nS) and the
three parameter structures (prmLTEDLSCH, prmLTEPDSCH, prmMdl). As the function is
called in each subframe, it first generates the transport-block payload bits and then proceeds
with the common DLSCH and PDSCH operations. Using a MATLAB switch-case statement,
it then performs MIMO operations specific to the selected transmitted mode. The MIMO out-
put symbols and the cell-specific resource symbols (pilots) generated are then mapped into the
resource grid. The OFDM transmission operations applied to the resource grid finally generate
the output transmitted symbols (txSig).

System-Level Specification 309

Algorithm

MATLAB function

function [txSig, csr_ref] = commlteMIMO_Tx(nS, dataIn, prmLTEDLSCH, prmLTEPDSCH,

prmMdl)

%#codegen

% Generate payload

dataIn1 = genPayload(nS, prmLTEDLSCH.TBLenVec);

% Transport block CRC generation

tbCrcOut1 =CRCgenerator(dataIn1);

% Channel coding includes - CB segmentation, turbo coding, rate matching,

% bit selection, CB concatenation - per codeword

[data1, Kplus1, C1] = lteTbChannelCoding(tbCrcOut1, nS, prmLTEDLSCH,

prmLTEPDSCH);

%Scramble codeword

scramOut = lteScramble(data1, nS, 0, prmLTEPDSCH.maxG);

% Modulate

modOut = Modulator(scramOut, prmLTEPDSCH.modType);

%%%%%%%%%%%%%%%%%%%%%%%

% MIMO transmitter based on the mode

%%%%%%%%%%%%%%%%%%%%%%%

numTx=prmLTEPDSCH.numTx;

dataIn= dataIn1;

Kplus=Kplus1;

C=C1;

Wn=complex(ones(numTx,numTx));

switch prmLTEPDSCH.txMode

case 1 % Mode 1: Single-antenna (SIMO mode)

PrecodeOut =modOut;

case 2 % Mode 2: Transmit diversity

% TD with SFBC

PrecodeOut = TDEncode(modOut(:,1),prmLTEPDSCH.numTx);

case 3 % Mode 3: Open-loop Spatial multiplexing

LayerMapOut = LayerMapper(modOut, [], prmLTEPDSCH);

% Precoding

PrecodeOut = SpatialMuxPrecoderOpenLoop(LayerMapOut, prmLTEPDSCH);

case 4 % Mode 4: Closed-loop Spatial multiplexing

if prmLTEPDSCH.numCodeWords==1

% Layer mapping

LayerMapOut = LayerMapper(modOut, [], prmLTEPDSCH);

else

dataIn2 = genPayload(nS, prmLTEDLSCH.TBLenVec);

tbCrcOut2 =CRCgenerator(dataIn2);

310 Understanding LTE with MATLAB®

[data2, Kplus2, C2] = lteTbChannelCoding(tbCrcOut2, nS, prmLTEDLSCH,

prmLTEPDSCH);

scramOut2 = lteScramble(data2, nS, 0, prmLTEPDSCH.maxG);

modOut2 = Modulator(scramOut2, prmLTEPDSCH.modType);

% Layer mapping

LayerMapOut = LayerMapper(modOut, modOut2, prmLTEPDSCH);

dataIn= [dataIn1;dataIn2];

Kplus=[Kplus1;Kplus2];

C=[C1; C2];

end

% Precoding

usedCbIdx = prmMdl.cbIdx;

[PrecodeOut, Wn] = SpatialMuxPrecoder(LayerMapOut, prmLTEPDSCH, usedCbIdx);

end

% Generate Cell-Specific Reference (CSR) signals

numTx=prmLTEPDSCH.numTx;

csr = CSRgenerator(nS, numTx);

csr_ref=complex(zeros(2*prmLTEPDSCH.Nrb, 4, numTx));

for m=1:numTx

csr_pre=csr(1:2*prmLTEPDSCH.Nrb,:,:,m);

csr_ref(:,:,m)=reshape(csr_pre,2*prmLTEPDSCH.Nrb,4);

end

% Resource grid filling

txGrid = REmapper_mTx(PrecodeOut, csr_ref, nS, prmLTEPDSCH);

% OFDM transmitter

txSig = OFDMTx(txGrid, prmLTEPDSCH);

8.1.3 Channel Model

Channel modeling is performed by combining a MIMO fading channel with an AWGN (Addi-
tiveWhite Gaussian Noise) channel.MIMO channels specify the relationships between signals
transmitted over multiple transmit antennas and signals received at multiple receive antennas.
Typical parameters of MIMO channels include the antenna configurations, multipath delay
profiles, maximum Doppler shifts, and spatial correlation levels within the antennas in both
the transmitter side and the receiver side. The AWGN channel is usually specified using the
SNR (Signal-to-Noise Ratio) value or the noise variance. Figure 8.3 illustrates the operations
performed within a fading-channel model, showing an example in which a 4× 4 MIMO chan-
nel connects a single path of the transmitted signals from four transmit antennas to four receive
antennas. The uncorrelated white Gaussian noise is then added to each MIMO received signal
to produce the channel-modeling output signal.

8.1.4 MATLAB Model for a Channel Model

The following MATLAB function shows how channel modeling is performed by combining
a multipath MIMO fading channel with an AWGN channel. First, by calling the MIMOFad-
ingChan function, we generate the faded version of the transmitted signal (rxFade) and the

System-Level Specification 311

+

+

+

+

y→(1), y
→

(2),..., y
→

(n)x→(1), x
→

(2),..., x
→

(n)

x1

x2

x3

x4

x→ y→

y1

𝑛1

𝑛2

𝑛3

𝑛4

y2

y3

y4

MIMO
channel

AWGN
channel

Figure 8.3 LTE downlink system model: channel model per path

corresponding channel matrix (chPathG). The MIMO fading channel computes the faded
signal as a linear combination of multiple transmit antennas. As a result, the output signal
(rxFade) may not have an average power (signal variance) of one. To compute the noise
variance needed to execute the AWGNChannel function, we need to first compute the sig-
nal variance (sigPow) and then derive the noise variance as the difference between the signal
power and the SNR value in dB.

Algorithm

MATLAB function

function [rxSig, chPathG, nVar] = commlteMIMO_Ch(txSig, prmLTEPDSCH, prmMdl)

%#codegen

snrdB = prmMdl.snrdB;

% MIMO Fading channel

[rxFade, chPathG] = MIMOFadingChan(txSig, prmLTEPDSCH, prmMdl);

% Add AWG noise

sigPow = 10*log10(var(rxFade));

nVar = 10.^(0.1.*(sigPow-snrdB));

rxSig = AWGNChannel(rxFade, nVar);

8.1.5 Receiver Model

In the receiver, the signal processing chain is applied to the received symbols following chan-
nel modeling. At the receiver, essentially the inverse operations to those of the transmitter
are performed in order to obtain a best estimate of the transmitted payload bits. Figure 8.4
illustrates the processing chain in the downlink receiver.

312 Understanding LTE with MATLAB®

Received symbols

Sheduler assignments

Mode 1

SIMO

Mode 2 Mode 3

Open-loop
spatial multiplexing

Mode 4

Closed-loop
spatial multiplexingTransmit diversity

y→(1), y
→

(2), y
→

(3), ..., y
→

(n), ...

Rate dematching

Turbo decoding

CRC detection

Inverse
PDSCH
processing

Inverse
DLSCH
processing

Recovered Payload Bits

OFDM receiver

Resource element

de-mapping

Cell-specific

reference extraction

SIMO equalization

Demodulation

Descrambling

Rate dematching

Turbo decoding

CRC detection

OFDM receiver

Resource element

de-mapping

Cell-specific

reference extraction

Transmit diversity

combiner

Demodulation

Descrambling

Rate dematching

Turbo decoding

CRC detection

switch

0100010011...

Rate dematching (1,2)

Turbo decoding (1,2)

CRC detection (1,2)

OFDM receiver

Resource element

de-mapping

Cell-specific

reference extraction

MIMO receiver

Layer de-mapping

Demodulation

Descrambling

OFDM receiver

Resource element

de-mapping

Cell-specific

reference extraction

MIMO receiver

Layer de-mapping

Demodulation (1,2)

Descrambling (1,2)

Figure 8.4 LTE downlink system model: transmission modes 1–4, receiver operations

System-Level Specification 313

At the receiver, the first few operations are independent of the transmission mode. These
include the OFDM receiver, resource element demapping, and Cell-Specific Reference (CSR)
signal extraction. Following these common operations, we reconstruct the resource grid at the
receiver and extract the user data and the CSR signal from it. Based on the received CSR
signals, we then estimate the channel response matrices in each subframe. The channel esti-
mation can be based onmultiple algorithms: the ideal estimation algorithm exploits a complete
knowledge of channel-state information, while other algorithms are based on various forms of
interpolation and averaging.
At this point, we perform the MIMO detection operations based on the scheduled transmis-

sion mode in order to recover the best estimates of the modulated symbols. In SIMO mode,
receiver detection is same as frequency-domain equalization. In transmit-diversity mode, the
transmit-diversity combiner operation is performed. In spatial-multiplexing modes, theMIMO
receiver operations are performed in order to solve the MIMO equation for each received sym-
bol given the estimated channel matrix and then different substreams are explicitly mapped
back to a single modulated stream using the layer-demapping operation.
The difference between the open-loop (mode 3) and the closed-loop (mode 4) MIMO

receivers relates to the precoder matrix. The open-loop algorithm uses different precoder
matrix values for different predetection received symbols, whereas the closed-loop algorithm
uses a common precoder matrix for all received symbols. After we obtain the best estimates
of the modulated symbols, we perform demodulation, descrambling, channel-decoding,
and CRC-detection operations in order to obtain best estimates of the payload bits at
the receiver. Where a sphere decoder is used as part of the MIMO receiver algorithm,
we bypass the demodulation as it is included within the sphere-decoding algorithm. The
operations following MIMO detection are repeated according to the number of transmitted
codewords.

8.1.6 MATLAB Model for a Receiver Model

The following MATLAB function shows the LTE downlink receiver operations for a given
transmission mode used in any subframe. The function takes as input the subframe number
(nS), the OFDM signal processed by the channel (rxSig), an estimate of the noise variance
per received channel (nVar), the channel-path gain matrices (chPathG), the transmitted
cell-specific reference signals (csr_ref), and the three parameter structures (prmLTEDLSCH,
prmLTEPDSCH, prmMdl). It generates as its output a best estimate of the transport-block
payload bits (dataOut). As described in the last section, the function first performs com-
mon OFDM receiver and demapping operations in order to recover the resource grid
and estimate the channel response and then, using a MATLAB switch-case statement,
performs MIMO receiver operations specific to the selected transmitted mode (represented
by the prmLTEPDSCH.txMode variable). Finally, by performing common demodulation,
descrambling, channel decoding, and CRC-detection operations, the function computes its
output signal.

314 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function dataOut = commlteMIMO_Rx(nS, rxSig, chPathG, nVar, csr_ref, prmLTEDLSCH,

prmLTEPDSCH, prmMdl)

%#codegen

% OFDM Rx

rxGrid = OFDMRx(rxSig, prmLTEPDSCH);

% updated for numLayers -> numTx

[dataRx, csrRx, idx_data] = REdemapper_mTx(rxGrid, nS, prmLTEPDSCH);

% MIMO channel estimation

if prmMdl.chEstOn

chEst = ChanEstimate_mTx(prmLTEPDSCH, csrRx, csr_ref, prmMdl.chEstOn);

hD = ExtChResponse(chEst, idx_data, prmLTEPDSCH);

else

idealChEst = IdChEst(prmLTEPDSCH, prmMdl, chPathG);

hD = ExtChResponse(idealChEst, idx_data, prmLTEPDSCH);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MIMO Receiver based on the mode

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dataOut=false(size(dataIn));

switch prmLTEPDSCH.txMode

case 1

% Based on Maximum-Combining Ratio (MCR)

yRec = Equalizer_simo(dataRx, hD, max(nVar), prmLTEPDSCH.Eqmode);

cwOut = yRec;

case 2

% Based on Transmit Diversity with SFBC combiner

yRec = TDCombine(dataRx, hD, prmLTEPDSCH.numTx, prmLTEPDSCH.numRx);

cwOut = yRec;

case 3

yRec = MIMOReceiver_OpenLoop(dataRx, hD, prmLTEPDSCH, nVar);

% Demap received codeword(s)

[cwOut, ̃] = LayerDemapper(yRec, prmLTEPDSCH);

case 4

% Based on Spatial Multiplexing

yRec = MIMOReceiver(dataRx, hD, prmLTEPDSCH, nVar, Wn);

% Demap received codeword(s)

[cwOut1, cwOut2] = LayerDemapper(yRec, prmLTEPDSCH);

if prmLTEPDSCH.numCodeWords==1

cwOut = cwOut1;

else

cwOut = [cwOut1, cwOut2];

end

System-Level Specification 315

end

% Codeword processing

Len=numel(dataOut)/prmLTEPDSCH.numCodeWords;

index=1:Len;

for n = 1:prmLTEPDSCH.numCodeWords

% Demodulation

if prmLTEPDSCH.Eqmode == 3

% not necessary in case of Sphere Decoding

demodOut = cwOut(:,n);

else

% Demodulate

demodOut = DemodulatorSoft(cwOut(:,n), prmLTEPDSCH.modType, max(nVar));

end

% Descramble received codeword

rxCW = Descramble(demodOut, nS, 0, prmLTEPDSCH.maxG);

% Channel decoding includes CB segmentation, turbo decoding, rate dematching

[decTbData, ̃,̃] = TbChannelDecoding(nS, rxCW, Kplus(n), C(n), prmLT-

EDLSCH, prmLTEPDSCH);

% Transport block CRC detection

[dataOut(index), ̃] = CRCdetector(decTbData);

index = index +Len;

end

8.2 System Model in MATLAB

In this section, we showcase the MATLAB testbench (commlteSystem) that represents the
system model for the PHY of the LTE standard. First it calls the initialization function
(commlteSystem_initialize) to set all the relevant parameter structures (prmLTEDLSCH,
prmLTEPDSCH, prmMdl). Then it uses a while loop to perform subframe processing by
calling the MIMO transceiver function composed of the transmitter (commlteSystem_Tx), the
channel model (commlteSystem_Channel), and the receiver (commlteSystem_Rx). Finally, it
updates the Bit Error Rate (BER) and calls the visualization function to illustrate the channel
response and modulation constellation before and after equalization. By comparing the
transmitted and received bits, we can then compute various measures of performance based
on the simulation parameters.

Algorithm

MATLAB function

% Script for LTE (mode 1 to 4, downlink transmission)

%

% Single or double codeword transmission for mode 4

%

clear functions

316 Understanding LTE with MATLAB®

%%

commlteSystem_params;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteSystem_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,

chanMdl, Doppler, corrLvl, ...

chEstOn, numCodeWords, enPMIfback, cbIdx);

clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter

fullDecode chanMdl Doppler corrLvl chEstOn numCodeWords enPMIfback cbIdx

%%

disp('Simulating the LTE Downlink - Modes 1 to 4');

zReport_data_rate_average(prmLTEPDSCH, prmLTEDLSCH);

hPBer = comm.ErrorRate;

%% Simulation loop

tic;

SubFrame =0;

nS = 0; % Slot number, one of [0:2:18]

Measures = zeros(3,1); %initialize BER output

while (Measures(3) < maxNumBits) && (Measures(2) < maxNumErrs)

%% Transmitter

[txSig, csr, dataIn] = commlteSystem_Tx(nS, prmLTEDLSCH, prmLTEPDSCH, prmMdl);

%% Channel model

[rxSig, chPathG, ̃] = commlteSystem_Channel(txSig, snrdB, prmLTEPDSCH, prmMdl);

%% Receiver

nVar=(10.^(0.1.*(-snrdB)))*ones(1,size(rxSig,2));

[dataOut, dataRx, yRec] = commlteSystem_Rx(nS, csr, rxSig, chPathG, nVar, ...

prmLTEDLSCH, prmLTEPDSCH, prmMdl);

%% Calculate bit errors

Measures = step(hPBer, dataIn, dataOut);

%% Visualize results

if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);

end;

fprintf(1,'Subframe no. %4d ; BER = %g \r', SubFrame, Measures(1));

%% Update subframe number

nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;

SubFrame =SubFrame +1;

end

toc;

8.3 Quantitative Assessments

In this section we look at performance from various different perspectives. By executing the
system model in MATLAB with different simulation parameters we can assess the perfor-
mance of the LTE standard. First we look at performance as a function of transmission mode.
Then, given a particular transmission mode, we observe the effect of varying channel models.
Next, we validate the proper implementation of MIMO–OFDM equalizers by looking at the
BER as a function of the link SNR. Then we verify how the link delay spread and the Cyclic

System-Level Specification 317

Prefix (CP) of the OFDM transmitter relate to the overall performance. Finally, we observe the
effects of receiver operations including the channel estimation and MIMO receiver algorithms
on the overall performance.

8.3.1 Effects of Transmission Modes

In this experiment, we examine the BER performance as a function of the transmission mode.
We iterate through nine test cases, where each test case is characterized by a transmission
mode and a valid antenna configuration. For example, in the SIMO case (mode 1) we examine
three valid antenna configurations (1× 1, 1× 2, and 1× 4). For transmit diversity (mode 2)
and spatial multiplexing (modes 3 and 4), we examine only antenna configurations of 2× 2
and 4× 4. The experiment assigns a common parameter set to the transmitter and receiver and
is performed twice, once for a low-distortion channel model and once for a channel with a
lot of distortion. The following MATLAB scripts show how easy it is to sweep through these
configurations and perform the experiment.

Algorithm

MATLAB scripts

clear all

TestCases=[...

1,1,1;

1,1,2;

1,1,4;

2,2,2;

2,4,4;

3,2,2;

3,4,4;

4,2,2;

4,4,4];

NumCases=size(TestCases,1);

Ber_vec_Experiment1=zeros(NumCases,1);

for Experiment = 1:NumCases

txMode = TestCases(Experiment,1);

% Transmisson mode one of {1, 2, 3, 4}

numTx = TestCases(Experiment,2);

% Number of transmit antennas

numRx = TestCases(Experiment,3);

% Number of receive antennas

copyfile('commlteSystem_params

_distorted.m','commlteSystem_params.m');

commlteSystemModel;

Ber_vec_Experiment1(Experiment)=

Measures(1);

end

clear all

TestCases=[...

1,1,1;

1,1,2;

1,1,4;

2,2,2;

2,4,4;

3,2,2;

3,4,4;

4,2,2;

4,4,4];

NumCases=size(TestCases,1);

Ber_vec_Experiment2=zeros(NumCases,1);

for Experiment = 1:NumCases

txMode = TestCases(Experiment,1);

% Transmisson mode one of {1, 2, 3, 4}

numTx = TestCases(Experiment,2);

% Number of transmit antennas

numRx = TestCases(Experiment,3);

% Number of receive antennas

copyfile('commlteSystem_params_clean.m',

'commlteSystem_params.m');

commlteSystemModel;

Ber_vec_Experiment2(Experiment)=

Measures(1);

end

318 Understanding LTE with MATLAB®

The common transmitter and receiver parameters certainly may vary but in this experiment
we have chosen the following parameters: a 16QAM modulation scheme, turbo coding with a
1/2 rate, a bandwidth of 10MHz, two PDCCH (Physical Downlink Control Channel) symbols
per subframe, and a single codeword. Receiver parameters include the following: turbo decoder
with four maximum decoding iterations with early termination decoding, no feedback for the
precoder matrix, channel estimation based on interpolation, and the MMSE (Minimum Mean
Squared Error) MIMO receiver.
The distorted channel uses flat fading with a 70Hz maximum Doppler shift, antennas with

high spatial correlations, and an SNR value of 5 dB. Table 8.1 shows BER and data-rate
measures as a function of transmission mode and antenna configuration in noisy channel con-
ditions. The clean channel condition is characterized by a frequency-selective channel model
with antennas of low spatial correlation, a maximum Doppler shift of zero, and an SNR value
of 15 dB. Table 8.2 shows BER and data-rate measures as a function of transmission mode and
antenna configuration in low-distortion channel conditions.

Table 8.1 BER performance and data rate as a function of transmission
mode: high-distortion channel profile

Performance results Antenna configuration Data rate (Mbps) BER

Mode 1 1× 1 13.88 0.2123

1× 2 13.88 0.0098

1× 4 13.88 0.0004

Mode 2 2× 2 12.96 0.0075

4× 4 12.81 0.0013

Mode 3 2× 2 25.46 0.3392

4× 4 50.46 0.4067

Mode 4 2× 2 25.46 0.2621

4× 4 50.46 0.4167

Table 8.2 BER performance and data rate as a function of transmission
mode: low-distortion channel profile

Performance results Antenna configuration Data rate (Mbps) BER

Mode 1 1× 1 13.88 0.0032

1× 2 13.88 4.2e−05

1× 4 13.88 0.0

Mode 2 2× 2 12.96 0.0

4× 4 12.81 0.0

Mode 3 2× 2 25.46 0.1341

4× 4 50.46 0.2748

Mode 4 2× 2 25.46 0.0967

4× 4 50.46 0.1948

System-Level Specification 319

Based on the results, we can make the following observations:

• The performance in each mode is consistently better in a clean channel than in a noisy
channel.

• In the SIMO case, performance improves as a result of diversity when multiple receive
antennas are employed. The BER profile matches what is expected from Maximum Ratio
Combining (MRC) [1].

• Transmit diversity improves performance and is comparable to receive diversity. The theo-
retical bound for TD performance presented in [1] matches our results.

• In Spatial Multiple (SM) modes 3 and 4, performance seems rather low under both channel
conditions. Since SM modes are responsible for highest data rates, the question is what
parameter set results in acceptable BER performance in spatial multiplexing modes. The
next section attempts to answer this question.

8.3.2 BER as a Function of SNR

In this section wewill develop criteria to validate the performance results of our LTE PHY sim-
ulator. Specifically, we want to find out whether the SM results satisfy the minimum require-
ments of the standard. The LTE standard is a MIMO–OFDM system. It combats the effects
of multipath fading and the resulting intersymbol interference by using frequency-domain
equalization. As we examine the transmitter system model, we realize that the combination
of MIMO and OFDM techniques operates on the modulated streams following coding and
scrambling operations. In the receiver, by inverting the OFDM and MIMO operations first,
we recover the received modulated substreams and the MIMO receiver detection operation
recovers the best estimate of the modulated stream at the receiver.
This means that by looking at the constellation of received signals (Figure 8.5) beforeMIMO

detection we can readily see the effects of multipath fading in terms of rotations and attenua-
tions in each of the modulated symbols. If the MIMO and OFDM operations are implemented
correctly and do what they are designed to do, the MIMO detector inverts and compensates for
the effects of fading channel. A good MIMO detector computes a channel-aware equalizer by
first estimating the channel response and then providing the equalization as a counter-measure
to all the rotations and attenuations incurred in each symbol. After applying an effective equal-
izer, the constellation diagram of the recovered symbols followingMIMO detection resembles
that of the transmitted symbols with additive Gaussian noise around them. As a result, although
the channel involves multipath fading following equalization, the effective channel can be
approximated by an AWGN channel.
In Chapter 4, we showed that the turbo-coded and modulated symbols transmitted on an

AWGN channel are characterized by BER curves that show sharp improvements following a
cutoff SNR value. Since after successful MIMO detection the effective channel is an AWGN
channel in the LTE system, the system will have the same pattern of BER curve as a function
of the SNR.
Figure 8.6 shows BER curves from a system simulation model executed for a range of

SNR values. The model operates in transmission mode 4, using a frequency-selective chan-
nel with all the parameters of the lower-distortion channel model specified in the last section.
Note how they reflect the same structure and pattern, as if the AWGN channel were the only
channel model present. This means that the frequency-domain equalization furnished by the

320 Understanding LTE with MATLAB®

Figure 8.5 Constellation of received signals: before and after MIMO detection

MIMO detection effectively compensates for the effects of multipath fading. As we can see in
Figure 8.6, the results are quite prominent for the QPSK and 16QAMmodulation schemes. In
the case of 64QAM modulation, if we use an approximate channel-estimation technique we
will have a less prominent drop in the BER curve.

8.3.3 Effects of Channel-Estimation Techniques

In this section we examine BER performance as a function of channel-estimation methods.
The experiment provides similar results in different transmission modes. For example, we
run the system model in transmission mode 4 with a frequency-selective channel and with
all parameters of the lower-distortion channel model previously specified. The experiment

System-Level Specification 321

QPSK

16 QAM

64 QAM

BER performance of system model as a function of SNR

100

10−5

0 5 10

SNR

15 20 25

10−4

10−3

B
E

R

10−2

10−1

Figure 8.6 BER as a function of an SNR–LTE simulation model with frequency-selective fading
channel: QPSK (left), 16QAM (middle), 64QAM (right)

is performed by changing one of four channel-estimation techniques, simply by changing
the prmMdl.chEst parameter in the commlteSystem_params MATLAB script. The results are
summarized in Table 8.3. As expected, the ideal channel estimator provides the best BER per-
formance. The estimation based on interpolation allows for the most variation within slots and
subframes and thus has a higher performance in an MMSE error-minimization context. When
averaging in time across slots or subframes, we smooth out the spectrum. These averaging
methods do not therefore improve the BER performance results but may provide the conti-
nuity and smoothness needed for better perceptual results. We will verify this effect in the
next section, where we process actual voice data through our simulation model and focus on
perceived voice quality.

Table 8.3 Sample of BER results as a
function of channel-estimation technique

Channel-estimation method BER

Ideal estimation 0.0001

Interpolation-based 0.0056

Averaging over each slot 0.0076

Averaging over a subframe 0.0086

322 Understanding LTE with MATLAB®

8.3.4 Effects of Channel Models

In this section we examine BER performance as a function of different channel models. The
experiment provides similar results in different transmissionmodes.We use transmissionmode
2 (transmit diversity) with a 2× 2 antenna configuration and iterate through multiple channel
models. This includes user-defined flat and frequency-selective fading models and all 3GPP
LTE channel models. We also sweep through various mobility measures expressed as either 0,
5, or 70Hz maximum Doppler shifts and iterate through different profiles of antenna spatial
correlations. Keeping the link SNR to a constant value of 13 dB and using a 16QAM mod-
ulation scheme, the experiment iterates through channel models by changing the chanMdl
parameter structure, specifically by changing the maximum Doppler shift (chanMdl.Doppler)
and the spatial correlation (chanMdl.corrLvl) parameters in the commlteSystem_paramsMAT-
LAB script. Table 8.4 summarizes the results.
As we increase the extent of the noise profile (using EPA, Extended Pedestrian A, and EVA,

Extended Vehicular A), the performance becomes consistently reduced. Higher mobility has
an adverse effect on the performance. Also, by increasing the spatial correlations, we increase
the chance of rank deficiency in the channel matrix, with detrimental effects on quality.

8.3.5 Effects of Channel Delay Spread and Cyclic Prefix

As discussed earlier, the CP length is an important parameter in the OFDM transmission
methodology. If path delays in a channelmodel correspond to values greater than the CP length,
the OFDM transmission cannot maintain orthogonality between subcarriers in the receiver.
This will have a detrimental effect on the BER quality of the transceiver.

Table 8.4 BER performance as a function of channel model

Performance results Maximum Doppler Spatial BER
shift (Hz) correlation

Flat fading 0 Low 0.0

5 Medium 1.3821e−02

70 High 1.1538e−02

Frequency-selective fading 0 Low 0.0

(user-defined) 5 Medium 8.0994e−06

70 High 3.4419e−03

EPA 5 Low 0.0

5 Medium 1.5399e−03

5 High 6.6134e−03

EVA (5Hz) 5 Low 0.0

5 Medium 4.6661e−07

5 High 2.0997e−06

EVA (70Hz) 70 Low 0.0

70 Medium 1.1854e−07

70 High 7.0629e−04

System-Level Specification 323

Table 8.5 Mapping of CP lengths in samples to the channel bandwidth

Channel Number of Smallest CP Channel sample Maximum supported
bandwidth resource blocks length (samples) rate (MHz) delay (μs)
1.4 6 9 1.92 4.6875

3 15 18 3.84 4.6875

5 25 36 7.68 4.6875

10 50 72 15.36 4.6875

15 75 108 23.04 4.6875

20 100 144 30.72 4.6875

The LTE standard allows the scheduler to provide both normal and extended CP lengths. In
propagation environments with high delay spreads, we can switch to transmissions that employ
extended CP lengths, which can help improve performance.
As shown in Table 8.5, all transmission bandwidths with normal CP lengths have a constant

maximum delay spread of about 4.6875 μs. We verify in this section that when employing
user-defined frequency-selective channel models, setting the path delays to different values
relative to the CP lengths can have a significant impact on BER performance. We implement
this experiment by altering the way in which the path delays of the user-specified frequency-
selective channel models are specified. In the followingMATLAB code, we determine the path
delays as equally-spaced samples between 0 and the maximum delay value.

Algorithm

MATLAB code segment in the prmsMdl function

% Channel parameters

prmMdl.PathDelays = floor(linespace(0,DelaySpread,5))*(1/chanSRate);

In the first case, we use as delay spread a value within the CP length range. The following
MATLAB code segment initializes the delay spread as just less than the value of the CP length.

Algorithm

MATLAB code segment in initialization function – Low delay spread length

% Channel parameters

chanSRate = prmLTEPDSCH.chanSRate;

DelaySpread = prmLTEPDSCH.cpLenR - 2;

prmMdl = prmsMdl(chanSRate, DelaySpread, chanMdl, Doppler, numTx, numRx, ...

corrLvl, chEstOn, enPMIfback, cbIdx);

324 Understanding LTE with MATLAB®

In the second case, we use as delay spread a value outside the CP length range. The following
MATLAB code segment initializes the delay spread as twice the value of the CP length.

Algorithm

MATLAB code segment in initialization function – High delay spread length

% Channel parameters

chanSRate = prmLTEPDSCH.chanSRate;

DelaySpread = 2* prmLTEPDSCH.cpLenR;

prmMdl = prmsMdl(chanSRate, DelaySpread, chanMdl, Doppler, numTx, numRx, ...

corrLvl, chEstOn, enPMIfback, cbIdx);

The experiment provides similar results in different transmissionmodes.We have used trans-
mission mode 1 with a 1× 2 antenna configuration. We applied a constant link SNR value of
15 dB and used a 16QAM modulation scheme. The results are summarized in Table 8.6. We
observe that having delay spread values that occasionally exceed the maximum CP length can
result in severe performance degradations.

8.3.6 Effects of MIMO Receiver Algorithms

In this section, we examine BER performance as a function of different MIMO receiver
algorithms. Simply by changing the equalization mode (represented by the prmLTEPDSCH.
Eqmode parameter) to a value of 1, 2, or 3, we can examine a Zero Forcing (ZF), MMSE, and
sphere-decoder algorithm, respectively. Table 8.7 summarizes the results.
Although the ZF algorithm provides the simplest implementation, by ignoring the noise

power at the receiver, it results in the lowest BER performance. The BER performance of
the MMSE algorithm is better than its ZF performance. It is formulated to essentially invert
the channel matrix while taking into account the power of the noise. However, the best

Table 8.6 Effect of delay spread range on
BER performance

Delay spread value BER

Low 0.00019

High 0.02440

Table 8.7 Effect of a MIMO detection
algorithm on BER performance

MIMO detection method BER

ZF algorithm 0.0001

MMSE algorithm 0.0056

Soft-sphere decoding 0.0076

System-Level Specification 325

performance is furnished by the sphere decoder, which uses maximum-likelihood decoding
to optimize for the modulation symbols based on their symbol mapping. A sphere decoder
is an algorithm of relatively high computational complexity and the time it takes to process
a sphere-decoder receiver can be substantially greater than for an MMSE receiver. As such,
the choice between a MIMO receiver based on MMSE and on a sphere decoder represents a
classical tradeoff between complexity and performance.

8.4 Throughput Analysis

LTE-standard documents provide not only the transmitter specifications but also channel
conditions for testing and the minimum performance criteria needed to qualify for standard
compliance. For example, the standard document TS 36.101 provides all minimum perfor-
mance requirements for downlink transmission. An excerpt from this document is illustrated in
Figure 8.7. As an example, a single throughput requirement for the SIMO transmissionmode is
captured as a set of test cases in which various parameters are given as inputs and the expected
throughput is given as output. Input specifications include the bandwidth, reference channel,
propagation (channel mode), antenna spatial correlation matrix, and reference SNR values.
Throughput is defined as the average data rate for which successful transmission occurs.
Maximum throughput corresponds to the case where no input block with errors is received.
The relative throughput is the fraction of successful transmission with respect to maximum
throughput. For example, test case 1, corresponding to QPSK (Quadrature Phase Shift Keying)
modulation, expects a 70% relative throughput for an SNR value of −1 dB when the EVA
channel model with a Doppler shift of 5Hz is used with low spatial antenna correlations and a
transmission mode of 1 is used with a 1× 2 antenna configuration and a bandwidth of 10MHz.
We have modified our receiver and the system MATLAB functions for computation of the

throughput. In the receiver, as the last processing step we compute CRC detection. When any
error is found in CRC detection, the block of output is deemed to have been received in error.
By excluding all erroneous blocks from the total number of blocks processed we can find the

Test
number

Bandwidth
(MHz)

Reference
channels

OCNG
pattern

Propagation
condition

Correlation
matrix &
Antenna

configuration

Fraction of
Max.

Throughput
(%)

SNR
(dB)

UE
category

1 10 R.2 FDD OP.1 FDD EVA5 1x2 Low 70 −1.0 1–8

1A 2x10 R.2 FDD
OP.1 FDD
(Note 1)

EVA5 1x2 Low 70 −1.1 3–8

2 10 R.2 FDD OP.1 FDD ETU70 1x2 Low 70 −0.4 1–8

3 10 R.2 FDD OP.1 FDD ETU300 1x2 Low 70 0.0 1–8

4 10 R.2 FDD OP.1 FDD HST 1x2 Low 70 −2.4 1–8

5 1.4 R.4 FDD OP.1 FDD EVA5 1x2 Low 70 0.0 1–8

… … … … … … … … …

Figure 8.7 Test cases for LTE downlink compliance: TS 36.101 excerpt on minimum requirement
testing [2]. Courtesy of 3GPP documentation

326 Understanding LTE with MATLAB®

relative throughput as the ratio of correctly received blocks to total received blocks. The fol-
lowing MATLAB function uses this definition to compute and display the relative throughput.

Algorithm

MATLAB function

function Throughput=getThroughput(ber, CbFlag, SubFrame)

persistent ErrorBlk

if isempty(ErrorBlk)

ErrorBlk=0;

end

ErrorBlk = ErrorBlk + CbFlag;

Throughput=1-(ErrorBlk/SubFrame);

fprintf(1,'Subframe %4d ; BER = %6.4f ; ErrorFrame = %4d ; Throughput = %4.2f \r', ...

SubFrame, ber, ErrorBlk, Throughput);

end

8.5 System Model in Simulink

So far we have presented MATLAB algorithms and testbenches to simulate the PHY of the
LTE standard. In this section we show how expressing the same system model as a Simulink
model facilitates our design process. Simulink models naturally provide a simulation test-
bench, which enables us to focus on algorithms and their updates rather than having tomaintain
the testbench. Let us take a look at our MATLAB systemmodel in order to distinguish its algo-
rithmic portions (i.e., code related to system processing) from its testbench components (i.e.,
code related to maintaining a simulation framework).

Algorithm

MATLAB function

clear functions

commlteSystem_params;

[prmLTEPDSCH, prmLTEDLSCH, prmMdl] = commlteSystem_initialize(txMode, ...

chanBW, contReg, modType, Eqmode,numTx, numRx,cRate,maxIter, fullDecode,

chanMdl, Doppler, corrLvl, ...

chEstOn, numCodeWords, enPMIfback, cbIdx);

clear txMode chanBW contReg modType Eqmode numTx numRx cRate maxIter

fullDecode chanMdl Doppler corrLvl chEstOn numCodeWords enPMIfback cbIdx

%%

disp('Simulating the LTE Downlink - Modes 1 to 4');

zReport_data_rate_average(prmLTEPDSCH, prmLTEDLSCH);

hPBer = comm.ErrorRate;

System-Level Specification 327

%% Simulation loop

tic;

SubFrame =0;

nS = 0; % Slot number, one of [0:2:18]

Measures = zeros(3,1); %initialize BER output

while (Measures(3) < maxNumBits) && (Measures(2) < maxNumErrs)

%% Transmitter

[txSig, csr, dataIn] = commlteSystem_Tx(nS, prmLTEDLSCH, prmLTEPDSCH, prmMdl);

%% Channel model

[rxSig, chPathG, ̃] = commlteSystem_Channel(txSig, snrdB, prmLTEPDSCH, prmMdl);

%% Receiver

nVar=(10.^(0.1.*(-snrdB)))*ones(1,size(rxSig,2));

[dataOut, dataRx, yRec] = commlteSystem_Rx(nS, csr, rxSig, chPathG, nVar, ...

prmLTEDLSCH, prmLTEPDSCH, prmMdl);

−−

%% Calculate bit errors

Measures = step(hPBer, dataIn, dataOut);

%% Visualize results

if (visualsOn && prmLTEPDSCH.Eqmodẽ=3)

zVisualize(prmLTEPDSCH, txSig, rxSig, yRec, dataRx, csr, nS);

end;

fprintf(1,'Subframe no. %4d ; BER = %g \r', SubFrame, Measures(1));

%% Update subframe number

nS = nS + 2; if nS > 19, nS = mod(nS, 20); end;

SubFrame =SubFrame +1;

end

−−
toc;

We can identify three main portions in the MATLAB system model:

1. Initialization: Operations that set various system parameters and are performed once
before the processing loop starts

2. Scheduling: A while loop that schedules iterative subframe processing and the extra oper-
ations needed to update the conditions for while-loop execution

3. In-loop processing: Subframe processing on input bits in order to perform transmitter,
channel-modeling, and receiver operations, as well as extra code to compare the input and
output bits and visualize various signals.

When we express the same model in Simulink, we essentially focus on modeling the in-loop
processing. The scheduling is handled by Simulink. With its time-based simulation engine,
Simulink iterates through samples or frames of data until the specified simulation time or a
stopping condition has been reached. Since MATLAB and Simulink share data in MATLAB
workspace, we can either perform the initialization commands manually before simulating

328 Understanding LTE with MATLAB®

the Simulink model or set the Simulink model up to perform the initialization code when the
model opens or at any time before the simulation starts.
In the following sections, we go through a step-by-step process of expressing the transceiver

in Simulink. First, we create a Simulink model and integrate the MATLAB algorithms devel-
oped so far as distinct blocks within it. Then we set the initialization routines up automatically
and make parameterizations easier by creating a parameter dialog.

8.5.1 Building a Simulink Model

We can build the Simulink model expressing the LTE transceiver system by using blocks from
the Simulink library. The Simulink library can be accessed by clicking on the Simulink Library
icon in the MATLAB environment, as illustrated in Figure 8.8. Within the Simulink library
browser, various collections of blocks from Simulink and other MathWorks products can be
found. We will be using mostly blocks from Simulink, the DSP System Toolbox, and the
Communications System Toolbox. As an example, Figure 8.9 illustrates a library of Simulink
blocks called the User-Defined Functions.
To start building a new Simulink model, we can use the Menu bar of the Simulink library

browser and make the following selections: File→New→Model. An empty Simulink model
will appear, as shown in Figure 8.10.

8.5.2 Integrating MATLAB Algorithms in Simulink

Next, we populate this systemwith blocks step by step in order to represent the LTE transceiver
in Simulink using previously developed MATLAB algorithms.

Figure 8.8 Accessing Simulink library from within the MATLAB environment

System-Level Specification 329

Figure 8.9 Simulink block libraries, organized as a main Simulink library and other product libraries

Figure 8.10 Building a new Simulink model for an LTE transceiver: start with an empty model

330 Understanding LTE with MATLAB®

Figure 8.11 Adding MATLAB Function blocks to the Simulink model

Figure 8.12 The MATLAB Function block, with a default function definition

Since we are planning to reuse the MATLAB algorithms developed for the transmitter, chan-
nel model, and receiver, we need blocks that can turn a MATLAB function into a component
of the Simulink model. The block that can perform this task is called the MATLAB Func-
tion block and can be found under the Simulink User-Defined Functions library. We need to
add four copies of the MATLAB Function block to our model. As shown in Figure 8.11, we
can change the block names to identify their functionalities as follows: Transmitter, Channel,
Receiver, and Subframe Update.
As the next stepwe open the Transmitter block by double clicking on its icon. Aswe open any

MATLAB Function block, a default function definition will open in the MATLAB Editor, as
illustrated in Figure 8.12. Now we can modify the default function definition to implement our
function. As we define the function, the input arguments of the function become the input ports
of the block and the output arguments of the function become the output ports of the block.

System-Level Specification 331

Figure 8.13 MATLAB Function block: updating function definition to implement the transmitter

Figure 8.14 Simulink model with an updated Transmitter block definition without any parameters

At this point we have two choices. We can either copy the body of our transmitter function
(commlteSystem_Tx) and paste it under the function definition line or we can make a func-
tion call to our transmitter function, as illustrated by Figure 8.13, in order to relate the input
variables of the function definition to its output variables.
After saving this function, we can go back to the parent model by clicking on the Go to

Diagram icon. As shown in Figure 8.14, wewill see that the Transmitter block is transformed to
reflect the new function definition. At this stage, by default all function arguments are mapped
to corresponding input and output ports.
We would like to turn all the relevant parameter structures (prmLTEDLSCH, prmL-

TEPDSCH, prmMdl) into parameters of the Simulink model. These parameter structures
will have constant values during the simulation and will be accessed by the Simulink model
as three variables in the MATLAB workspace. We open the Transmitter block and in the
MATLAB Editor click on the Edit Data icon above the Editor, as illustrated in Figure 8.15.

332 Understanding LTE with MATLAB®

Figure 8.15 Accessing the Ports and Data Manager to express transmitter LTE structure arguments
as model parameters

Figure 8.16 Setting LTE parameter structures as nontunable parameters

A dialog called Ports and DataManager appears, which enables us to edit data properties and
manage ports and parameters. This dialog is shown in Figure 8.16. Next, we click on each of
the port names (prmLTEDLSCH, prmLTEPDSCH, prmMdl), change the Scope property into
a Parameter, uncheck the Tunable checkbox to mark the parameter as a constant, and click on
the Apply button.
We then repeat these operations for the Channel and the Receiver MATLAB Function

blocks. Figure 8.17 illustrates simple MATLAB function calls made inside the Channel and
the Receiver MATLAB Function blocks, which allow us to directly integrate algorithms
developed previously in MATLAB as blocks in Simulink.
At this stage we can connect the output signal of the Transmitter block (txSig) to the input

port of the Channel block.We also connect the three output signals of the Channel block (rxSig,
chPathG, nVar) to the input ports of the Receiver block, as illustrated in Figure 8.18.

System-Level Specification 333

Figure 8.17 Calling Channel Model and Receiver functions inside corresponding MATLAB
Function blocks

Figure 8.18 Connecting Transmitter, Channel Model, and Receiver blocks

Now we have to update the subframe number (nS). The subframe number is the common
input to both the Transmitter and the Receiver blocks. To avoid excessive wiring in the model,
we use the GoTo and the From blocks from the Simulink Signal Routing library. The output
of the Subframe Update MATLAB Function block is the slot number of the current frame. We
connect this output signal to a GoTo block and, after clicking on the block, assign this signal an
identifier, otherwise known as the tag of the block. Now, any From block in the model bearing
the same tag can route the signal to multiple blocks in the model. As illustrated in Figure 8.19,
we have used two From blocks to connect the subframe number to both the Transmitter and
the Receiver blocks.
Whenwe double click the SubframeUpdateMATLABFunction blockwe find theMATLAB

function illustrated in Figure 8.20. This is the same code used previously in ourMATLAB test-
benches to update the subframe number. We have used a persistent variable here to implement
the subframe update operation as a counter that resets its value in every 10ms frame. Now

334 Understanding LTE with MATLAB®

Figure 8.19 Using GoTo and From blocks to connect the subframe number to both the transmitter
and the receiver

Figure 8.20 Subframe Update MATLAB function block implemented as a counter

we use additional GoTo and From blocks to finalize block connectivity in the model. As illus-
trated in Figure 8.21, the pair of GoTo and the From blocks is identified by a selected tag (csr)
and a purple background color. This ensures that the same cell-specific reference signal (pilot)
computed in the transmitter is also used in the receiver in the same subframe. We also use two
other GoTo blocks to collect the transmitted input bit stream (dataIn) and the receiver output
bit stream (dataOut). We use the tags Input and Output for the signals dataIn and dataOut,
respectively, in the GoTo blocks, and use the same background color. To compute the BER of
the system, we use the Error Rate Calculation block from the CommSinks Simulink library of
the Communications System Toolbox. Using two From blocks with the tags Input andOutput,
we route the transmitted input stream and receiver output stream to the Error Rate Calculation
block, as illustrated in Figure 8.22. The Error Rate Calculation block compares the decoded

System-Level Specification 335

Figure 8.21 Improved block port connectivities using GoTo and From block pairs

Figure 8.22 Completing the in-loop processing specification in Simulink with BER calculation

bits with the original source bits per subframe and dynamically updates the BER measure
throughout the simulation. The output of this block is a three-element vector containing the
BER, the number of error bits observed, and the number of bits processed.
Themodel checks the Stop Simulation parameter of the Error Rate Calculation block in order

to control the duration of the simulation (Figure 8.23). The simulation stops upon detection
of the target value for whichever of the following two parameters comes first: the maximum
number of errors (specified by the maxNumErrs parameter) or the maximum number of bits
(specified by the maxNumBits parameter).
At this point we have completed the in-loop processing specification in our Simulink model.

The next steps include initializing the model with LTE parameter structures and running the
Simulink model. Simulink model parameters can be initialized in multiple ways, but we will

336 Understanding LTE with MATLAB®

Figure 8.23 The Error Rate Calculation block controlling the duration of the simulation

look at two here: (i) setting model properties as the model is opened and (ii) using a mask
subsystem to provide a parameter dialog.

8.5.3 Parameter Initialization

Some operations in a system model get executed only once before the simulation loop starts.
Such operations represent system initialization. All the operations specified so far in our
Simulink model are part of the processing loop and are repeated in simulation iterations. One

System-Level Specification 337

Figure 8.24 Accessing the Model Properties of a Simulink model

way of specifying initialization operations in Simulink is to use the Model Properties and in
particular the Callback functions.
As illustrated in Figure 8.24, we can access the Model Properties by using the Menu bar of

ourmodel andmaking the following selections: File → Model Properties → Model Properties.
As we open the Model Properties dialog, we find multiple Model Callbacks under the Call-

backs tab. Associated with each type of Model Callback, we find an edit box where MATLAB
functions or commands can be executed. The type of callback relates to each stage of simu-
lation. For example, in Figure 8.25 we have selected the PreLoadFcn callback. This means
initialization functions, identical to the ones executed before the while loop in our MATLAB
model, will execute as we load (or open) the Simulink model.
At this point, the Simulink model is specified both for initialization operations and for

in-loop processing. Initialization routines are performed when we open the model and the
simulation starts when we click on the Run button. The final step is to specify the Simulink
solver and, if need be, set the sample time for the simulation. We can access Simulink solvers
by using the Menu bar of our model and making the following selections: Simulation →
Model Configuration Parameters → Solvers. Since we are performing a digital baseband sim-
ulation of a communications system, the simulation uses discrete-time sampling. Therefore,
as illustrated in Figure 8.26, under the Solver Options properties, we should use Fixed-Step
as the Type and Discrete (No Continuous State) as the Solver. These options are typical for
most Simulink models simulating DSP or Communications System Models with no analog or
mixed-signal components.

338 Understanding LTE with MATLAB®

Figure 8.25 Specifying initialization commands as the PreLoadFcn callback

Figure 8.26 Setting Solver Options, Sample Time, and Stop Time for the simulation model

In addition, since we stop the simulation based on parameters of the Error Rate Calculation
block, we specify any value as the Stop Time in this dialog. Here we select a maximum value of
infinity (specified by the inf parameter). Furthermore, since the unit of processing is a subframe
with a duration of 1ms, in the edit box for the property Fixed-Step Size (Fundamental Sample
Time) we set a value of 0.001 seconds.
Now the specification phase of our Simulink model is complete and we can run the model to

test whether (i) the initialization routines performed as CallBacks are implemented correctly
and (ii) the transceiver works as intended.
We save the model and then close it. After opening the model again, all three LTE param-

eter structures (prmLTEDLSCH, prmLTEPDSCH, prmMdl) and three additional parameters
(snrdB, maxNumBits, maxNumErrs) are automatically generated in the MATLAB workspace.
This verifies the proper operations of our CallBack routines, as illustrated in Figure 8.27.

System-Level Specification 339

Figure 8.27 Opening the model and automatically generating simulation parameters using
CallBacks

8.5.4 Running the Simulation

Through simulation, we can test the proper operation of the transceiver. We execute the sim-
ulation by clicking the Run button on the Model Editor displaying the model. Running the
simulation causes the Simulink engine to convert the model to an executable form, in a pro-
cess known as model compilation. As its first compilation step, the Simulink engine checks for
consistency in the model by evaluating the model’s block parameter expressions, determining
attributes of all signals and verifying that each block can accept the signals connected to its
inputs.
Since our model is composed ofMATLABFunction blocks, at this stage the Simulink engine

first converts the MATLAB code inside the MATLAB Function blocks to C code and then
compiles the generated C code to create an executable for each MATLAB Function block of
the model. If any MATLAB Function blocks contain MATLAB codes that are not supported
by code generation, we have to modify them. Finally, in the linking phase data memory is
allocated for each signal and all compiled executable are linked together and made ready for
execution.
Simulation errors may occur, either at the model compilation time or at run time. In case of

simulation errors, Simulink halts the simulation, opens the component that caused the error,
and displays pertinent information regarding the error in the Simulation Diagnostics Viewer.
An example is illustrated in Figure 8.28, which shows how the Simulink engine accurately
checks the consistency of the port connection between blocks in the model; the Simulink
engine has inferred that the subframe number (nS) signal affects the sizes of transmitted and
received bit (dataIn and dataOut) signals. So in each subframe, the size of these two signals
may change. However, by default, if we do not specify the sizes of any signal in any MATLAB
Function block, the signal is assumed to be of a constant size. This “variable-size” nature of
the two signals is the subject of the error message shown in Figure 8.28.
To fix this compilation problem, we need to mark both the dataIn and dataOut signals as

variable-size signals and specify their maximum size. We need to double click on both the

340 Understanding LTE with MATLAB®

Figure 8.28 Simulation error displayed by Simulink regarding the size of the transmitted signal

Figure 8.29 Configuring Transmitter and Receiver output signals as variable size and setting their
maximum size

Transmitter and Receiver blocks, access their Port and Data Manager dialogs, as described
before, select the dataIn and dataOut output signals, and change their Size properties by click-
ing on the Variable Size checkbox and specifying themaximum size. These steps are illustrated
in Figure 8.29.
This type of variable-size signal handling is typical in Simulink models that express com-

munications systems. This is in part due to the fact that during a simulation the sizes of various
signals can change from one frame to another.

System-Level Specification 341

Figure 8.30 Running the Simulink system model and measuring BER performance

Now we can successfully run the simulation by clicking on the Run button. The simulation
will proceed until a specified number of bits are processed. The simulation stops as the Error
Rate Calculation block detects the stopping criteria. The BER results are shown in Figure 8.30.
The performance results reflect the system parameters specified during initialization in the

MATLAB script (commlteSystem_params). If we want to run the simulation for a different
transmission mode or a different set of operating conditions, we must first modify the sys-
tem parameters by changing the MATLAB script. Then we need to return to our Simulink
model and rerun the simulation. This process of iterating between MATLAB and Simulink for
parameter specification can become tedious if we run multiple simulations. To make parameter
specification easier, in the next section we develop a parameter dialog in Simulink.

8.5.5 Introducing a Parameter Dialog

Parameter dialogs facilitate updates to the system parameters and enhance the way in which
we specify simulation parameters directly and graphically in Simulink. Essentially, we need
to introduce a new subsystem in our Simulink model that contains all the model parameters
and allows us to easily update them. This special kind of subsystem is known as a masked
subsystem.
A subsystem is a collection of one or more blocks in a Simulink model. Every subsystem

can be masked; that is, it can have a dialog in which the subsystem parameters are specified.
However, in this section we introduce a subsystem whose purpose is to contain and update the
model parameters. As illustrated in Figure 8.31, we start by adding a Subsystem block from
the Ports and Subsystems Simulink library into our model.
As we double click the Subsystem block icon to open it, we notice that it contains a trivial

connection from an input port to an output port. Note that in this section, we are not actually
building a subsystem but rather using the Subsystem block to create a masked subsystem
in order to hold our system parameters. As a result, our first action is to remove the input

342 Understanding LTE with MATLAB®

Figure 8.31 Introducing a subsystem to a Simulink model from the Ports and Subsystems Simulink
library

Figure 8.32 Making an empty subsystem to focus on masking and introducing parameters

and output ports and the connector from the Subsystem block. The subsystem will now be
empty, as illustrated in Figure 8.32. To distinguish this Subsystem from the other blocks and
subsystems of our model, we change its background color and rename it Model Parameters,
as shown in Figure 8.33.
The next step is to turn our empty subsystem into a masked subsystem. As illustrated by

Figure 8.34, this is easily done by first clicking on the subsystem to select it and then using the

System-Level Specification 343

Figure 8.33 Changing our subsystem background color and changing its name to Model Parameters

Figure 8.34 Turning the Model Parameters subsystem into a masked subsystem

Menu bar of the model to make the following selections: Diagram → Mask → Create Mask.
When we turn a subsystem into a masked subsystem, double clicking on the Subsystem icon
no longer opens the subsystem to display its content. Rather, a mask editor opens, enabling
us to add and specify various parameters and to initialize them. Figure 8.35 shows an empty
mask editor for our Model Parameters subsystem.
A mask editor contains four tabs: the Icon and Ports tab allows us to display text and images

on the subsystem icon, the Parameters tab allows us to introduce parameters and specify what

344 Understanding LTE with MATLAB®

Figure 8.35 Opening the Model Parameters mask editor in order to introduce parameters

values they can take, the Initialization tab allows us to includeMATLAB functions that operate
on the subsystem parameters and help us create various system parameters in the MATLAB
workspace, and the Documentation tab allows us to display text containing information about
the subsystem when we double click on the subsystem to open the dialog.
In this section, we customize the mask editor within the Parameters and Initialization tabs.

Fist, we introduce our operating parameters one by one under the Dialog Parameters list of the
Parameters tab, as illustrated in Figure 8.36. To add a new parameter to the list, we click on
the first icon in the upper left-hand side of the Dialog Parameters list, called Add Parameters.
A new list item will be added to the Dialog Parameters list, containing fields such as Prompt,
Variable, Type, and so on. In the Prompt field, we specify the text that will appear in the dialog
next to the parameter. In the Variable field, we specify the name of the MATLAB variable to
be used in the initialization stage later. The Type field specifies the way we assign values to the
parameter. If we choose an edit box, we specify the actual value of the parameter in an edit box
in the dialog. If we choose a check box, the parameter is specified as a Boolean choice with a
value of true if the condition expressed in the Prompt field holds and a value of false otherwise.
If we choose a popup, we specify the parameter as a choice among a finite number of choices.

These choices are enumerated in the Type-Specific Options list in the lower left-hand corner of
the Parameters tab. For example, for the transmission mode (txMode) parameter, as illustrated
in Figure 8.36, we choose a popup and then list all four choices for the transmission mode
(SIMO, TD, open-loop SM, closed-loop SM) in the Type-Specific Options list associated with
the txMode parameter.
At this point we can see how the parameter dialog looks after specifying the first param-

eter. To do so we save and close the mask editor, go back to the model, and double click
on the Model Parameters subsystem icon. As illustrated in Figure 8.37, a Block Parameters

System-Level Specification 345

Figure 8.36 Adding parameters one by one to the Dialog Parameters list in the Parameters tab

Figure 8.37 Inspecting the parameter dialog and how it reflects parameter lists developed under the
mask editor

dialog will appear, bearing the name of the subsystem. So far, only one icon (Transmission
Mode) has appeared under the Parameters list, matching exactly what we typed in the param-
eter prompt field. Note that in front of the prompt, we find a popup menu with the four choices
for the transmission mode, matching exactly what we typed in the Type-Specific Options list
associated with the parameter.

346 Understanding LTE with MATLAB®

We can now repeat the process of adding parameters to the parameter list in the mask editor.
Note that we need to add as many parameters as there are in the MATLAB script (commlteSys-
tem_params) in order to generate all three LTE parameter structures (prmLTEDLSCH, prmL-
TEPDSCH, prmMdl) and all three additional parameters (snrdB, maxNumBits, maxNumErrs)
for our system simulation in Simulink. One particular instance of the MATLAB parameter
script (commlteSystem_params) is shown as a reference:

Algorithm

commlteMIMO_Simulink_init function

%% Set simulation parametrs & initialize parameter structures

txMode = 4; % Transmisson mode one of {1, 2, 3, 4}

numTx = 2; % Number of transmit antennas

numRx = 2; % Number of receive antennas

chanBW = 4; % [1,2,3,4,5,6] maps to [1.4, 3, 5, 10, 15, 20]MHz

contReg = 2; % {1,2,3} for >=10MHz, {2,3,4} for <10Mhz

modType = 2; % [1,2,3] maps to ['QPSK','16QAM','64QAM']

numCodeWords = 1; % Number of codewords in PDSCH

% DLSCH

cRate = 1/2; % Rate matching target coding rate

maxIter = 6; % Maximum number of turbo decoding terations

fullDecode = 0; % Whether "full" or "early stopping" turbo decoding is performed

% Channel

chanMdl = 'EPA 0Hz';

% one of {'flat','frequency-selective', 'EPA 0Hz', 'EPA 5Hz', 'EVA 5Hz', 'EVA 70Hz'}

Doppler = 0; % a value between 0 to 300 = Maximum Doppler shift

corrLvl = 'Low';

% one of {'Low', 'Medium', 'High'} Spatial correlation level between antennas

enPMIfback = 0; % Enable/Disable Precoder Matrix Indicator (PMI) feedback

cbIdx = 1; % Initialize PMI index

% Simulation parametrs

Eqmode = 2; % Type of equalizer used [1,2,3] for ['ZF', 'MMSE','Sphere Decoder']

chEstOn = 1; % use channel estimation or ideal channel

snrdB = 12.1;

maxNumErrs = 2e6; % Maximum number of errors found before simulation stops

maxNumBits = 2e6; % Maximum number of bits processed before simulation stops

Figure 8.38 shows how we can add and populate parameters in the mask editor to bear the
same variable names as found in the MATLAB parameter script commlteSystem_param.
After saving and closing the mask editor, we can inspect the parameter dialog once we

have specified all the parameters. As illustrated in Figure 8.39, specifying parameters using
a masked subsystem in Simulink is the most convenient approach. We no longer need to edit
and save the MATLAB parameter script in the MATLAB editor, come back to the Simulink

System-Level Specification 347

Figure 8.38 Adding to the parameter list and matching variable names to ones specified in the MAT-
LAB script

model, and rerun the simulation. All parameters can now be specified in the Simulink model
using an intuitive parameter dialog.
It is beneficial to the process of parameter initialization, as we will see shortly, to match vari-

able names in the mask editor to those in the MATLAB parameter script. All that is needed
now is to run the initialization commands in the Initialization tab of the mask editor that gen-
erates the LTE parameter structures based on the parameter dialog values. As illustrated in
Figure 8.40, the parameter dialog variables are listed in the left-hand side of the Initializa-
tion tab. On the right-hand side we find an Initialization Commands edit box. In this edit box
we can type various MATLAB commands or call a MATLAB function. Here, we are calling
a MATLAB function (commlteMIMO_Simulink_init) to generate model parameters from the
dialog variables and put them in the MATLAB workspace.
Since the variable names we chose in the mask editor are identical to those in the MATLAB

parameter script, the masked subsystem initialization function commlteMIMO_Simulink_init
is almost identical to the MATLAB initialization function we used in our MATLAB system
model (commlteSystem_initialize).

348 Understanding LTE with MATLAB®

Figure 8.39 Aconvenient parameter dialog for setting LTE systemmodel parameters in the Simulink
model

Figure 8.40 Initialization commands in the mask editor generating LTE parameter structures from
the parameter dialog

System-Level Specification 349

Algorithm

Masked subsystem initialization function (commlteMIMO_Simulink_init)

function commlteMIMO_Simulink_init(txMode, Tx, Rx, chanBW, modType, contReg,...

numCodeWords, cRate,maxIter, fullDecode, ...

chanMdl, snrdB, Doppler, corrLvl, maxNumBits, cbIdx, Eqmode, chEstOn)

% Create the parameter structures

vector=[1,2,4];

numTx=vector(Tx);

numRx=vector(Rx);

% PDSCH parameters

CheckAntennaConfig(numTx, numRx, txMode, numCodeWords);

prmLTEPDSCH = prmsPDSCH(txMode, chanBW, contReg, mod-

Type, numTx, numRx, numCodeWords,Eqmode);

[SymbolMap, Constellation]=ModulatorDetail(prmLTEPDSCH.modType);

prmLTEPDSCH.SymbolMap=SymbolMap;

prmLTEPDSCH.Constellation=Constellation;

if numTx==1

prmLTEPDSCH.csrSize=[2*prmLTEPDSCH.Nrb, 4];

else

prmLTEPDSCH.csrSize=[2*prmLTEPDSCH.Nrb, 4, numTx];

end

% DLSCH parameters

prmLTEDLSCH = prmsDLSCH(cRate,maxIter, fullDecode, prmLTEPDSCH);

% Channel parameters

chanSRate = prmLTEPDSCH.chanSRate;

DelaySpread = prmLTEPDSCH.cpLenR;

prmMdl = prmsMdl(chanSRate, DelaySpread, chanMdl, Doppler, numTx, numRx, ...

corrLvl, chEstOn-1, 0, cbIdx);

%% Assign parameter structure variables to base workspace

assignin('base', 'prmLTEPDSCH', prmLTEPDSCH);

assignin('base', 'prmLTEDLSCH', prmLTEDLSCH);

assignin('base', 'prmMdl', prmMdl);

assignin('base', 'snrdB', snrdB);

assignin('base', 'maxNumBits', maxNumBits);

assignin('base', 'maxNumErrs', maxNumBits);

Note that the main difference between this initialization function and the one used in our
MATLAB model is the addition of six lines at the end of the function. These extra lines take
the variables defined locally in the scope of the function and write them to the MATLAB
workspace.

8.6 Qualitative Assessment

As the last topic in this chapter, we perform a qualitative assessment of our LTE systemmodel.
Instead of processing randomly generated payload bits, we can process the bit stream of a
voice signal. In a sense, this experiment simulates a phone conversation over the simulated
LTE PHY model.

350 Understanding LTE with MATLAB®

Figure 8.41 Modified Simulink model combining speech encoding and decoding with an LTE
transceiver model to measure voice quality

8.6.1 Voice-Signal Transmission

The first step of qualitative assessment is to introduce speech coding. In this step, we encode
the voice signal and pass the encoded bit stream as input to the LTE transceiver model. We
are using one of the simplest voice-coding algorithms, based on either A-law or 𝜇-law Pulse
Code Modulation (PCM) coding. At the receiver, we apply the corresponding A-law or 𝜇-law
decoder to the recovered bit stream of the LTE model in order to obtain the output voice signal
and listen to the speech. The quality of the recovered voice signal reflects all the degradations
introduced by the channel and the receiver.
To simulate the LTE phone call, we use the Simulink model we developed in the last section.

The only modifications needed (Figure 8.41) are related to the encoding and decoding of the
voice signal:

1. Remove the payload bit generator function from the transmitter subsystem.
2. Introduce the encoded speech as an input to the transmitter subsystem.
3. Speech coding: generate encoded speech bits subframe by subframe by introducing blocks

from the DSP System Toolbox.
4. Speech decoding: decode the output bits of the LTE system model and recover the output

speech signal.

System-Level Specification 351

The speech coding sequence is implemented as follows:

1. Stream the speech from an audio file (any audio file format supported by MATLAB) sub-
frame by subframe using the From Multimedia File block of the DSP System Toolbox.

2. Scale the normalized audio sample outputs of the From Multimedia File block with the
range of the 𝜇-law coder (a value of 8192) and cast the result as an integer (int16)MATLAB
data type.

3. Process the integer input through the G.711 PCM coder block from the DSP System
Toolbox.

4. Unpack the bytes of compressed data into individual bits using the Integer-to-Bit conversion
block from the Communications System Toolbox. The output of this block is then passed
as input to the input port of the transmitter subsystem as the encoded bit stream for the LTE
transceiver model.

The speech decoding sequence inverts the speech coding operations as follows:

1. The output bits of the LTE transceiver model are packed into bytes using the Bit-to-Integer
block of the DSP System Toolbox.

2. The resulting bytes are processed through the G.711 PCM coder block from the DSP
System Toolbox.

3. The resulting G.711 PCM samples are converted to a floating-point data type and
normalized to a range of values between −1 and 1.

4. The To Multimedia File block of the DSP System Toolbox is used to write the resulting
samples on to the disk as an audio file.

8.6.2 Subjective Voice-Quality Testing

We can simulate the model for various conditions, including the SIMO, transmit-diversity, and
spatial-multiplexing transmission modes. As we listen to the speech file output, we note that
the quality of the voice signal depends on the parameters of the transceiver and the channel
model. For example, if the fading delay spread, as reflected in the fading-channel path-delay
parameter, is within 4.6 μs (as prescribed by the standard) then the SNR in recovering speech
will be within representative values and the perceived speech quality will be reasonably good.
Similarly, by using modes with improved link quality, such as transmit diversity instead of
SISO (Single Input Single Output), we can obtain a better voice quality.

8.7 Chapter Summary

In this chapter, we composed a system model for the LTE PHY model. We integrated the
first four modes of downlink transmission into the system model comprising the transmit-
ter, the channel model, and the receiver. Then we simulated the system model in order to
quantitatively assess the performance of the overall system. We studied the effects of vari-
ous transmission modes, channel models, link SNRs, channel estimation techniques, MIMO

352 Understanding LTE with MATLAB®

receiver algorithms, and channel delay spreads on the overall performance. We also performed
experiments aimed at gauging the throughput of the LTE system model.
Next, we composed a Simulink model for the LTE transceiver model. We built the Simulink

model step by step by integrating the MATLAB functions for the transmitter, receiver, and
channel model incrementally within the system. We then automated the way we specify the
LTE system model parameters by developing parameter dialogs into our Simulink model.
Finally, we added a speech coder and decoder to the Simulink model in order to enable a
qualitative assessment of the system performance.

References

[1] Jafarkhani, H. (2005) Space-time Coding; Theory and Practice, Cambridge University Press, New York.
[2] 3GPP Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and

Reception (Version 11.4.0), March 2013. TS 36.101.

9
Simulation

So far we have provided a functional description of the LTE (Long Term Evolution) PHY
(Physical Layer) standard and its implementation in MATLAB®. To verify whether this func-
tional model will meet the requirements of the standardization process, we need to perform
large-scale simulations. Like many other standards, the LTE standard has a mode-based spec-
ification. This means we need to perform a series of simulations in order to ensure that all
possible combinations of modes, including modulation, coding, and MIMO (Multiple Input
Multiple Output) modes, are exercised. The combined effects of using large simulation data
sets and the computationally complex nature of the LTE standard will inevitably result in a
familiar challenge: exceedingly long simulation times and the necessity to accelerate the speed
of simulations.
The simulations can be performed on a software model or on a physical hardware prototype.

Most designers find it useful to first run a computer model of the standard to verify various
technical aspects related to the system performance before proceeding to a hardware proto-
type. When talking about accelerating the execution of a software model, it is natural to start
with a baseline or initial version. The optimizations that lead to acceleration of the simulation
speed of the baseline algorithm may or may not alter the functional accuracy of the model. To
be true to a standard implementation, in this book we only highlight optimizations that pre-
serve the numerical accuracy of the baseline algorithms. As such, optimizations examined here
highlight various ways of implementing the same functionality more efficiently. In this chapter
we discuss in detail many optimizations in MATLAB and Simulink that result in substantial
acceleration of the simulation speed.

9.1 Speeding Up Simulations in MATLAB

When we model and simulate a communications system, our focus and priorities may be dif-
ferent at different stages of the workflow. In the early stages of development, we might focus
on accuracy in expressing the mathematical model. At this stage we want to use visualization
and debugging features of the MATLAB environment to ensure that the sequence of opera-
tions in the MATLAB function and scripts is correct. This stage of functional verification is
sometimes referred to as unit testing and involves testing a limited set of data for which the

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

354 Understanding LTE with MATLAB®

Figure 9.1 Simulation acceleration methods in MATLAB

correct response is known. Unit testing helps make sure that the mathematical model correctly
implements the design. After satisfying the unit-testing requirements, most designers execute
the same simulation model with a large amount of data within a simulation loop. Identify-
ing the bottlenecks of design in large-scale testing helps us focus on the portions in which
optimization efforts provide the most return. We can optimize the baseline model and resolve
design bottlenecks in one of two ways (see Figure 9.1):

• MATLAB code optimization: Involves changing the MATLAB program code for a more
efficient implementation. This includes steps that: (i) ensure constant parameters are only
computed once during initializations, (ii) reduce parameter validation overhead, (iii) use
variables that are preallocated in order to avoid overhead of dynamic memory allocations,
and (iv) use more efficient algorithms implemented with System objects.

• Use of acceleration features: Involves applying such techniques as: (i) converting MAT-
LAB code to a compiled C code, (ii) exploiting multiple cores or clusters for parallel pro-
cessing, or (iii) using MATLAB features that are optimized for Graphics Processing Unit
(GPU) processing.

9.2 Workflow

In this chapter, we start with a baseline MATLAB program. Following a series of code opti-
mizations, we then successively accelerate the speed of simulation. At each step, the algorithm

Simulation 355

generates the same numerical outputs. The only difference between steps is the introduction
of a more efficient programming technique.
Both numerical and timing results provided throughout the book depend on the platform

where MATLAB is installed, and the type of operating system, C/C++ compiler or GPU that
is used. Results in this book for non-GPU experiments are obtained by running MATLAB on
a laptop computer with the following specifications:

• Hardware: Intel Dual-Core i7-2620M CPU @ 2.70 GHz with 8 GB of RAM
• Operating system: 64-bit Windows 7 Enterprise (Service Pack 1)
• C/C++ compiler: Microsoft Visual Studio 2010 with Microsoft Windows SDK v7.1.

The GPU experiments use NVIDIA Tesla GPU Accelerators installed on a desktop computer
with an Intel Quad-core i7 CPU with 12 GB of RAM and the same operating system and
C/C++ compiler as mentioned above.

9.3 Case Study: LTE PDCCH Processing

We use a simplified version of the signal processing applied to the Physical Downlink Con-
trol Channel (PDCCH) of the LTE standard in this chapter as a case study. We have already
showcased this algorithm in Chapter 7. As Figure 9.2 illustrates, processing the PDCCH sig-
nal in the transmitter side involves the following operations: Cyclic Redundancy Check (CRC)
generation, tail-biting convolutional encoding, rate matching, scrambling, Quadrature Phase
Shift Keying (QPSK) modulation, and transmit-diversity MIMO encoding. Channel modeling
consists of a combination of a two-by-two MIMO channel and an Additive White Gaussian
Noise (AWGN) channel. We perform the inverse operations at the receiver, including transmit-
diversity MIMO combination, QPSK demodulation, descrambling, rate dematching, Vitetbi
decoding, and CRC detection. To reduce the complexity of the algorithm, in this section we

Payload

bits

Recovered

Payload

bits

0100010011...

Rate

matching
Scrambling

QPSK

modulation

Fading &

AWGN

Channel model

MIMO

Transmit

diversity

combiner

QPSK

demodulation
Descrambling

Rate

dematching

Viterbi

decoder

CRC

detection

MIMO

Transmit

diversity

encoder

CRC

generation

Tail-biting

Conv. Coder

Transmitter

Receiver

0100010011...

Figure 9.2 A simplified PDCCH signal processing chain

356 Understanding LTE with MATLAB®

will update it with two modifications: (i) omission of the frequency-domain transformations
involving Orthogonal Frequency Division Multiplexing (OFDM) resource-grid formation and
signal generation; and (ii) use of hard-decision demodulation at the receiver.

9.4 Baseline Algorithm

The following baseline function shows the first implementation of the PDCCH processing
chain. The sequence of operations characterizing the PDCCH algorithm already described is
implemented with a series of functions. Some of the functions, such as convenc and vitdec, and
objects, such as modem.pskmod and crc.generator, are available in the Communications Sys-
tem Toolbox. Others, such as TransmitDiversityEncoder1 and MIMOFadingChan, are user-
defined and are composed using a combination of basic MATLAB functions and constructs.

Algorithm

MATLAB function

function [ber, bits]=zPDCCH_v1(EbNo, maxNumErrs, maxNumBits)

%% Constants

FRM=2048;

M=4; k=log2(M); codeRate=1/3;

snr = EbNo + 10*log10(k) + 10*log10(codeRate);

trellis=poly2trellis(7, [133 171 165]);

L=FRM+24;C=6; Index=[L+1:(3*L/2) (L/2+1):L];

%% Initializations

persistent Modulator Demodulator CRCgen CRCdet

if isempty(Modulator)

Modulator=modem.pskmod('M', 4, 'PhaseOffset', pi/4, 'SymbolOrder', 'Gray',

'InputType', 'Bit');

Demodulator= modem.pskdemod('M', 4, 'PhaseOffset', pi/4, 'SymbolOrder', 'Gray',

'OutputType', 'Bit');

CRCgen = crc.generator([1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

CRCdet = crc.detector ([1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

end

%% Processing loop modeling transmitter, channel model and receiver

numErrs = 0; numBits = 0; nS=0;

while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter

u = randi([0 1], FRM,1);

u1 = generate(CRCgen,u);

u2 = u1((end-C+1):end);

[̃, state] = convenc(u2,trellis);

u3 = convenc(u1,trellis,state);

u31 = fcn_RateMatcher(u3, L, codeRate);

u32 = fcn_Scrambler(u31, nS);

u4 = modulate(Modulator, u32);

u5 = TransmitDiversityEncoder1(u4);

% Channel model

Simulation 357

[u6, h6] = MIMOFadingChan(u5);

u7 = awgn(u6,snr);

% Receiver

u8 = TransmitDiversityCombiner1(u7, h6);

u9 = demodulate(Demodulator,u8);

u91 = fcn_Descrambler(u9, nS);

u92 = fcn_RateDematcher(u91, L);

uA = [u999;u999];

uB = vitdec(uA ,trellis,34,'trunc','hard');

uC = uB(Index);

y = detect(CRCdet, uC);

numErrs = numErrs + sum(ỹ=u);

numBits = numBits + FRM;

nS = nS + 2; nS = mod(nS, 20);

end

%% Clean up & collect results

ber = numErrs/numBits;

bits=numBits;

Let us start by running this baseline algorithm to establish a benchmark for performance.
The following MATLAB script (zPDCCH_v1_test) executes this algorithm within a for loop.
In each iteration, the script calls the baseline algorithmwith given Signal-to-Noise Ratio (SNR)
values and computes the Bit Error Rate (BER). It also uses a combination of MATLAB tic and
toc functions to measure the time needed to complete the loop iterations.

Algorithm

MATLAB script: zPDCCH_v1_test

MaxSNR=8;

MaxNumBits=1e5;

fprintf(1,'\nVersion 1: Baseline algorithm\n\n');

tic;

for snr=1:MaxSNR

fprintf(1,'Iteration number %d\r',snr);

ber= zPDCCH_v1 (snr, MaxNumBits, MaxNumBits);

end

time_1=toc;

fprintf(1,'Version 1: Time to complete %d iterations = %6.4f (sec)\n',

MaxSNR, time_1);

When we execute the MATLAB script, messages regarding the version of the algorithm, the
iteration that is being executed, and the final tally of elapsed time will print in the command
prompt. The results are shown in Figure 9.3. In this case, processing of 1million bits in each
of the eight iterations of the baseline algorithm takes about 411.30 seconds to complete.

358 Understanding LTE with MATLAB®

Figure 9.3 Baseline algorithm: time taken to execute eight iterations

We use this measure as a yard stick and try to improve the performance using the code
optimizations discussed later. Before proceeding to any code optimization, it is important to
identify the code bottlenecks. These are the portions of the algorithm that contribute most to
its computational complexity and take up the most processing time. We will now use some
MATLAB tools to identify the bottlenecks in our algorithm.

9.5 MATLAB Code Profiling

MATLAB provides a variety of tools to help assess and optimize the performance of code.
MATLAB Profiler shows where code is spending its time. It can be applied to the baseline
algorithm by performing the following three commands:

Algorithm

MATLAB script

profile on;

ber= zPDCCH_v1 (snr, MaxNumBits, MaxNumBits);

profile viewer;

Calling the profile viewer command brings up the MATLAB Profiler report as illustrated in
Figure 9.4. MATLAB Profiler provides a summary report of statistics on the overall execution
of a code, including a list of all functions called, the number of times each function was called,
and the total time spent in each function. It can also provide timing information about each
function, such as information on the lines of code that use the most processing time.
Once bottlenecks have been identified, we can focus on improving the performance of these

particular sections. For example, in this profile summary the function TransmitDiversity-
Combiner takes 4.385 seconds of the 7.262 seconds it takes to run the entire function. That
qualifies the TransmitDiversityCombiner function as one of the bottlenecks of our baseline
algorithm.

Simulation 359

Figure 9.4 Profile summary report for the baseline algorithm

Algorithm

MATLAB function

function y = TransmitDiversityCombiner1(in, chEst)

%#codegen

% Alamouti Transmit Diversity Combiner

% Scale

in = sqrt(2) * in;

% STBC Alamouti

y = Alamouti_Decoder1(in, chEst);

% Space-Frequency to Space-Time transformation

y(2:2:end) = -conj(y(2:2:end));

When we drill down through the function hyperlink in the profile summary report, we can
find out exactly which lines of the TransmitDiversityCombiner1 function take the most time.
Of the three lines of code, Alamouti_Decoder1 can be easily identified as the processing bot-
tleneck. The following Alamouti_Decoder1 function shows the first implementation of the
Alamouti combining algorithm.

360 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function s = Alamouti_Decoder1(u,H)

%#codegen

% STBC_DEC STBC Combiner

% Outputs the recovered symbol vector

LEN=size(u,1);

Nr=size(u,2);

BlkSize=2;

NoBlks=LEN/BlkSize;

% Initialize outputs

h=complex(zeros(1,2));

s=complex(zeros(LEN,1));

% Alamouti code for 2 Tx

indexU=(1:BlkSize);

for m=1:NoBlks

t_hat=complex(zeros(BlkSize,1));

h_norm=0.0;

for n=1:Nr

h(:)=H(2*m-1,:,n);

h_norm=h_norm+real(h*h');

r=u(indexU,n);

r(2)=conj(r(2));

shat=[conj(h(1)), h(2); conj(h(2)), -h(1)]*r;

t_hat=t_hat+shat;

end

s(indexU)=t_hat/h_norm; % Maximum-likelihood combining

indexU=indexU+BlkSize;

end

end

By following the hyperlink to the Alamouti_Decoder1 function, we can see a more detailed
line-by-line profile of execution time (Figure 9.5). This level of breakdown enables us to iden-
tify what feature of the code contributes most to its performance. In this case, the algorithm
performs two nested for loops and computes every element of a vector one by one within a
scalar programming routine. Vectorizing this code can lead to acceleration.

9.6 MATLAB Code Optimizations

In this section we discuss some typical code-optimization techniques in MATLAB. These
techniques include vectorizing the code, preallocating data, separating initialization from

Simulation 361

Figure 9.5 Line-by-line processing time in the Alamouti_Decoder1 function

in-loop processing, and using System objects. To illustrate these techniques, we continue
updating and optimizing the PDCCH processing algorithm.

9.6.1 Vectorization

Vectorization is one of the most important code-optimization techniques in MATLAB. In vec-
torization, we convert a code from using loops to using matrix and vector operations. Since
MATLAB uses processor-optimized libraries for matrix and vector computations, we can often
gain performance improvement by vectorizing our code.
The second version of the PDCCH algorithm is optimized based on vectorization. The only

difference between this version of the algorithm and the baseline is the use of the TransmitDi-
versityCombine2 function instead of TransmitDiversityCombine1. This function is the second
version of the transmit-diversity combiner function and uses the Alamouti_Decoder2 func-
tion, a vectorized version of Alamouti_Decoder1. When we examine the Alamouti_Decoder2
function, we can see that the nested double for loop is modified to a single for loop and that
operations aremore vectorized in the single loop. These changes are illustrated in the following
function:

362 Understanding LTE with MATLAB®

MATLAB function

function [ber, bits]=zPDCCH_v1(...)

.

.

u5 = TransmitDiversityDecoder1(u4);

.

.

end

function [ber, bits]=zPDCCH_v2(...)

.

.

u5 = TransmitDiversityDecoder2(u4);

.

.

end

function y = TransmitDiversityCombiner1(in,

chEst)

%#codegen

% Alamouti Transmit Diversity Combiner

% Scale

in = sqrt(2) * in;

% STBC Alamouti

y = Alamouti_Decoder1(in, chEst);

% Space-Frequency to Space-

Time transformation

y(2:2:end) = -conj(y(2:2:end));

function y = TransmitDiversityCombiner2(in,

chEst)

%#codegen

% Alamouti Transmit Diversity Combiner

% Scale

in = sqrt(2) * in;

% STBC Alamouti

y = Alamouti_Decoder2(in, chEst);

% Space-Frequency to Space-

Time transformation

y(2:2:end) = -conj(y(2:2:end));

function s = Alamouti_Decoder1(u,H)

LEN=size(u,1);

Nr=size(u,2);

BlkSize=2;

NoBlks=LEN/BlkSize;

% Initialize outputs

h=complex(zeros(1,2));

s=complex(zeros(LEN,1));

% Alamouti code for 2 Tx

indexU=(1:BlkSize);

for m=1:NoBlks

t_hat=complex(zeros(BlkSize,1));

h_norm=0.0;

for n=1:Nr

h(:)=H(2*m-1,:,n);

h_norm=h_norm+real(h*h');

r=u(indexU,n);

r(2)=conj(r(2));

function s = Alamouti_Decoder2(u,H)

LEN=size(u,1);

BlkSize=2;

NoBlks=LEN/BlkSize;

T=[0 1;-1 0];

% Initialize outputs

s=complex(zeros(LEN,1));

% Alamouti code for 2 Tx

h=complex(zeros(BlkSize,BlkSize));

for m=1:NoBlks

indexU=(m-1)*BlkSize+(1:BlkSize);

h(:)=H(2*m-1,:,:);

h_norm=sum(h(:).*conj(h(:)));

r=u(indexU,:);

r(2,:)=conj(r(2,:));

H1=conj(h);

H2=T*h;

M=[H1(:,1),H2(:,1),H1(:,2),H2(:,2)];

Simulation 363

shat=[conj(h(1)), h(2); conj(h(2)), -h(1)]*r;

t_hat=t_hat+shat;

end

s(indexU)=t_hat/h_norm; % Maximum-

likelihood combining

indexU=indexU+BlkSize;

end

end

s(indexU)=(M*r(:))/h_norm; % Maximum-

likelihood combining

end

In order to verify whether this optimization leads to a faster execution time, we run the
following MATLAB script. This script is identical to the one we used for the baseline
algorithm except that it calls the second version of the PDCCH algorithm (zPDCCH_v2.m).
This time, processing 1million bits in eight iterations takes about 326.50 seconds to complete
(Figure 9.6).

Figure 9.6 Second version of the algorithm: time taken to execute eight iterations

Algorithm

MATLAB script: zPDCCH_v2_test

MaxSNR=8;

MaxNumBits=1e5;

fprintf(1,'\nVersion 1: Baseline algorithm\n\n');

tic;

364 Understanding LTE with MATLAB®

for snr=1:MaxSNR

fprintf(1,'Iteration number %d\r',snr);

ber= zPDCCH_v2 (snr, MaxNumBits, MaxNumBits);

end

time_2=toc;

fprintf(1,'Version 1: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_2);

The second version of the algorithm performs a single for loop with a number of iterations
specified by the NoBlks variable, which relates to the first dimension of the function input.
The first dimension is a rather large number: 3108 in this algorithm. Frequent iteration based
on the first dimension and performance of vectorized operations on smaller-sized vectors does
not take optimal advantage of vectorization.
The third version of the algorithm is designed to vectorize along the first dimension of the

input function. In this version, we iterate only twice (along the second dimension) and perform
vectorized operations on large vectors and matrices along the first dimension. It features
better optimization based on vectorization of the code with large vectors and matrices. The
only difference between this version and the second is the use of TransmitDiversityCombine3
instead of TransmitDiversityCombine2.

MATLAB function

function [ber, bits]=zPDCCH_v2(...)

.

.

u5 = TransmitDiversityDecoder2(u4);

.

.

end

function [ber, bits]=zPDCCH_v3(...)
.

.

u5 = TransmitDiversityDecoder3(u4);

.

.

end

function y = TransmitDiversityCombiner2(in,

chEst)

%#codegen

% Alamouti Transmit Diversity Combiner

% Scale

in = sqrt(2) * in;

% STBC Alamouti

y = Alamouti_Decoder2(in, chEst);

% Space-Frequency to Space-

Time transformation

y(2:2:end) = -conj(y(2:2:end));

function y = TransmitDiversityCombiner3(in,

chEst)

%#codegen

% Alamouti Transmit Diversity Combiner

% Scale

in = sqrt(2) * in;

% STBC Alamouti

y = Alamouti_Decoder3(in, chEst);

% Space-Frequency to Space-

Time transformation

y(2:2:end) = -conj(y(2:2:end));

function s = Alamouti_Decoder2(u,H)

LEN=size(u,1);

function y = Alamouti_Decoder3(u,Ch)

%#codegen

Simulation 365

BlkSize=2;

function s = Alamouti_Decoder2(u,H)

LEN=size(u,1);

BlkSize=2;

NoBlks=LEN/BlkSize;

T=[0 1;-1 0];

% Initialize outputs

s=complex(zeros(LEN,1));

% Alamouti code for 2 Tx

h=complex(zeros(BlkSize,BlkSize));

for m=1:NoBlks

indexU=(m-1)*BlkSize+(1:BlkSize);

h(:)=H(2*m-1,:,:);

h_norm=sum(h(:).*conj(h(:)));

r=u(indexU,:);

r(2,:)=conj(r(2,:));

H1=conj(h);

H2=T*h;

M=[H1(:,1),H2(:,1),H1(:,2),H2(:,2)];

s(indexU)=(M*r(:))/h_norm; % Maximum-

likelihood combining

end

% STBC_DEC STBC Combiner

LEN=size(u,1);

BlkSize=2;

NoBlks=LEN/BlkSize;

Nr=size(u,2);

idx1=1:BlkSize:LEN;

idx2=idx1+1;

% Initalize outputs

s=complex(zeros(LEN,Nr));

mynorm=complex(zeros(LEN,BlkSize));

vec_u=complex(zeros(NoBlks,BlkSize));

% Alamouti code for 2 Tx

H=complex(zeros(NoBlks,BlkSize));

for n=1:Nr

vec_u(:,1) = u(idx1,n);

vec_u(:,2) = conj(u(idx2,n));

H(:) = Ch(1:BlkSize:end,:,n);

conjH = conj(H);

cn1 = [conjH(:,1), H(:,2)];

s(idx1,n) = sum(cn1.*vec_u,2);

mynorm(idx1,n) = sum(H.*conj(H),2);

cn2 = [conjH(:,2), -H(:,1)];

s(idx2,n) = sum(cn2.*vec_u,2);

end;

nn=sum(mynorm,2);

nn(idx2)=nn(idx1);

y=sum(s,2)./nn;

end

In order to verify whether this optimization leads to a faster execution time, we run the
following MATLAB script (zPDCCH_v3_test). The third version of the algorithm takes about
175.84 seconds to process 1million bits in eight iterations, as illustrated in Figure 9.7.

Figure 9.7 Third version of the algorithm: time taken to execute eight iterations

366 Understanding LTE with MATLAB®

Figure 9.8 Profile summary report for the third version of the algorithm

Algorithm

MATLAB script: zPDCCH_v3_test

MaxSNR=8;

MaxNumBits=1e5;

fprintf(1,'\nVersion 3: Better vectorized algorithm\n\n');

tic;

for snr=1:MaxSNR

fprintf(1,'Iteration number %d\r',snr);

ber= zPDCCH_v3 (snr, MaxNumBits, MaxNumBits);

end

time_3=toc;

fprintf(1,'Version 3: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_3);

By profiling the third version of the algorithm (zPDCCH_v3), we identify the function Trans-
mitDiversityEncoder1 as the next bottleneck. This function calls the first version of the Alam-
outi encoder function (Alamouti_Encoder1). The MATLAB profiler commands and resulting
report are shown in Figure 9.8.

Algorithm

MATLAB script

profile on;

ber= zPDCCH_v3(snr, MaxNumBits, MaxNumBits);

profile viewer;

Simulation 367

Figure 9.9 Profiling Alamouti_Encoder1

By following the hyperlink to the Alamouti_Encoder1 function in the profile report, we can
see a more detailed line-by-line profile of the execution time (Figure 9.9). Note that we ini-
tialize output matrix y with an empty matrix. In iterations of the for loop, we then grow the
size of matrix y by appending a 2× 2 Alamouti matrix to its end. In successive iterations, we
must allocate newmemory and copy the existing matrix into the new one. We can thus identify
preallocation as a feature of the code that can be improved. Next we will discuss preallocation
as a MATLAB code-optimization feature.

9.6.2 Preallocation

Preallocation refers to the initialization of an array of known size at the beginning of a com-
putation. It helps prevent dynamic resizing of an array while a code is executing, especially
when using for and while loops. Since arrays require contiguous blocks of memory, repeated
resizing of them often compells MATLAB to spend time looking for larger contiguous blocks
and then moving the array into them. By preallocating arrays, we can avoid these unnecessary
memory operations and improve overall execution time.
The fourth version of the PDCCH algorithm is optimized based on preallocation. This ver-

sion uses the function TransmitDiversityEncoder2 instead of TransmitDiversityEncoder1; this
function uses the second version of the transmit diversity encoder function, which in turn uses
Alamouti_Encoder2, a preallocated version of Alamouti_Encoder1.

Algorithm

MATLAB function

function [ber, bits]=zPDCCH_v4(EbNo, maxNumErrs, maxNumBits)

%% Constants

FRM=2048;

368 Understanding LTE with MATLAB®

M=4; k=log2(M); codeRate=1/3;

snr = EbNo + 10*log10(k) + 10*log10(codeRate);

trellis=poly2trellis(7, [133 171 165]);

L=FRM+24;C=6; Index=[L+1:(3*L/2) (L/2+1):L];

%% Initializations

persistent Modulator Demodulator CRCgen CRCdet

if isempty(Modulator)

Modulator = modem.pskmod('M', 4, 'PhaseOffset', pi/4, 'SymbolOrder', 'Gray',

'InputType', 'Bit');

Demodulator = modem.pskdemod('M', 4, 'PhaseOffset', pi/4, 'SymbolOrder', 'Gray',

'OutputType', 'Bit');

CRCgen = crc.generator([1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

CRCdet = crc.detector ([1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

end

%% Processing loop

numErrs = 0; numBits = 0; nS=0;

while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter

u = randi([0 1], FRM,1); % Generate bit payload

u1 = generate(CRCgen,u); % CRC insertion

u2 = u1((end-C+1):end); % Tail-biting convolutional coding

[̃, state] = convenc(u2,trellis);

u3 = convenc(u1,trellis,state);

u4 = fcn_RateMatcher(u3, L, codeRate); % Rate matching

u5 = fcn_Scrambler(u4, nS); % Scrambling

u6 = modulate(Modulator, u5); % Modulation

u7 = TransmitDiversityEncoder2(u6); % MIMO Alamouti encoder

% Channel

[u8, h8] = MIMOFadingChan(u7); % MIMO fading channel

sigpower = 10*log10(real(var(u8(:))));

u9 = awgn(u8,snr,sigpower,'dB');

% Receiver

uA = TransmitDiversityCombiner3(u9, h8); % MIMO Alamouti combiner

uB = demodulate(Demodulator,uA); % Demodulation

uC = fcn_Descrambler(uB, nS); % Descrambling

uD = fcn_RateDematcher(uC, L); % Rate de-matching

uE = [uD;uD]; % Tail-biting

uF = vitdec(uE ,trellis,34,'trunc','hard'); % Viterbi decoding

uG = uF(Index);

y = detect(CRCdet, uG); % CRC detection

numErrs = numErrs + sum(ỹ=u); % Update number of bit errors

numBits = numBits + FRM;

nS = nS + 2; nS = mod(nS, 20);

end

%% Clean up & collect results

ber = numErrs/numBits;

bits=numBits;

Simulation 369

When we examine Alamouti_Encoder2, we can see that it first initializes the output
with information derived from the size of the input, then transforms the input and inserts
selected samples of it into the predetermined locations of the output matrix. Also, the
updated Alamouti_Encoder2 function is not only preallocated but also vectorized, whereas
Alamouti_Encoder1 is a scalarized function. The main problem with Alamouti_Encoder1 is
that it initializes the output to an empty matrix and then performs a for loop in which in each
iteration the output matrix grows in size. These types of frequent dynamic memory allocation
contribute to the degradation of performance.

MATLAB function

function [ber, bits]=zPDCCH_v3(...)

.

.

u7 = TransmitDiversityEncoder1(u6);

.

.

end

function [ber, bits]=zPDCCH_v4(...)
.

.

u7 = TransmitDiversityEncoder2(u6);

.

.

end

function y = TransmitDiversityEncoder1(in)

% Alamouti Transmit Diversity Encoder

% Space-Frequency to Space-

Time transformation

in(2:2:end) = -conj(in(2:2:end));

% STBC Alamouti

y = Alamouti_Encoder1(in);

% Scale

y = y/sqrt(2);

function y = TransmitDiversityEncoder2(in)

% Alamouti Transmit Diversity Encoder

% Space-Frequency to Space-

Time transformation

in(2:2:end) = -conj(in(2:2:end));

% STBC Alamouti

y = Alamouti_Encoder2(in);

% Scale

y = y/sqrt(2);

function y= Alamouti_Encoder1(u)

% Space-Time Block Encoder

Tx=2;

LEN=size(u,1);

idx1=1:Tx:LEN-1;

idx2=idx1+1;

% Alamouti Space-Time Block Encoder

% G = [s1 s2]

% [-s2* s1*]

y=[];

for n=1:LEN/Tx

G=[u(idx1(n)) u(idx2(n));...

-conj(u(idx2(n))) conj(u(idx1(n)))];

y=[y;G];

end

function y= Alamouti_Encoder2(u)

% Space-Time Block Encoder

Tx=2;

LEN=size(u,1);

idx1=1:Tx:LEN-1;

idx2=idx1+1;

% Alamouti Space-Time Block Encoder

% G = [s1 s2]

% [-s2* s1*]

y=complex(zeros(LEN,Tx));

y(idx1,1)=u(idx1);

y(idx1,2)=u(idx2);

y(idx2,1)=-conj(u(idx2));

y(idx2,2)=conj(u(idx1));

370 Understanding LTE with MATLAB®

Figure 9.10 Fourth version of the algorithm: time taken to execute eight iterations

By running the following MATLAB script, we can verify whether this optimization leads to
a faster execution time. The results show that processing of 1million bits in eight iterations
takes about 82.71 seconds (Figure 9.10).

Algorithm

MATLAB script: zPDCCH_v4_test

MaxSNR=8;

MaxNumBits=1e5;

fprintf(1,'\nVersion 4: Vectorization + Preallocation\n\n');

tic;

for snr=1:MaxSNR

fprintf(1,'Iteration number %d\r',snr);

ber= zPDCCH_v4 (snr, MaxNumBits, MaxNumBits);

end

time_4=toc;

fprintf(1,'Version 4: Time to complete %d iterations = %6.4f (sec)\n',

MaxSNR, time_4);

This series of optimizations reveals a pattern.We startedwith a baseline algorithm that imple-
mented the Alamouti encoder and combiner algorithms with the simplest MATLAB code. The
baseline code can be considered the transcribed version of the mathematical formula of the
algorithm, which can be obtained from any textbook describing space–time block coding.
MATLAB codes based on scalar operations may not be sufficient to run the same algorithm
with a faster execution time. In most cases, we need to alter the sequence of operations in order
to leverage the vector-based character of the MATLAB language. This means implementing
the same algorithm by vectorizing the code and preallocating data.
However, these extra optimizations lead to rewriting of the MATLAB code. We can

either spend time optimizing our code or, if we have access to them, take advantage of the
functionality available in various MATLAB toolboxes. MATLAB toolboxes are written in

Simulation 371

such a way as to be sensitive to simulation performance. All MATLAB toolbox functions
are based on preallocation and vectorization. Furthermore, as discussed earlier, DSP and
the Communications System Toolbox provide efficient algorithmic components as System
objects. In the next section we will take advantage of some of the System objects in the
Communications System Toolbox to obtain faster implementations of many components of
this algorithm.

9.6.3 System Objects

System objects can be used to accelerate a MATLAB code, largely in the areas of signal pro-
cessing and communications. System objects are MATLAB object-oriented implementations
of algorithms available in MATLAB toolboxes such as the Communications System Toolbox.
By using System objects, we decouple the declaration (System object creation) from the execu-
tion of an algorithm, resulting in more efficient loop-based calculations, since we can perform
parameter handling and initializations only once. A System object can be created and config-
ured outside the loop, and then the step method can be called inside it. A majority of System
objects from the DSP and Communications System Toolbox are implemented as MATLAB
Executables (MEXs). A MEX implementation of a code is essentially a compiled C code.
This can also speed up simulation, since many algorithmic optimizations have been included
in the MEX implementations of objects.
The fifth version of the PDCCH algorithm uses System objects of the Communications

System Toolbox to implement the Alamouti encoder (Alamouti_EncoderS function) and the
Alamouti combiner (Alamouti_CombinerS function).

Algorithm

MATLAB function

function [ber, bits]=zPDCCH_v5(EbNo, maxNumErrs, maxNumBits)

%% Constants

FRM=2048;

M=4; k=log2(M); codeRate=1/3;

snr = EbNo + 10*log10(k) + 10*log10(codeRate);

trellis=poly2trellis(7, [133 171 165]);

L=FRM+24;C=6; Index=[L+1:(3*L/2) (L/2+1):L];

%% Initializations

persistent Modulator Demodulator CRCgen CRCdet

if isempty(Modulator)

Modulator = modem.pskmod('M', 4, 'PhaseOffset', pi/4, 'SymbolOrder', 'Gray',

'InputType', 'Bit');

Demodulator = modem.pskdemod('M', 4, 'PhaseOffset', pi/4, 'SymbolOrder', 'Gray',

'OutputType', 'Bit');

CRCgen = crc.generator([1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

CRCdet = crc.detector ([1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

end

%% Processing loop

numErrs = 0; numBits = 0; nS=0;

while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

372 Understanding LTE with MATLAB®

% Transmitter

u = randi([0 1], FRM,1); % Generate bit payload

u1 = generate(CRCgen,u); % CRC insertion

u2 = u1((end-C+1):end); % Tail-biting convolutional coding

[̃, state] = convenc(u2,trellis);

u3 = convenc(u1,trellis,state);

u4 = fcn_RateMatcher(u3, L, codeRate); % Rate matching

u5 = fcn_Scrambler(u4, nS); % Scrambling

u6 = modulate(Modulator, u5); % Modulation

u7 = TransmitDiversityEncoderS(u6); % MIMO Alamouti encoder

% Channel

[u8, h8] = MIMOFadingChan(u7); % MIMO fading channel

sigpower = 10*log10(real(var(u8(:))));

u9 = awgn(u8,snr,sigpower,'dB');

% Receiver

uA = TransmitDiversityCombinerS(u9, h8); % MIMO Alamouti combiner

uB = demodulate(Demodulator,uA); % Demodulation

uC = fcn_Descrambler(uB, nS); % Descrambling

uD = fcn_RateDematcher(uC, L); % Rate de-matching

uE = [uD;uD]; % Tail-biting

uF = vitdec(uE ,trellis,34,'trunc','hard'); % Viterbi decoding

uG = uF(Index);

y = detect(CRCdet, uG); % CRC detection

numErrs = numErrs + sum(ỹ=u); % Update number of bit errors

numBits = numBits + FRM;

nS = nS + 2; nS = mod(nS, 20);

end

%% Clean up & collect results

ber = numErrs/numBits;

bits=numBits;

This version uses the functions TransmitDiversityEncoderS and TransmitDiversityCombin-
erS, which in turn use the Alamouti encoder and combiner functions implemented with System
objects.

MATLAB function

function y = TransmitDiversityEncoderS(in)

%#codegen

% Alamouti Transmit Diversity Encoder

% Space-Frequency to Space-

Time transformation

in = sqrt(2) * in;

% STBC Alamouti

y = Alamouti_EncoderS(in);

function y = TransmitDiversityCombinerS(in,

chEst)

%#codegen

% Alamouti Transmit Diversity Combiner

% Scale

in = sqrt(2) * in;

% STBC Alamouti

y = Alamouti_DecoderS(in, chEst);

Simulation 373

% Scale

y = y/sqrt(2);

% Space-Frequency to Space-

Time transformation

y(2:2:end) = -conj(y(2:2:end));

function y = Alamouti_EncoderS(u)

% STBCENC Space-Time Block Encoder

% Outputs the Space-

Time block encoded matrix

persistent hTDEnc;

if isempty(hTDEnc)

% Use same object for either scheme

hTDEnc = comm.OSTBCEncoder

('NumTransmitAntennas', 2);

end

% Alamouti Space-Time Block Encoder

y = step(hTDEnc, u);

function s = Alamouti_DecoderS(u,H)

%#codegen

% STBC_DEC STBC Combiner

persistent hTDDec

if isempty(hTDDec)

hTDDec= comm.OSTBCCombiner(...

'NumTransmitAnten-

nas',2,'NumReceiveAntennas',2);

end

s = step(hTDDec, u, H);

Note that we create the comm.OSTBCEncoder and comm.OSTBCCombiner System objects
only the first time we enter the function. This is accomplished by denoting the System objects
as MATLAB persistent variables. We then use the isempty function, which ensures that every-
thing is performed only the first time the persistent variable is “empty,” or in other words not
initialized. Both of the Alamouti algorithms are then executed by calling the step functions of
their corresponding System objects.
Let us now verify how, by using available System objects, we can avoid the preallocation

and vectorization steps yet arrive at a faster execution time. Running the following MATLAB
script will call the new fifth version of the algorithm, which uses System objects. The results
(as illustrated in Figure 9.11) show that processing 1million bits in eight iterations takes
about 81.91 seconds. This execution time is close to that obtained with the fourth version
of the algorithm. Note that we avoided all code updates by using available System object
functionality in the toolbox.

Figure 9.11 Fifth version of the algorithm: time taken to execute eight iterations

374 Understanding LTE with MATLAB®

Algorithm

MATLAB script: zPDCCH_v4_test

MaxSNR=8;

MaxNumBits=1e5;

fprintf(1,'\nVersion 5: Using System objects for MIMO \n\n');

tic;

for snr=1:MaxSNR

fprintf(1,'Iteration number %d\r',snr);

ber= zPDCCH_v5 (snr, MaxNumBits, MaxNumBits);

end

time_5=toc;

fprintf(1,'Version 5: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_5);

In order to keep track of the extent of acceleration using the various techniques discussed so
far, we have included a helper MATLAB function (Report_Timing_Results.m). This function
takes as input four parameters: the algorithm version, the time to process the baseline, the
time to process the current version, and a text string describing the optimization technique. It
returns a table that tracks the simulation times.

Algorithm

MATLAB function: Report_Timing_Results

function y=Report_Timing_Results(M,a,b,str)

persistent Results

if isempty(Results)

Results={};

end

Results(M).name=str;

Results(M).elapsed_time=b;

Results(M).acceleration=a/b;

disp('--');

disp('Versions of the Transceiver | Elapsed Time (sec)| Acceleration Ratio');

for m=1:M

fprintf(1,'%d. %-49s| %17.4f | %12.4f\n',m, Results(m).name, Results(m).elapsed_time,

Results(m).acceleration);

end

disp('--');

y=Results;

end

By running this function, we can recall different versions and their execution times and
compute the acceleration ratios compared to the baseline algorithm. The results indicate that
the version that uses System objects accelerates the simulation by a factor of 5.02 (Figure 9.12).

Simulation 375

Figure 9.12 Execution times and acceleration ratios for the first five versions of the algorithm

Algorithm

MATLAB script

Report_Timing_Results(1,time_1,time_1,'Baseline');

Report_Timing_Results(2,time_1,time_2,'Vectorization');

Report_Timing_Results(3,time_1,time_3,'Vectorization along larger dimension');

Report_Timing_Results(4,time_1,time_4,'Vectorization + Preallocation');

Report_Timing_Results(5,time_1,time_5,'System objects for MIMO');

Profiling the fifth version of the algorithm can help us identify the next target bottleneck for
optimization. The MATLAB profiler commands and the report are shown in Figure 9.13.

Algorithm

MATLAB script

profile on;

ber= zPDCCH_v5(snr, MaxNumBits, MaxNumBits);

profile viewer;

Figure 9.13 Profile summary report for the fifth version of the algorithm

376 Understanding LTE with MATLAB®

The profile summary identifies two algorithms – the MIMO channel model (MIMOFad-
ingChan.m) and the Viterbi decoder (vitdec function) – as the next bottlenecks. These algo-
rithms are based on two functions from the Communications System Toolbox: mimochan and
vitdec. These functions, like all functions in MATLAB toolboxes, are vectorized and preal-
located. However, replacing these two with the corresponding System objects will result in
performance improvements. Using these System objects highlights the two mechanisms by
which System objects achieve accelerations: avoidance of repeated parameter validations and
use of a MATLAB MEX implementation.

9.6.3.1 MATLAB MEX Implementation

The function MIMOFadingChan.m represents the next bottleneck to be addressed in the fifth
version of the PDCCH algorithm. Examining the following MIMOFadingChan function
reveals that it uses the mimochan object of the Communications System Toolbox to perform
a MIMO channel-filtering operation. Using a persistent variable in MATLAB, only the first
time the function is entered is the mimochan object initialized. Each time we call the function,
we execute the object’s filter method to obtain both the filtered output of the channel model
(variable y) and the channel gains (variable h).
In the sixth version of the algorithm (see Figure 9.14), we use an alternative implementation

of MIMO channel filtering and employ the comm.MIMOChannel System object. Examining
the MIMOFadingChanS function, we notice that only the first time the function is entered is
the comm.MIMOChannel System object initialized. Executing the step method provides both
the filtered output and the channel gains.

MATLAB function

function [ber, bits]=zPDCCH_v5(...)

.

.

[u8, h8] = MIMOFadingChan(u7);

.

.

end

function [ber, bits]=zPDCCH_v6(...)
.

.

[u8, h8] = MIMOFadingChanS(u7);

.

.

end

function [y, h] = MIMOFadingChan(in)

% MIMOFadingChan

numTx=2;

numRx=2;

chanSRate=(2048*15000);

Doppler=70;

PathDelays = 0;

PathGains = 0;

persistent chanObj

if isempty(chanObj)

function [y, h] = MIMOFadingChanS(in)

% MIMOFadingChan

numTx=2;

numRx=2;

chanSRate=(2048*15000);

Doppler=70;

PathDelays = 0;

PathGains = 0;

persistent chanObj

if isempty(chanObj)

Simulation 377

chanObj = mimochan(numTx,numRx,

(1/chanSRate),Doppler,PathDelays,

PathGains);

chanObj.NormalizePathGains = 1;

chanObj.StorePathGains = 1;

chanObj.ResetBeforeFiltering = 1;

end

y = filter(chanObj, in);

ChGains = chanObj.PathGains;

Len = size(in,1);

h = complex(zeros(Len,numTx,numRx));

h(:) = ChGains(:,1,:,:);

chanObj = comm.MIMOChannel

('SampleRate', chanSRate,

'MaximumDopplerShift', Doppler,

'PathDelays', PathDelays,

'AveragePathGains', PathGains,

'NumTransmitAntennas', numTx,...

'TransmitCorrelationMatrix',

eye(numTx),...

'NumReceiveAntennas', numRx,...

'ReceiveCorrelationMatrix',

eye(numRx),...

'PathGainsOutputPort', true,...

'NormalizePathGains', true,...

'NormalizeChannelOutputs', true);

end

[y, G] = step(chanObj, in);

Len = size(in,1);

PathG = com-

plex(zeros(Len,numTx,numRx));

PathG(:) = G(:,1,:,:);

h = PathG;

As we can readily see, there are many similarities between the mimochan object and the
comm.MIMOChannel System object. The System object is based on a MATLAB MEX
implementation (compiled C code) and integrates various optimizations. Therefore, we
expect to see a performance improvement from the use of the MIMOFadingChanS func-
tion, which employs the comm.MIMOChannel System object. To verify this, we run the
following MATLAB script, which recalls the performance improvements up to this point
(Figure 9.15).

Figure 9.14 Sixth version of the algorithm: time taken to execute eight iterations

378 Understanding LTE with MATLAB®

Figure 9.15 Execution times and acceleration ratios for the first six versions of the algorithm

Algorithm

MATLAB script: zPDCCH_v6_test

MaxSNR=8;

MaxNumBits=1e5;

fprintf(1,'\nVersion 6: System objects for MIMO & Channel\n\n');

tic;

for snr=1:MaxSNR

fprintf(1,'Iteration number %d\r',snr);

ber= zPDCCH_v6 (snr, MaxNumBits, MaxNumBits);

end

time_6=toc;

fprintf(1,'Version 6: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_6);

Report_Timing_Results(6,time_1,time_6, System objects for MIMO & Channel);

Following the last five optimizations, we profile the sixth version of the algorithm. As illus-
trated by the profile summary report in Figure 9.13, theViterbi decoder function vitdec from the
Communications System Toolbox represents the bottleneck of the sixth version (Figure 9.16).

9.6.3.2 Avoiding Repeated Parameter Validations

The seventh version of the algorithm (Figure 9.17) optimizes the code by replacing the
vitdec function that implements the Viterbi decoder with the corresponding System object,

Figure 9.16 Profile summary report for the sixth version of the algorithm

Simulation 379

Figure 9.17 Seventh version of the algorithm: time taken to execute eight iterations

comm.ViterbiDecoder. Using this System object can enable acceleration by avoiding repeated
parameter validations. Since System objects decouple declaration (System object creation)
from execution, parameter handling and initializations occur only once outside the while loop.
However, in the vitdec function, every time the function is called within the loop, parameters
such as trellis structure and termination and decision methods are checked for validity and
appropriate intermediate variables are created before the main function is called.
This type of parameter-handling overhead is necessary when we are experimenting with

different modes of a function and interacting with it at the command line. However, when
function parameters are fixed and already determined and the function is being executed in a
loop, avoiding extra parameter handling – as System objects are designed to do – can improve
the simulation performance.

MATLAB function

function [ber, bits]=zPDCCH_v6(...)

.

.

while ((numErrs < maxNumErrs) &&

(numBits < maxNumBits))

.

uF = vitdec(uE,trellis,34,'trunc','hard');

% Viterbi decoding

.

.

end

function [ber, bits]=zPDCCH_v7(...)
.

Viterbi=comm.ViterbiDecoder(

'TrellisStructure', trellis, 'InputFormat','Hard',

'TerminationMethod','Truncated');

.
while ((numErrs < maxNumErrs) &&

(numBits < maxNumBits))

.

uF = step(Viterbi, uE); % Viterbi decoding

.

.

end

380 Understanding LTE with MATLAB®

Figure 9.18 Execution times and acceleration ratios for the first seven versions of the algorithm

We can verify this optimization by running the following MATLAB script, which calls
the seventh version of the algorithm and recalls the collective performance improvements
(Figure 9.18).

Algorithm

MATLAB script: zPDCCH_v7_test

MaxSNR=8;

MaxNumBits=1e5;

fprintf(1,'\nVersion 7: System objects for MIMO & Channel & Viterbi\n\n');

tic;

for snr=1:MaxSNR

fprintf(1,'Iteration number %d\r',snr);

ber= zPDCCH_v7 (snr, MaxNumBits, MaxNumBits);

end

time_7=toc;

fprintf(1,'Version 7: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR,

time_7);

Report_Timing_Results(7,time_1,time_7,'System objects for MIMO & Channel

& Viterbi');

Figure 9.19 Eighth version of the algorithm: time taken to execute eight iterations

Simulation 381

9.6.3.3 Using All Available System Objects

In the eighth version (Figure 9.19), we use all the System objects pertinent to this algorithm. In
addition to the System objects used so far, we also implement the modulator, the demodulator,
two convolutional encoders (used in tail-biting encoding), and CRC generation and detection
functionalities.

Algorithm

MATLAB function

function [ber, bits]=zPDCCH_v8(EbNo, maxNumErrs, maxNumBits)

%% Constants

FRM=2048;

M=4; k=log2(M); codeRate=1/3;

snr = EbNo + 10*log10(k) + 10*log10(codeRate);

trellis=poly2trellis(7, [133 171 165]);

L=FRM+24;C=6; Index=[L+1:(3*L/2) (L/2+1):L];

%% Initializations

persistent Modulator AWGN DeModulator BitError ConvEncoder1 ConvEncoder2 Viterbi

CRCGen CRCDet

if isempty(Modulator)

Modulator = comm.QPSKModulator('BitInput',true);

AWGN = comm.AWGNChannel('NoiseMethod', 'Variance', 'VarianceSource',

'Input port');

DeModulator = comm.QPSKDemodulator('BitOutput',true);

BitError = comm.ErrorRate;

ConvEncoder1=comm.ConvolutionalEncoder('TrellisStructure', trellis,

'FinalStateOutputPort', true, ...

'TerminationMethod','Truncated');

ConvEncoder2 = comm.ConvolutionalEncoder('TerminationMethod','Truncated',

'InitialStateInputPort', true,...

'TrellisStructure', trellis);

Viterbi=comm.ViterbiDecoder('TrellisStructure', trellis,

'InputFormat','Hard','TerminationMethod','Truncated');

CRCGen = comm.CRCGenerator('Polynomial',[1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

CRCDet = comm.CRCDetector ('Polynomial',[1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

end

%% Processing loop modeling transmitter, channel model and receiver

numErrs = 0; numBits = 0; nS=0;

results=zeros(3,1);

while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter

u = randi([0 1], FRM,1); % Generate bit payload

u1 = step(CRCGen, u); % CRC insertion

u2 = u1((end-C+1):end); % Tail-biting convolutional coding

382 Understanding LTE with MATLAB®

[̃, state] = step(ConvEncoder1, u2);

u3 = step(ConvEncoder2, u1,state);

u4 = fcn_RateMatcher(u3, L, codeRate); % Rate matching

u5 = fcn_Scrambler(u4, nS); % Scrambling

u6 = step(Modulator, u5); % Modulation

u7 = TransmitDiversityEncoderS(u6); % MIMO Alamouti encoder

% Channel

[u8, h8] = MIMOFadingChanS(u7); % MIMO fading channel

noise_var = real(var(u8(:)))/(10.^(0.1*snr));

u9 = step(AWGN, u8, noise_var); % AWGN
% Receiver

uA = TransmitDiversityCombinerS(u9, h8);% MIMO Alamouti combiner

uB = step(DeModulator, uA); % Demodulation

uC = fcn_Descrambler(uB, nS); % Descrambling

uD = fcn_RateDematcher(uC, L); % Rate de-matching

uE = [uD;uD]; % Tail-biting

uF = step(Viterbi, uE); % Viterbi decoding

uG = uF(Index);

y = step(CRCDet, uG); % CRC detection

results = step(BitError, u, y); % Update number of bit errors

numErrs = results(2);

numBits = results(3);

nS = nS + 2; nS = mod(nS, 20);

end

%% Clean up & collect results

ber = results(1); bits= results(3);

reset(BitError);

By running the following MATLAB script, which calls the eighth version of the algorithm,
and recalling the collective performance improvements (Figure 9.20), we can verify that using
all pertinent System objects makes a positive difference to simulation speed.

Figure 9.20 Execution times and acceleration ratios for the first eight versions of the algorithm

Simulation 383

Algorithm

MATLAB script: zPDCCH_v8_test

MaxSNR=8;

MaxNumBits=1e5;

fprintf(1,'\nVersion 8: Using All available System objects\n\n');

tic;

for snr=1:MaxSNR

fprintf(1,'Iteration number %d\r',snr);

ber= zPDCCH_v8(snr, MaxNumBits, MaxNumBits);

end

time_8=toc;

fprintf(1,'Version 8: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_8);

Report_Timing_Results(8,time_1,time_8,'System objects for all');

So far we have shown how writing better MATLAB code can result in faster simulation. We
have also showcased the use of System objects from the Communications System Toolbox as
a way of accelerating the simulation speed of an algorithm (in most cases). Another benefit
of using System objects is that they support MATLAB-to-C code generation with MATLAB
Coder. This feature is one of three additional acceleration features that will be discussed next.

9.7 Using Acceleration Features

The techniques described so far focus on ways of optimizingMATLAB programs. Beside code
optimization, performance improvements can be gained from the use of additional computing
power or by retargeting a design to compiled C code. MATLAB parallel-computing products
take advantage of multicore processors, computer clusters, and GPUs. MATLAB Coder pro-
vides the ability to automatically convert a MATLAB code to C code, which can be compiled
to provide faster simulations. In the next section we take advantage of these features to further
accelerate simulation speed.

9.7.1 MATLAB-to-C Code Generation

Replacing parts of a MATLAB code with automatically generated MEX (function) may speed
up simulations. Using MATLAB Coder, we can generate readable and portable C code and
compile it into a MEX function that replaces the appropriate parts of an existing MATLAB
algorithm. The amount of acceleration will depend on the algorithm. The best way of determin-
ing acceleration is to use MATLAB Coder to generate a MEX function and test the speed-up
firsthand. If the algorithm contains single-precision data types, fixed-point data types, loops
with states, or code that cannot be vectorized, we are likely to see speed-ups. Much of the

384 Understanding LTE with MATLAB®

MATLAB language and many toolboxes, including the Communications System Toolbox,
support code generation.
In this step, we generate a MEX function for the eighth version of the PDCCH algorithm.

The MEX function generated will be the ninth version in our sequence of acceleration steps.
This process involves using a single MATLAB command (codegen) available in MATLAB
Coder. The following MATLAB script shows how to call the codegen command to convert
the function zPDCCH_v8.m to C code and compile it into a MEX function. If the name of the
output MEX function is not specified, the default will be the name of the MATLAB function
followed by a _mex suffix, in this case zPDCCH_v8_mex.

Algorithm

MATLAB script: zPDCCH_v8_codegen

MaxSNR=8;

MaxNumBits=1e5;

fprintf(1,'\n\nGenerating MEX function for zPDCCH_v8.m \r');

codegen -args { MaxSNR, MaxNumBits, MaxNumBits } zPDCCH_v8.m
fprintf(1,'Done.\r');

By running the following MATLAB script we can verify whether this optimization leads to
a faster execution time. The results indicate that processing 1million bits in eight iterations
takes about 37.18 seconds (Figures 9.21 and 9.22).

Algorithm

MATLAB script: zPDCCH_v9_test

MaxSNR=8;

MaxNumBits=1e6;

fprintf(1,'\nVersion 9: MATLAB to C code generation (MEX)\n\n');

tic;

for EbNo=1:MaxSNR

fprintf(1,'Iteration number %d\r',EbNo);

ber= zPDCCH_v8_mex(snr, MaxNumBits, MaxNumBits);

end

time_9=toc;

fprintf(1,'Version 9: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_9);

The results show the simulation time of theMEXversion of the algorithm.Note that when the
System-object algorithm is compiled into a MEX function, the MEX version of the algorithm
runs faster than either earlier version.

Simulation 385

Figure 9.21 Ninth version of the algorithm: time taken to execute eight iterations

Figure 9.22 Execution times and acceleration ratios for the first nine versions of the algorithm

This behavior is expected because one of the advantages of using MATLAB-to-C code gen-
eration is simulation acceleration. Although the algorithm that uses System objects is highly
optimized, code generation can accelerate simulation by locking down the sizes and data types
of variables inside the function. This process makes the execution more efficient because it
removes the overhead of the interpreted language that checks for size and data type in every
line of code. If an algorithm contains MATLAB functions that have implicitly multithread
computations, functions that call IPP or BLAS libraries, built-in functions optimized for exe-
cution in MATLAB on a PC (such as Fast Fourier Transforms, FFTs), or algorithms that can
vectorize the code, we are not likely to see any speed-ups.

9.7.2 Parallel Computing

Using the Parallel Computing Toolbox, we can run multiple MATLAB workers (MATLAB
computational engines) on a desktop multicore machine. Simulations can be sped up by
dividing computations across multiple MATLAB workers. This approach allows more control
over the parallelism than is available in the built-in multithreading found in MATLAB and
it is often used for applications that involve parameter sweeps and Monte Carlo simulations.

386 Understanding LTE with MATLAB®

Additionally, we can scale parallel applications that use MATLAB workers to a computer,
cluster, or grid.
The Parallel Computing Toolbox also offers high-level programming constructs such as

the parfor command. Using parfor, we can accelerate for loops by dividing loop iterations
for simultaneous executions across a number of MATLAB workers. To use parfor, the loop
iterations must be independent, with none depending on on any of the others. If we want to
accelerate dependent or state-based loops, we should consider either optimization of the body
of the for loop or generation of C code instead. Since there is a communications cost involved
in a parfor loop, there might be no advantage to using one when we have only a small number
of simple calculations.
In this step, we call the MEX function representing the ninth version of the PDCCH algo-

rithm within a parfor loop. Before doing so, we must access multiple cores in our computer.
The matlabpool command (or the parpool command in more recent releases of MATLAB)
allows us to access various cores on the computer and assigns each a MATLAB worker.

Algorithm

MATLAB script: zPDCCH_vA_test

isOpen = matlabpool('size') > 0;

if ̃isOpen

fprintf(1,'Parallel Computing Toolbox is starting ...\n');

matlabpool;

end

At this stage we can run the parfor loop instead of the for loop and take advantage of parallel
computing. The MATLAB script for these operations is as follows.

Algorithm

MATLAB script: zPDCCH_vA_test

MaxSNR=8;

MaxNumBits=1e6;

fprintf(1,'\nVersion 10: Parallel computing (parfor) + MEX \n\n');

tic;

parfor snr=1:MaxSNR

fprintf(1,'Iteration number %d\r',snr);

ber= zPDCCH_v9(snr, MaxNumBits, MaxNumBits);

end

time_A=toc;

fprintf(1,'Version 10: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_A);

Simulation 387

Figure 9.23 Tenth version of the algorithm: time taken to execute eight iterations

Figure 9.24 Execution times and acceleration ratios for the first 10 versions of the algorithm

We observe that with the combination of System objects from the Communications System
Toolbox, MATLAB-to C-code generation, and parallel processing, we can reduce the process-
ing time to about 18.38 seconds (Figure 9.23). This corresponds to a 22.36-times acceleration
compared to the original baseline and a 3.45-times acceleration compared to the fourth ver-
sion, which employs the basic MATLAB programming guidelines (see Figure 9.24). As with
many performance benchmarks, the extent of acceleration depends on the algorithm, the plat-
form where MATLAB is installed, the C/C++ compiler used to create the MEX function, and
the number of cores available in the computer.

9.8 Using a Simulink Model

So far we have updated our MATLAB programs for better performance. The same process can
be applied to the algorithms represented by Simulink models. Simulink allows us to represent

388 Understanding LTE with MATLAB®

Figure 9.25 Simulink model representing the PDCCH algorithm

a design as a block diagram. Such a graphical representation naturally captures the architecture
and hierarchy and makes them easier to understand.
The Communications System Toolbox provides algorithms either as System objects for use

in MATLAB or as blocks for use in a Simulink. The eighth version of the PDCCH algorithm,
for example, uses many System objects from the Communications System Toolbox. In this
section we implement the same algorithm as a Simulink model. We will first verify that it has
the same numerical performance as theMATLAB program and then examine various Simulink
optimization techniques that can substantially accelerate the simulation speed.

9.8.1 Creating the Simulink Model

Figure 9.25 shows the Simulink model (zPDCCH_v8_default.xls) representing the eighth ver-
sion of the PDCCH algorithm. The process of transforming theMATLAB program to Simulink
is made easier by the fact that the MATLAB implementation uses System objects. From the
block library of the Communications System Toolbox we can access such blocks as convo-
lutional encoders, Viterbi decoders, and so on. The System objects and blocks from a given
system toolbox are numerically identical and have the same properties. Therefore, we can eas-
ily set the properties of the blocks in Simulink by copying them from the System objects.
For algorithms such as transmit diversity, which involves System objects and some basic
MATLAB code, we compose a subsystem that represents the same operations with Simulink
blocks. For an algorithm component that cannot be easily implemented with a few blocks or
a subsystem, we can use the MATLAB function block in Simulink to directly turn a MAT-
LAB function into a Simulink block. We use this approach to implement the MIMO fading
channel block.

Simulation 389

9.8.2 Verifying Numerical Equivalence

We use bertool to verify that the implementations inMATLAB and Simulink produce the same
numerical results. bertool performs the following operations:

• Iterates through a set of Eb/N0 values
• Executes the Simulink model or MATLAB function for each value
• Signals the simulation stopping criteria to the Error Rate Calculation block using two

parameters: maximum number of errors and maximum number of bits
• Records the BER value of the current iteration and displays it on the BER curve.

As illustrated in Figure 9.26, we process the eight version of the algorithm in both MATLAB
(zPDCCH_v8.m) and Simulink (zPDCCH_v8_default.xls). By iterating with SNR values from
0 to 4, with a resolution of 1/2, and by setting both maximum number of bits and maximum
number of errors to 10million, we can compare the BER curve as a function of SNR. As
Figure 9.27 illustrates, the numerical results are very similar. The reason for the small discrep-
ancy at higher SNR values is that we have chosen to simulate with only 10million bits for each
SNR value. At high SNR values with BERs around 1e-6 to 1e-7, a few error bits will affect the
performance results. Running simulations with larger numbers of bits can make the numerical
results identical.

Figure 9.26 bertool iterating PDCCH MATLAB and Simulink models

390 Understanding LTE with MATLAB®

Figure 9.27 BER curves: MATLAB and Simulink implementations of the PDCCH algorithm

Now that we have verified that both algorithms are numerically compatible, let us compare
the elapsed times for the MATLAB and Simulink versions.

9.8.3 Simulink Baseline Model

In this step, we run the following MATLAB script, which uses the sim command to run the
baseline Simulink model. The simulated baseline Simulink model takes about 84.59 seconds
to process 1million bits in eight iterations (Figures 9.28 and 9.29).

Algorithm

MATLAB script: zPDCCH_vB_test

MaxSNR=8;

MaxNumBits=1e6;

fprintf(1,'\nVersion 11: Version 8 Simulink normal mode'\n\n');

Simulation 391

tic;

for snr=1:MaxSNR

fprintf(1,'Iteration number %d\r',snr);

sim('zPDCCH_v8s_default');

end

time_11=toc;

fprintf(1,'Version 11: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_11);

9.8.4 Optimizing the Simulink Model

We can accelerate the simulation speed of a Simulink model via multiple methods, including
turning off visualizations and debugging, and introducing the acceleration features already
discussed for MATLAB programs, including C code generation and parallel computing. We
will discuss all of these techniques in this section, starting from the baseline model of the
PDCCH algorithm in Simulink.

Figure 9.28 Eleventh version of the algorithm: time taken to execute eight iterations

Figure 9.29 Execution times and acceleration ratios for the first 11 versions of the algorithm

392 Understanding LTE with MATLAB®

Figure 9.30 Model configuration parameters: default – normal mode

9.8.4.1 Simulation Configurations

Themost straightforwardmethod of acceleration involves turning off visualizations and debug-
ging features during simulation. Simulink executes a model in multiple modes, including the
normal one, accelerator mode, and rapid accelerator mode. In the normal mode (the default
mode of simulation), the default configuration parameters are selected to enhance debug-
ging and help with incremental building up of a valid simulation model. This is reflected
in the model configuration parameters accessible from the Simulation menu in every model.
Figure 9.30 illustrates the default configuration parameters of the zPDCCH_v8_default.slx
model, as found in the Simulation Target tab.
As we can see, properties related to debugging, such as “Enable debugging/animation,” “En-

able overflow detection,” and “Echo expressions without semicolon,” are by default turned on.
Some run-time checks that help designers identify semantic problems, such as “Ensure mem-
ory integrity” and “Ensure responsiveness” are also on by default. Obviously, these checks
represent simulation overhead, and by turning them off we may achieve a level of accelera-
tion. Figure 9.31 illustrates a new profile of Simulation Target parameters that unchecks many
of these features.
To gauge how much of an improvement can be made by this type of optimization, we run

the following MATLAB script, which iterates through simulation of the more optimized sim-
ulation model in the normal mode. In this case, the simulation time is reduced from about 84
down to 44 seconds (Figure 9.32). This may be considered rather a substantial improvement
and brings the simulation speed of our Simulink model on par with the eighth version of the
MATLAB algorithm (Figure 9.33).

Simulation 393

Figure 9.31 Model configuration parameters: simulation target

Figure 9.32 Twelfth version of the algorithm: time taken to execute eight iterations

Figure 9.33 Execution times and acceleration ratios for the first 12 versions of the algorithm

394 Understanding LTE with MATLAB®

Algorithm

MATLAB script: zPDCCH_vC_test

MaxSNR=8;

MaxNumBits=1e6;

fprintf(1,'\nVersion 12: Version 8 Simulink normal mode optimized\n\n');

tic;

for EbNo=1:MaxSNR

fprintf(1,'Iteration number %d\r',EbNo);

sim('zPDCCH_v8s_optimized');

end

time_12=toc;

fprintf(1,'Version 12: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_12);

9.8.4.2 Rapid Accelerator Mode

Another straightforward acceleration method involves the use of the rapid accelerator mode of
simulation. As illustrated in Figure 9.34, this is achieved simply by changing the simulation
mode to rapid accelerator. Rapid accelerator mode creates a MEX version of the model and

Figure 9.34 Simulation in rapid accelerator mode

Simulation 395

executes the resulting compiled code. In this respect, rapid accelerator is analogous to gener-
ation of the MEX file for a MATLAB function.
The first time the simulation is run, themodel is compiled and theMEX function is generated.

In the case of the model zPDCCH_v8s_optimized.slx, the messages shown in Figure 9.35
appear in the MATLAB workspace and the MEX file zPDCCH_v8s_optimized_sfun is
generated.
By running the following MATLAB script, we iterate through simulation of the optimized

model in the rapid accelerator mode. The results indicate that the script takes about 40 seconds
to complete (Figure 9.36). Comparison with the MATLAB function that used MATLAB-to-C
code generation (the ninth version of the algorithm) shows an advantage in terms of simulation
speed in MATLAB after MEX file generation (Figure 9.37). In the next step, we will introduce
a simple fix to alleviate this discrepancy.

Figure 9.35 Compiling a Simulink model in rapid accelerator mode

Figure 9.36 Thirteenth version of the algorithm: time taken to execute eight iterations

Figure 9.37 Execution times and acceleration ratios for the first 13 versions of the algorithm

396 Understanding LTE with MATLAB®

Algorithm

MATLAB script: zPDCCH_vD_test

MaxSNR=8;

MaxNumBits=1e6;

fprintf(1,'\nVersion 13: Version 8 Simulink rapid accelerator\n\n');

tic;

for EbNo=1:MaxSNR

fprintf(1,'Iteration number %d\r',EbNo);

sim('zPDCCH_v8s_optimized','SimulationMode','rapid');

end

time_13=toc;

fprintf(1,'Version 13: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_13);

9.8.4.3 Optimized Rapid Accelerator

In rapid accelerator mode, Simulink regenerates theMEXfile every time the Simulinkmodel is
changed. The time it takes for Simulink to determine whether the rapid-accelerator executable
is up to date is significantly less than that required to generate code. We can take advantage
of this characteristic when we wish to test design tradeoffs. For example, we can generate
the rapid-accelerator target code once and use it to simulate a model with a series of SNR
settings. This is an especially efficient way of using this mode because this type of change
does not result in the target code being regenerated. The target code is generated the first time
the model runs, but on subsequent runs the Simulink code only takes the time necessary to
verify that the target is up to date. We can even bypass this recurring update check by running
the sim command with a property that turns off update checking:

Algorithm

sim(model_name,'SimulationMode','rapid','RapidAcceleratorUpToDateCheck', 'off')

To verify the effect of this type of optimized rapid accelerator simulation on speed, we call
the following MATLAB testbench. As the results indicate, this optimization almost doubles
the speed of simulation. At this stage, the code generated in Simulink runs faster than the
MATLAB code (ninth version) we examined earlier (Figures 9.38 and 9.39).

Algorithm

MATLAB script: zPDCCH_vE_test

MaxSNR=8;

MaxNumBits=1e6;

Simulation 397

fprintf(1,'\nVersion 14: Version 8 Simulink rapid accelerator optimized\n\n');

tic;

for EbNo=1:MaxSNR

fprintf(1,'Iteration number %d\r',EbNo);

sim('zPDCCH_v8s_optimized','SimulationMode','rapid',

'RapidAcceleratorUpToDateCheck', 'off');

end

time_14=toc;

fprintf(1,'Version 14: Time to complete %d iterations = %6.4f (sec)\n',

MaxSNR, time_14);

9.8.4.4 Parallel Computing

In this step, we combine parallel computing with the rapid accelerator mode in Simulink. To
do so, we call the rapid accelerator target code of our Simulink model within a parfor loop.
First we verify that the matlabpool command is called and that access to multiple cores in our

Figure 9.38 Fourteenth version of the algorithm: time taken to execute eight iterations

Figure 9.39 Execution times and acceleration ratios for the first 14 versions of the algorithm

398 Understanding LTE with MATLAB®

computer has been established. The parfor command divides loop iterations for simultaneous
executions across a number of MATLAB workers (in this case, two). The following program
shows how the parfor loop calls the Simulink model running in the optimized rapid accelerator
mode. This is quite similar to the way in which we parallelized our MATLAB code in the tenth
version earlier.

Algorithm

MATLAB script: zPDCCH_vF_test

MaxSNR=8;

MaxNumBits=1e6;

fprintf(1,'\nVersion 15: Version 8 Simulink rapid accel. optimized + parfor\n\n');

tic;

parfor EbNo=1:MaxSNR

fprintf(1,'Iteration number %d\r',EbNo);

sim('zPDCCH_v8s_optimized','SimulationMode','rapid',

'RapidAcceleratorUpToDateCheck', 'off');

end

time_15=toc;

fprintf(1,'Version 15: Time to complete %d iterations = %6.4f (sec)\n',

MaxSNR, time_15);

The results also indicate that the combination of compilation of the Simulink model in rapid
accelerator mode and parallel computing substantially accelerates the simulation. We first ran
the simulation model in default normal mode in 85.29 seconds. The combined optimizations
available in the fifteenth version result in a simulation time of just 12.31 seconds (Figure 9.40).
This corresponds to a 7-times acceleration compared to the eleventh version and a 33-times
acceleration compared to the MATLAB-code baseline (Figure 9.41).

Figure 9.40 Fifteenth version of the algorithm: time taken to execute eight iterations

Simulation 399

Figure 9.41 Execution times and acceleration ratios for the first 15 versions of the algorithm.

9.9 GPU Processing

GPUs were originally developed to accelerate graphical applications but are now increasingly
applied to a range of scientific calculations. MATLAB has functionality that takes advantage
of the power of GPUs. Computations can be performed on CUDA (Compute Unified Device
Architecture)-enabled NVIDIA GPUs directly from MATLAB to accelerate algorithms. FFT,
Inverse Fast Fourier Transform (IFFT), and linear algebraic operations are among more than
100 built-in MATLAB functions that can be executed directly on the GPU by providing an
input argument of the type GPUArray, a special MATLAB array type provided by the Parallel
Computing Toolbox. These GPU-enabled functions operate differently depending on the data
type of the arguments passed to them. Similarly, toolboxes such as the Neural Networks Tool-
box, the Communications System Toolbox, the Signal Processing Toolbox, and the Phased
Array System Toolbox also provide GPU-accelerated algorithms.
As a rule of thumb, an application may be a good fit for a GPU if it is computationally

intensive and massively parallel. This translates to two criteria. First, the time it takes for
the application to run on the GPU should be significantly greater than the time it takes to
transfer the same amount of data between the CPU and the GPU during application execution.
Second, the best GPU performance will be seen when all of the cores are kept busy, exploiting
the inherent parallel nature of the GPU. Vectored MATLAB calculations on larger arrays and
GPU-enabled toolbox functions fit into this category.
With access to GPUs, we can tap into their power to dramatically improve the simulation

speed of an algorithm in MATLAB, especially if the data are sufficiently large. Algorithms
optimized for GPUs are a perfect fit for mobile communication systems, since most leverage
large data sizes and involve repeated operations performed independently for multiple users.

9.9.1 Setting up GPU Functionality in MATLAB

Running the following MATLAB examples on a supported GPU requires use of the Parallel
Computing Toolbox and Communications System Toolbox. The following commands help
verify whether the proper licenses are held:

400 Understanding LTE with MATLAB®

Algorithm

license('test','distrib_computing_toolbox');

license('test','communication_toolbox');

If the answer provided by MATLAB to both of these commands is 1, which stands for true,
then the correct product licenses are held. To verify whether a GPU device is properly installed
and ready to be used within MATLAB, the following command can be entered.

Algorithm

parallel.gpu.GPUDevice.isAvailable

If MATLAB returns a value of 1, the GPU is ready for use in MATLAB.

9.9.2 GPU-Optimized System Objects

The Communication System Toolbox has many specialized algorithms that support GPU pro-
cessing. The Parallel Computing Toolbox can be used to execute many communications algo-
rithms directly on the GPU. The following Communications System Toolbox System objects
are GPU-optimized:

• comm.gpu.AWGNChannel
• comm.gpu.BlockDeinterleaver
• comm.gpu.BlockInterleaver
• comm.gpu.ConvolutionalDeinterleaver
• comm.gpu.ConvolutionalEncoder
• comm.gpu.ConvolutionalInterleaver
• comm.gpu.LDPCDecoder
• comm.gpu.PSKDemodulator
• comm.gpu.PSKModulator
• comm.gpu.TurboDecoder
• comm.gpu.ViterbiDecoder.

As can be seen, not all System objects are optimized for GPU processing. Those listed here
correspond to computationally intensive algorithms encountered in many communication sys-
tems. They have an easy-to-use syntax: .gpu is added to the object name. With minor changes
like this applied to the code, when a MATLAB® application is run on a supported GPU the
simulation is usually accelerated.

Simulation 401

9.9.3 Using a Single GPU System Object

The following MATLAB function shows the first GPU optimization applied to the eighth
version of our PDCCH algorithm. The only change to the MATLAB code is the use of the
comm.gpu.ViterbiDecoder System object instead of comm.ViterbiDecoder.

Algorithm

MATLAB function: zPDCCH_vG

function [ber, bits]=zPDCCH_vG(EbNo, maxNumErrs, maxNumBits)

%% Constants

FRM=2048;

M=4; k=log2(M); codeRate=1/3;

snr = EbNo + 10*log10(k) + 10*log10(codeRate);

trellis=poly2trellis(7, [133 171 165]);

L=FRM+24;C=6; Index=[L+1:(3*L/2) (L/2+1):L];

%% Initializations

persistent Modulator AWGN DeModulator BitError ConvEncoder1 ConvEncoder2 Viterbi

CRCGen CRCDet

if isempty(Modulator)

Modulator = comm.QPSKModulator('BitInput',true);

AWGN = comm.AWGNChannel('NoiseMethod', 'Variance', 'VarianceSource',

'Input port');

DeModulator = comm.QPSKDemodulator('BitOutput',true);

BitError = comm.ErrorRate;

ConvEncoder1=comm.ConvolutionalEncoder('TrellisStructure', trellis,

'FinalStateOutputPort', true, ...

'TerminationMethod','Truncated');

ConvEncoder2 = comm.ConvolutionalEncoder('TerminationMethod','Truncated',

'InitialStateInputPort', true,...

'TrellisStructure', trellis);

Viterbi=comm.gpu.ViterbiDecoder('TrellisStructure', trellis,

'InputFormat','Hard','TerminationMethod','Truncated');

CRCGen = comm.CRCGenerator('Polynomial',[1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

CRCDet = comm.CRCDetector ('Polynomial',[1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

end

%% Processing loop modeling transmitter, channel model and receiver

numErrs = 0; numBits = 0; nS=0;

results=zeros(3,1);

while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter

u = randi([0 1], FRM,1); % Generate bit payload

u1 = step(CRCGen, u); % CRC insertion

u2 = u1((end-C+1):end); % Tail-biting convolutional coding

[̃, state] = step(ConvEncoder1, u2);

u3 = step(ConvEncoder2, u1,state);

u4 = fcn_RateMatcher(u3, L, codeRate); % Rate matching

402 Understanding LTE with MATLAB®

u5 = fcn_Scrambler(u4, nS); % Scrambling

u6 = step(Modulator, u5); % Modulation

u7 = TransmitDiversityEncoderS(u6); % MIMO Alamouti encoder

% Channel

[u8, h8] = MIMOFadingChanS(u7); % MIMO fading channel

noise_var = real(var(u8(:)))/(10.^(0.1*snr));

u9 = step(AWGN, u8, noise_var); % AWGN
% Receiver

uA = TransmitDiversityCombinerS(u9, h8);% MIMO Alamouti combiner

uB = step(DeModulator, uA); % Demodulation

uC = fcn_Descrambler(uB, nS); % Descrambling

uD = fcn_RateDematcher(uC, L); % Rate de-matching

uE = [uD;uD]; % Tail-biting

uF = step(Viterbi, uE); % Viterbi decoding

uG = uF(Index);

y = step(CRCDet, uG); % CRC detection

results = step(BitError, u, y); % Update number of bit errors

numErrs = results(2);

numBits = results(3);

nS = nS + 2; nS = mod(nS, 20);

end

%% Clean up & collect results

ber = results(1); bits= results(3);

reset(BitError);

By running the following MATLAB script, which calls the first GPU-optimized version of
the algorithm, and by recalling the collective performance improvements, we can see the effect
on one of the algorithm’s bottlenecks (the Viterbi decoder) of using a GPU. Note that all other
functionality is performed on the CPU (Figures 9.42 and 9.43).

Figure 9.42 Sixteenth version of the algorithm: time taken to execute eight iterations.

Simulation 403

Figure 9.43 Execution times and acceleration ratios for the first 16 versions of the algorithm

Algorithm

MATLAB function

fprintf(1,'\nVersion 16: Version 8 + Viterbi decoder on GPU\n\n');

tic;

for snr = 1:MaxSNR

ber= zPDCCH_vG(snr, MaxNumBits, MaxNumBits);

end

time_16=toc;

fprintf(1,'Version 16: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_16);

9.9.4 Combining Parallel Processing with GPUs

In this version of the algorithm, we combine GPU processing with parallel processing. To
parallelize the algorithm, we use a function from the Parallel Processing Toolbox called spmd.
The spmd function, which implements a “single program, multiple data” construct, executes
MATLAB code on several MATLAB workers simultaneously. The general form of a spmd
statement is as follows:

Algorithm

spmd;

<MATLAB statements>

end;

404 Understanding LTE with MATLAB®

In order to execute the statements in parallel, we must first open a pool of MATLABworkers
using the matlabpool function introduced earlier. Inside the body of the spmd statement, each
MATLABworker has a unique identifier denoted by a variable called labindex, while a variable
called numlabs gives the total number of workers executing the block in parallel.
The following function shows our final version of the PDCCH algorithm. It combines the use

of the spmd function to parallelize in-loop processing with the use of GPU-optimized System
objects for the Viterbi decoder.

Algorithm

MATLAB function

function [ber, bits]=zPDCCH_vH(EbNov, maxNumErrs, maxNumBits)

%% Constants

wkrs = 2;

spmd(wkrs)

FRM=2048;

M=4; k=log2(M); codeRate=1/3;

snrv = EbNov + 10*log10(k) + 10*log10(codeRate);

bits=zeros(size(EbNov));errs=bits;

trellis=poly2trellis(7, [133 171 165]);

L=FRM+24;C=6; Index=[L+1:(3*L/2) (L/2+1):L];

s = RandStream.create('mrg32k3a', 'NumStreams', wkrs, 'CellOutput', true, 'Seed', 1);

RandStream.setGlobalStream(s{labindex});

Modulator = comm.QPSKModulator('BitInput',true);

AWGN = comm.AWGNChannel('NoiseMethod', 'Variance', 'VarianceSource',

'Input port');

DeModulator = comm.QPSKDemodulator('BitOutput',true);

BitError = comm.ErrorRate;

ConvEncoder1=comm.ConvolutionalEncoder('TrellisStructure', trellis,

'FinalStateOutputPort', true, 'TerminationMethod','Truncated');

ConvEncoder2 = comm.ConvolutionalEncoder('TerminationMethod','Truncated',

'InitialStateInputPort', true,'TrellisStructure', trellis);

Viterbi=comm.gpu.ViterbiDecoder('TrellisStructure', trellis,

'InputFormat','Hard','TerminationMethod','Truncated');

CRCGen = comm.CRCGenerator('Polynomial',[1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

CRCDet = comm.CRCDetector ('Polynomial',[1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

%end

for n=1:numel(snrv),

%% Processing loop modeling transmitter, channel model and receiver

numErrs = 0; numBits = 0; nS=0;

results=zeros(3,1);

while ((numErrs < maxNumErrs/numlabs) && (numBits < maxNumBits/numlabs))

% Transmitter

u = randi([0 1], FRM,1); % Generate bit payload

u1 = step(CRCGen, u); % CRC insertion

u2 = u1((end-C+1):end); % Tail-biting convolutional coding

[̃, state] = step(ConvEncoder1, u2);

u3 = step(ConvEncoder2, u1,state);

Simulation 405

u4 = fcn_RateMatcher(u3, L, codeRate); % Rate matching

u5 = fcn_Scrambler(u4, nS); % Scrambling

u8 = step(Modulator, u5); % Modulation

u7 = TransmitDiversityEncoderS(u8); % MIMO Alamouti encoder

% Channel

[u8, h8] = MIMOFadingChanS(u7); % MIMO fading channel

noise_var = real(var(u8(:)))/(10.^(0.1*snrv(n)));

u9 = step(AWGN, u8, noise_var); % AWGN
% Receiver

uA = TransmitDiversityCombinerS(u9, h8);% MIMO Alamouti combiner

uB = step(DeModulator, uA); % Demodulation

uC = fcn_Descrambler(uB, nS); % Descrambling

uD = fcn_RateDematcher(uC, L); % Rate de-matching

uE = [uD;uD]; % Tail-biting

uF = step(Viterbi, uE); % Viterbi decoding

uG = uF(Index);

y = step(CRCDet, uG); % CRC detection

results = step(BitError, u, y); % Update number of bit errors

numErrs = results(2);

numBits = results(3);

nS = nS + 2; nS = mod(nS, 20);

end

%% Clean up & collect results

bits(n)= results(3);

errs(n) = results(2);

reset(BitError);

end

end

totbits = zeros(1, numel(EbNov));

toterrs = zeros(1, numel(EbNov));

for n=1:wkrs,

totbits = totbits + bits{n};

toterrs = toterrs + errs{n};

end

ber = toterrs./totbits;

The iterations over Eb/N0 values are brought inside the function and the input values for the
Eb/N0 are stored in a vector rather than a single value. Furthermore, inside the body of the
spmd function we compute the same operations on independent workers. To make the BER
results valid, we must ensure that the random number generators used to produce the random
bits and values added as AWGN noise are not related. This is achieved by the following two
lines of code, which generate different random number streams for different workers:

Algorithm

s = RandStream.create('mrg32k3a', 'NumStreams', wkrs, 'CellOutput', true, 'Seed', 1);

RandStream.setGlobalStream(s{labindex});

406 Understanding LTE with MATLAB®

We also subdivide the number of errors and number of bits by the number of workers, such
that each worker will process its equal share of total bits. At the end of the spmd statement,
each variable contains different values, computed independently in each worker. In the for
loop, after the spmd statement, we add all the bits and BER values computed over each worker
to find the total BER.
The following calling function executes this version of the algorithm to illustrate the effect

of the combination of parallel and GPU processing on the simulation time. The results indicate
that this version produces the same numerical results as all other versions of the algorithm in
the least amount of time (Figures 9.44 and 9.45).

Algorithm

MATLAB function

fprintf(1,'\nVersion 17: Version 8 + Viterbi decoder on GPU + spmd\n\n');

tic;

ber= zPDCCH_vH(1:snr, MaxNumBits, MaxNumBits);

time_17=toc;

fprintf(1,'Version 17: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_17);

9.10 Case Study: Turbo Coders on GPU

In this section we present a case study to show how GPUs can be used to accelerate
turbo-coding applications in MATLAB. Turbo coding is an essential part of the LTE standard.
Because of the iterative nature of its algorithm, the turbo decoder is computationally intensive
and thus an ideal candidate for GPU acceleration. Using a GPU-optimized System object for
turbo decoding, we can accelerate BER simulations.
We first repeat the steps highlighted in the previous section, but using a turbo decoder instead

of a Viterbi decoder. Then we show and resolve some of the pitfalls associated with GPU pro-
cessing in MATLAB. The main one relates to the excessive transfer of data between the CPU
and the GPU. This is a well-known issue with GPU processing and can slow the simulation.
Finally, we show how increasing the size of the data running on the GPU can further accelerate
the simulation.

Figure 9.44 Seventeenth version of the algorithm: time taken to execute eight iterations

Simulation 407

Figure 9.45 Execution times and acceleration ratios for the first 17 versions of the algorithm

9.10.1 Baseline Algorithm on a CPU

As a baseline, we use the turbo-coding algorithm developed in Chapter 8. The following func-
tion implements the algorithm for CPU processing. The input data size is 2432 bits per frame.
The trellis structure and the interleaver used for turbo coding are the ones specified by the LTE
standard. The transmitter is composed of a turbo encoder followed by a QPSK modulator. To
simplify the code, we perform channel modeling by adding AWGN to the modulated symbols.
In the receiver we perform soft-decision demodulation followed by turbo decoding.

Algorithm

MATLAB function: zTurboExample_gpu0

function [ber, bits]=zTurboExample_gpu0(EbNo, maxNumErrs, maxNumBits)

FRM=2432;

Indices = lteIntrlvrIndices(FRM);

M=4;k=log2(M);

R= FRM/(3* FRM + 4*3);

snr = EbNo + 10*log10(k) + 10*log10(R);

noiseVar = 10.^(-snr/10);

numIter=6; trellis = poly2trellis(4, [13 15], 13);

persistent hTEnc Modulator AWGN DeModulator hTDec hBER

if isempty(Modulator)

hTEnc = comm.TurboEncoder('TrellisStructure',trellis , 'InterleaverIndices', Indices);

Modulator = comm.PSKModulator(4, ...

'BitInput', true, 'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...

'CustomSymbolMapping', [0 2 3 1]);

AWGN = comm.AWGNChannel('NoiseMethod', 'Variance', 'VarianceSource',

'Input port');

DeModulator = comm.PSKDemodulator(...

408 Understanding LTE with MATLAB®

'ModulationOrder', 4, ...

'BitOutput', true, ...

'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...

'CustomSymbolMapping', [0 2 3 1],...

'DecisionMethod', 'Approximate log-likelihood ratio', ...

'VarianceSource', 'Input port');

% Turbo Decoder

hTDec = comm.TurboDecoder('TrellisStructure', trellis,'InterleaverIndices', Indices,

'NumIterations', numIter);

% BER measurement

hBER = comm.ErrorRate;

end

%% Processing loop

Measures = zeros(3,1); %initialize BER output

while ((Measures(2)< maxNumErrs) && (Measures(3) < maxNumBits))

data = randi([0 1], FRM, 1);

% Encode random data bits

yEnc = step(hTEnc, data);

% Add noise to real bipolar data

modout = step(Modulator, yEnc);

rData = step(AWGN, modout,noiseVar);

% Convert to log-likelihood ratios for decoding

llrData = step(DeModulator, rData, noiseVar);

% Turbo Decode

decData = step(hTDec, -llrData);

% Calculate errors

Measures = step(hBER, data, decData);

end

bits = Measures(3);

ber= Measures(1);

reset(hBER);

Wecan apply the profiler to find the bottlenecks in this algorithm by performing the following
commands. The results clearly show that the turbo decoder is the main bottleneck, taking
24.485 of the 26.503 seconds required to process 1 million bits of data (Figure 9.46).

Algorithm

MATLAB script

EbNo=0; maxNumErrs=1e6;maxNumBits=1e6;

profile on;

ber= zTurboExample_gpu0(EbNo, maxNumErrs, maxNumBits);

profile viewer;

Simulation 409

Figure 9.46 Profiler results for the baseline turbo-coding algorithm

Figure 9.47 Execution times and acceleration ratios for the baseline turbo-coding algorithm

To establish a starting yardstick for the turbo-coding execution time, we run the following
MATLAB script. We iterate through Eb/N0 values of 0 to 1.2 dB, in seven 0.2 dB steps. It takes
about 311 seconds to process 1 million bits in each of these seven iterations (Figure 9.47).

Algorithm

MATLAB script

MaxSNR=7;

Snrs=0:0.2:1.2;

MaxNumBits=1e6;

N=1;

fprintf(1,'\nVersion 1: Everything on CPU\n\n')

tic;

for idx = 1:MaxSNR

fprintf(1,'Iteration number %d\r',idx);

EbNo=Snrs(idx);

ber= zTurboExample_gpu0(EbNo, MaxNumBits, MaxNumBits);

end

time_CPU=toc;

fprintf(1,'Version 1: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR, time_CPU);

Report_Timing_Results(N,time_CPU,time_CPU,'Everything on CPU');

410 Understanding LTE with MATLAB®

9.10.2 Turbo Decoder on a GPU

In the second version of the turbo-coding example, we execute the identified bottleneck, the
turbo decoder, on the GPU, while the rest of the algorithm executes on the CPU. The only
modification needed to achieve this is the use of the comm.gpu.TurboDecoder System object
instead of comm.TurboDecoder. The following function shows the only line of code in which
the baseline algorithm (zTurboExample_gpu0) differs from the second version (zTurboExam-
ple_gpu1).

MATLAB function

function [ber, bits] =

zTurboExample_gpu0(EbNo, maxNumErrs,

maxNumBits)

.

.

function [ber, bits] =

zTurboExample_gpu1(EbNo, maxNumErrs,

maxNumBits)

.

.hTDec = comm.TurboDecoder

('TrellisStructure', trellis,'InterleaverIndices',

Indices, 'NumIterations', numIter);

.

.

end

hTDec = comm.gpu.TurboDecoder

('TrellisStructure', trellis,'InterleaverIndices',

Indices, 'NumIterations', numIter);

.

.

end

By running the following MATLAB script, we can assess whether there is an advantage to
running the turbo decoder on the GPU. It now takes about 75 seconds to process 1 million bits
in each of the seven iterations: a four-times acceleration (Figure 9.48).

Algorithm

MATLAB script

MaxSNR=7;

Snrs=0:0.2:1.2;

MaxNumBits=1e6;

N=2;

fprintf(1,'\nVersion 2: Turbo coding Only on GPU\n\n');

tic;

for idx = 1:MaxSNR

fprintf(1,'Iteration number %d\r',idx);

EbNo=Snrs(idx);

ber= zTurboExample_gpu1(EbNo, MaxNumBits, MaxNumBits);

end

time_GPU1=toc;

fprintf(1,'Version 2: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR,

time_GPU1);

Report_Timing_Results(N,time_CPU,time_GPU1,'Turbo coding Only on GPU');

Simulation 411

Figure 9.48 Execution times and acceleration ratios for the second version of the turbo-coding
algorithm

9.10.3 Multiple System Objects on GPU

In the third version of the turbo-coding example, we use multiple GPU-optimized Sys-
tem objects in addition to the turbo decoder used in the previous version. These include
comm.gpu.PSKModulator, comm.gpu.AWGNChannel, comm.gpu.PSKDemodulator, and
comm.gpu.TurboDecoder. As a result, a portion of the algorithm runs on the CPU and a
portion on the GPU. This necessitates communication of data between the GPU and the CPU.
The gpuArray function communicates data from the CPU to the GPU and the gather function
communicates data from the GPU back to the CPU. The following MATLAB function
implements the third version of the algorithm.

Algorithm

MATLAB function

function [ber, bits]=zTurboExample_gpu2(EbNo, maxNumErrs, maxNumBits)

FRM=2432;

Indices = lteIntrlvrIndices(FRM);

M=4;k=log2(M);

R= FRM/(3* FRM + 4*3);

snr = EbNo + 10*log10(k) + 10*log10(R);

noiseVar = 10.^(-snr/10);

numIter=6; trellis = poly2trellis(4, [13 15], 13);

persistent hTEnc Modulator AWGN DeModulator hTDec hBER

if isempty(Modulator)

hTEnc = comm.TurboEncoder('TrellisStructure',trellis , 'InterleaverIndices', Indices);

Modulator = comm.gpu.PSKModulator(4, ...

'BitInput', true, 'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...

'CustomSymbolMapping', [0 2 3 1]);

412 Understanding LTE with MATLAB®

AWGN =comm.gpu.AWGNChannel('NoiseMethod', 'Variance', 'VarianceSource',

'Input port');

DeModulator = comm.gpu.PSKDemodulator(...

'ModulationOrder', 4, ...

'BitOutput', true, ...

'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...

'CustomSymbolMapping', [0 2 3 1],...

'DecisionMethod', 'Approximate log-likelihood ratio', ...

'VarianceSource', 'Input port');

% Turbo Decoder

hTDec = comm.gpu.TurboDecoder('TrellisStructure', trellis,'InterleaverIndices', Indices,

'NumIterations', numIter);

% BER measurement

hBER = comm.ErrorRate;

end

%% Processing loop

Measures = zeros(3,1); %initialize BER output

while ((Measures(2)< maxNumErrs) && (Measures(3) < maxNumBits))

data = randi([0 1], numFrames*FRM, 1);

% Encode random data bits

yEnc = gpuArray(step(hTEnc, data));

% Modulate the signal - send to GPU

modout = step(Modulator, yEnc);

% Add noise to data

rData = step(AWGN, modout,noiseVar);

% Convert to log-likelihood ratios for decoding

llrData = step(DeModulator, rData, noiseVar);

% Turbo Decode

decData = step(hTDec, -llrData);

% Calculate errors

Measures = step(hBER, data, gather(decData));

end

bits = Measures(3);

ber= Measures(1);

reset(hBER);

end

By using more than one GPU-optimized System object, we hope to further accelerate the
simulation. However, the overhead resulting from GPU–CPU communication may actually
counterbalance any benefits from the use of System objects. The result of simulation with the
following MATLAB script supports this hypothesis. The third version of the algorithm runs a
little slower than the second version, completing the seven iterations in about 86 seconds. Note
that the bulk of the advantage of running the bottleneck algorithm (turbo decoder) on the GPU
is still preserved. We still benefit from a 3.5-times acceleration compared to the CPU version,
as indicated by the results in Figure 9.49.

Simulation 413

Figure 9.49 Execution times and acceleration ratios for the third version of the turbo-coding
algorithm

Algorithm

MATLAB function

MaxSNR=7;

Snrs=0:0.2:1.2;

MaxNumBits=1e6;

N=3;

fprintf(1,'\nVersion 3: Four GPU algorithms + Single-frame\n\n');

tic;

for idx = 1:MaxSNR

fprintf(1,'Iteration number %d\r',idx);

EbNo=Snrs(idx);

ber= zTurboExample_gpu2(EbNo, MaxNumBits, MaxNumBits);

end

time_GPU2=toc;

fprintf(1,'Version 3: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR,

time_GPU2);

Report_Timing_Results(N,time_CPU,time_GPU2,'Four GPU algorithms + Single-frame');

9.10.4 Multiple Frames and Large Data Sizes

The fourth version of the algorithm compensates for the inefficiencies introduced by excessive
GPU–CPU communications by concatenating the input data to run multiple frames of data in
parallel on the GPU. This approach is beneficial for two reasons. First, the advantage of using
the GPU is more pronounced when larger data sizes are used. Second, through concatenation
of the data, even the System objects other than the turbo decoder have a fuller GPU buffer
to process, which reduces the overhead of the gpuArray and gather functions. The following
MATLAB function shows the fourth version of the algorithm.

414 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function [ber, bits]=zTurboExample_gpu3(EbNo, maxNumErrs, maxNumBits)

FRM=2432;

Indices = lteIntrlvrIndices(FRM);

M=4;k=log2(M);

R= FRM/(3* FRM + 4*3);

snr = EbNo + 10*log10(k) + 10*log10(R);

noiseVar = 10.^(-snr/10);

numIter=6; trellis = poly2trellis(4, [13 15], 13);

numFrames = 30; %Run 30 frames in parallel

persistent hTEnc Modulator AWGN DeModulator hTDec hBER

if isempty(Modulator)

hTEnc = comm.TurboEncoder('TrellisStructure',trellis , 'InterleaverIndices', Indices);

Modulator = comm.gpu.PSKModulator(4, ...

'BitInput', true, 'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...

'CustomSymbolMapping', [0 2 3 1]);

AWGN =comm.gpu.AWGNChannel('NoiseMethod', 'Variance', 'VarianceSource',

'Input port');

DeModulator = comm.gpu.PSKDemodulator(...

'ModulationOrder', 4, ...

'BitOutput', true, ...

'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...

'CustomSymbolMapping', [0 2 3 1],...

'DecisionMethod', 'Approximate log-likelihood ratio', ...

'VarianceSource', 'Input port');

% Turbo Decoder with MultiFrame processing

hTDec = comm.gpu.TurboDecoder('TrellisStructure', trellis,'InterleaverIndices', Indices,

...

'NumIterations', numIter, 'NumFrames', numFrames);

% BER measurement

hBER = comm.ErrorRate;

end

%% Processing loop

Measures = zeros(3,1); %initialize BER output

while ((Measures(2)< maxNumErrs) && (Measures(3) < maxNumBits))

data = randi([0 1], numFrames*FRM, 1);

% Encode random data bits

yEnc = gpuArray(multiframeStep(hTEnc, data, numFrames));

% Add noise to real bipolar data

modout = step(Modulator, yEnc);

rData = step(AWGN, modout,noiseVar);

% Convert to log-likelihood ratios for decoding

llrData = step(DeModulator, rData, noiseVar);

% Turbo Decode

decData = step(hTDec, -llrData);

Simulation 415

% Calculate errors

Measures = step(hBER, data, gather(decData));

end

bits = Measures(3);

ber= Measures(1);

reset(hBER);

end

function y = multiframeStep(h, x, nf)

xr = reshape(x,[], nf);

ytmp = step(h,xr(:,1));

y = zeros(size(ytmp,1), nf, class(ytmp));

y(:,1) = ytmp;

for ii =2:nf,

y(:,ii) = step(h,xr(:,ii));

end

y = reshape(y, [], 1);

end

In this version, the changes relative to the third version are as follows. A variable called
numFrames is used, which indicates how many frames of data are concatenated in this simu-
lation. We have chosen a value of 30 for the numFrames parameter. This parameter is applied
to the turbo decoder to parallelize the decoding operation on the GPU. A function called
multiframeStep is also defined; this performs turbo-encoder operations multiple times and
concatenates the results.
The following MATLAB script iterates through the SNR values and records the elapsed

time. Note that despite relatively modest changes to the algorithm, we obtain a substantial
improvement in the simulation speed. Figure 9.50 shows that this version of the algorithm
needs only 28 seconds to complete.

Figure 9.50 Execution times and acceleration ratios for the fourth version of the turbo-coding
algorithm

416 Understanding LTE with MATLAB®

Algorithm

MATLAB function

MaxSNR=7;

Snrs=0:0.2:1.2;

MaxNumBits=1e6;

N=4;

fprintf(1,'\nVersion 4: Four GPU algorithms + Multi-frame\n\n');

tic;

for idx = 1:MaxSNR

fprintf(1,'Iteration number %d\r',idx);

EbNo=Snrs(idx);

ber= zTurboExample_gpu3(EbNo, MaxNumBits, MaxNumBits);

end

time_GPU3=toc;

fprintf(1,'Version 3: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR,

time_GPU3);

Report_Timing_Results(N,time_CPU,time_GPU3,'Four GPU algorithms + Multi-frame');

9.10.5 Using Single-Precision Data Type

Finally, using a single-precision floating-point data type can also accelerate the simulation.
Since operations on the GPU are optimized for a single-precision data type, all we need to do
is make sure all variables in the fifth version of the algorithm are of single precision. Small
modifications such as casting the output of the functions and variables by calling theMATLAB
single function achieve this task. The fifth version of the algorithm (zTurboExample_gpu4),
featuring GPU and CPU processing in single-precision floating point, is as follows:

Algorithm

MATLAB function

function [ber, bits]=zTurboExample_gpu4(EbNo, maxNumErrs, maxNumBits)

FRM=2432;

Indices = single(lteIntrlvrIndices(FRM));

M=4;k=log2(M);

R= FRM/(3* FRM + 4*3);

snr = EbNo + 10*log10(k) + 10*log10(R);

noiseVar = single(10.^(-snr/10));

numIter=6; trellis = poly2trellis(4, [13 15], 13);

numFrames = 30; %Run 30 frames in parallel

persistent hTEnc Modulator AWGN DeModulator hTDec hBER

if isempty(Modulator)

hTEnc = comm.TurboEncoder('TrellisStructure',trellis , 'InterleaverIndices', Indices);

Modulator = comm.gpu.PSKModulator(4,'OutputDataType', 'single', ...

Simulation 417

'BitInput', true, 'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...

'CustomSymbolMapping', [0 2 3 1]);

AWGN =comm.gpu.AWGNChannel('NoiseMethod', 'Variance', 'VarianceSource',

'Input port');

DeModulator = comm.gpu.PSKDemodulator(...

'ModulationOrder', 4, ...

'BitOutput', true, ...

'PhaseOffset', pi/4, 'SymbolMapping', 'Custom', ...

'CustomSymbolMapping', [0 2 3 1],...

'DecisionMethod', 'Approximate log-likelihood ratio', ...

'VarianceSource', 'Input port');

% Turbo Decoder with MultiFrame processing

hTDec = comm.gpu.TurboDecoder('TrellisStructure', trellis,'InterleaverIndices', Indices,

...

'NumIterations', numIter, 'NumFrames', numFrames);

% BER measurement

hBER = comm.ErrorRate;

end

%% Processing loop

Measures = zeros(3,1); %initialize BER output

while ((Measures(2)< maxNumErrs) && (Measures(3) < maxNumBits))

data = randi([0 1], numFrames*FRM, 1);

% Encode random data bits

yEnc = gpuArray(multiframeStep(hTEnc, data, numFrames));

% Add noise to real bipolar data

modout = step(Modulator, yEnc);

rData = step(AWGN, modout,noiseVar);

% Convert to log-likelihood ratios for decoding

llrData = step(DeModulator, rData, noiseVar);

% Turbo Decode

decData = step(hTDec, -llrData);

% Calculate errors

Measures = step(hBER, data, gather(decData));

end

bits = Measures(3);

ber= Measures(1);

reset(hBER);

end

function y = multiframeStep(h, x, nf)

xr = reshape(x,[], nf);

ytmp = step(h,xr(:,1));

y = zeros(size(ytmp,1), nf, class(ytmp));

y(:,1) = ytmp;

for ii =2:nf,

y(:,ii) = step(h,xr(:,ii));

end

y = reshape(y, [], 1);

end

418 Understanding LTE with MATLAB®

Figure 9.51 Execution times and acceleration ratios for the fifth version of the turbo-coding
algorithm

We can immediately see the effect of running the fifth version with the following MATLAB
calling script. Note that it takes only about 14 seconds to process the same number of bits
in the same number of iterations, doubling the speed of the fourth version of the algorithm
(double-precision version). Overall, by combining all the acceleration techniques introduced,
we observe a 21-times acceleration compared to the CPU version of the algorithm. The results
are summarized in Figure 9.51.

Algorithm

MATLAB function

MaxSNR=7;

Snrs=0:0.2:1.2;

MaxNumBits=1e6;

N=5;

fprintf(1,'\nVersion 5: Four GPU algorithms + Multi-frame + float\n\n');

tic;

for idx = 1:MaxSNR

fprintf(1,'Iteration number %d\r',idx);

EbNo=Snrs(idx);

ber= zTurboExample_gpu4(EbNo, MaxNumBits, MaxNumBits);

end

time_GPU4=toc;

fprintf(1,'Version 4: Time to complete %d iterations = %6.4f (sec)\n', MaxSNR,

time_GPU4);

Report_Timing_Results(N,time_CPU,time_GPU4,'Four GPU algorithms + Multi-

frame + float');

Simulation 419

9.11 Chapter Summary

In this chapter we introducedmultiple techniques for speeding up simulations inMATLAB and
Simulink. Throughout, we showcased a series of optimizations used to accelerate the simula-
tion of the LTE control-channel-processing algorithm and a turbo-coding algorithm.We started
with baseline implementations and through successive profiling and code updates introduced
the following optimizations: (i) better MATLAB serial programming techniques (vectoriza-
tion, preallocation), (ii) System objects, (iii) MATLAB-to-C code generation (MEX), (iv)
parallel computing (parfor, spmd), (v) GPU-optimized System objects, and (vi) rapid accel-
erator simulation mode in Simulink. We went through detailed examples in MATLAB and
Simulink and showed that the extent of acceleration can be further amplified by combining
two or more of these simulation-acceleration techniques.

10
Prototyping as C/C++ Code

So far we have developed MATLAB® programs and Simulink models in order to simulate the
LTE (Long Term Evolution) PHY (Physical Layer) in the MATLAB environment. At some
stage in theworkflow of a communications system design, wemight need to produce a software
component that cannot be directly simulated in MATLAB. For example, we might need to
interface to an existing simulation environment based on a C/C++ software implementation.
If we want to export the result of modeling and simulation in MATLAB to an external C/C++
programming environment, we essentially have two choices: we can either manually translate
algorithms developed in MATLAB into a C or C++ implementation or we can take advantage
of automatic MATLAB C-code generation.
By using MATLAB Coder, we can generate standalone C and C++ code from MATLAB

code. The generated source code is portable and readable. MATLAB Coder supports a subset
of MATLAB language features, including program control constructs, functions, and matrix
operations. It can generate MATLAB executable (MEX) functions that let us accelerate com-
putationally intensive portions of MATLAB code and verify its behavior. It can also generate
C/C++ source code for integration with existing C code, creation of an executable prototype,
or direct implementation on a Digital Signal Processor (DSP) or general-purpose CPU using
a C/C++ compiler.
In this chapter we examine the process of generating standalone C and C++ code from

MATLAB code using MATLAB Coder. We first present use cases, motivations, and require-
ments for C/C++ code generation and then examine the mechanics of code generation using
two methods: (i) calling code-generation functions from the MATLAB command line and
(ii) using the MATLAB Coder Project Application. We then elaborate on the extent of sup-
port for code generation inMATLAB, highlighting code-generation support by various System
toolboxes and support for various data types, including fixed-point data, and forMATLAB pro-
grams employing variable-sized data. Finally, we present a full workflow for the integration
of generated code from a MATLAB algorithm into an existing C/C++ testbench.

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

422 Understanding LTE with MATLAB®

10.1 Use Cases

Before we tackle the subject of generating C code from MATLAB, let us first elucidate the
reasons why engineers translate MATLAB code to C today:

• Integration: We may want to integrate our MATLAB algorithms into an existing C-based
project or software, such as a custom simulator, as source code or libraries.

• Prototyping: We may need to create a standalone prototype or executable for testing pur-
poses or in order to create proof-of concept demonstrations.

• Acceleration: We may want to wrap the C code as MEX files for execution back in MAT-
LAB. This use case is essentially for accelerating the execution of portions of algorithms
that are numerically intensive.

• Implementation: Wemay need to take the C code and implement it in embedded processors
as part of a larger system design.

10.2 Motivations

With the automatic translation of an algorithm from MATLAB to C, we can save the time
it takes to rewrite the program and debug the low-level C code. This can provide more time
for development and tuning of our algorithms at a high level in MATLAB. As we update
each version of our MATLAB code, we can then generate a MEX file automatically. We can
use the MEX file and call it in MATLAB in order to verify that the compiled version of the
code executes properly. The MEX file can also be used to speed up the code in most cases.
We can also generate source code, executables, or libraries automatically. As a result, we can
maintain one design in MATLAB and periodically get a C/C++ code as a byproduct. Having
a single software reference in MATLAB makes it easier to make changes or to improve the
performance. As will be discussed in this chapter, we can also leverage automated tools to help
assess the readiness of the MATLAB code for code generation. These tools can guide us in the
steps needed to successfully generate C code from MATLAB algorithms.

10.3 Requirements

In order to generate C/C++ code fromMATLAB algorithms, we must install MATLABCoder
and use a C/C++ compiler. First, we set up the compiler. For most platforms, MathWorks sup-
plies a default compiler with MATLAB. If an installation does not include a default compiler,
we must obtain and install a supported C/C++ compiler. The MATLAB documentation con-
tains a list of supported compilers by platform [1]. To set up an installed compiler, at the
MATLAB command line enter:

Algorithm

>> mex –setup

This will show a list of installed compilers and allow one to be selected. Note that the choice
of compiler is quite important, because the speed of simulation of a compiled MATLAB code
depends on the type of compiler and the compiler options used.
Both numerical and timing results provided throughout the book depend on the platform

where MATLAB is installed, and the type of operating system, C/C++ compiler or GPU that

Prototyping as C/C++ Code 423

is used. Results in this book for non-GPU experiments are obtained by running MATLAB on
a laptop computer with the following specifications:

• Hardware: Intel Dual-Core i7-2620M CPU @ 2.70 GHz with 8 GB of RAM
• Operating system: 64-bit Windows 7 Enterprise (Service Pack 1)
• C/C++ compiler: Microsoft Visual Studio 2010 with Microsoft Windows SDK v7.1.

10.4 MATLAB Code Considerations

In order to convert MATLAB code into efficient C/C++ code we must always consider the
following MATLAB code attributes:

• Data types: C and C++ use static typing. MATLAB, on the other hand, is a language based
on dynamic typing of data. To bridge this gap, MATLAB Coder requires a complete assign-
ment of type to each variable for successful code generation. MATLAB Coder offers many
ways of determining variable types before use. For each variable, three properties must be
determined: the class (or data type), size (or dimension), and complexity (whether or not the
variable is a complex number). Examples in the following sections show how easily these
properties can be specified and MATLAB code can be translated to C/C++.

• Array sizing: Variable sizes (dimensions) in MATLAB can be either fixed or variable
during a simulation. Variable-sized arrays and matrices are supported for code genera-
tion. We can define inputs, outputs, and local variables in MATLAB functions to represent
data that vary in size at run time.

• Memory allocations: We can choose whether generated code uses static or dynamic mem-
ory allocation. With dynamic memory allocation, potentially less memory is used, at the
expense of the time required to manage it. With static memory, we get the best speed, but
with higher memory usage. Most MATLAB algorithms take advantage of the dynamic siz-
ing features in MATLAB. As a result, dynamic memory allocation typically enables us
to generate code from existing MATLAB code with few modifications. Dynamic memory
allocation also allows some programs to compile even when upper bounds cannot be found.
Static allocation reduces the memory footprint of the generated code and is therefore suit-
able for applications where there is a limited amount of availablememory, such as embedded
applications.

• Speed: In applications that involve real-time signal processing, algorithms must be fast
enough to keep up with the rate of arriving data. One way to improve the speed of the gen-
erated code for a real-time application is to disable unnecessary run-time checks. Run-time
checks include extra code that ensures array bound integrity and responsiveness and avoids
occurrence of operations that produce non-numerical results, such as division by zero. We
can disable these checks and accelerate the generated C code after we have verified that the
algorithm is designed properly and, for example, that the array boundaries are respected in
successive assignments.

10.5 How to Generate Code

In this section we will review the typical steps involved in automatic MATLAB to C code
generation. Code can be generated by using either a MATLAB Coder Project or the codegen
command called at the MATLAB command line.

424 Understanding LTE with MATLAB®

10.5.1 Case Study: Frequency-Domain Equalization

We start with a simple example, which implements an algorithm that performs frequency-
domain equalization. In this algorithm, the output y is the result of multiplication of each
sample of the received input signal u by corresponding samples of the channel-gain signal
coefficients.

Algorithm

MATLAB function: Equalizer.m

function y = Equalizer(u, coefficients)
%#codegen
% Equalizer using element-by-element multiplication
y = u.*coefficients;
end

First we compose a calling script or testbench, call_Equalizer.m, that defines the input argu-
ments and calls the function to produce the output. By executing this script, we get an expected
value for the output before code generation. We can use this value to verify that after code gen-
eration the output function has generated the correct result. In this case, purely for illustration
purposes, we use an arbitrary function (cosine of angles in radians ranging from 1 to 100) to
provide a set of coefficients (coef) that multiply (in other words, equalize) the samples of the
received data (u).

Algorithm

MATLAB testbench: call_Equalizer.m

u=1:100; % First input
coef=cos(u); % Second input
y=Equalizer(u,coef); % Function call

There is another important reason to create the testbench: the process of code generation
depends critically on the definitions of function inputs. The code-generation engine needs to
map a dynamically typed language (MATLAB) to a statically typed language (C/C++). In this
process, the data type, size, and complexity of every variable in the generated C code must be
determined. The only requirement for the user is to define the data type, size, and complexity
of the function inputs. The code-generation engine will then infer all other internal variables
from those of the input parameters and generate the C code.

10.5.2 Using a MATLAB Command

The simplest way to generate C code from a MATLAB function is by using the codegen com-
mand. When codegen is called, a MATLAB function name and a list of command arguments
must be specified. One important command argument is the –args, which defines the size,
class, and complexity of all MATLAB function inputs by leveraging existing example vari-
ables in the MATLAB workspace.

Prototyping as C/C++ Code 425

For example, in order to generate C code for the function Equalizer.m we should first run
the calling function call_Equalizer.m to create the function input variables u and coef in the
MATLAB workspace. Then we just type the codegen command line as:

Algorithm

>> codegen –args {u , coef} Equalizer.m

The function Equalizer.m is the MATLAB entry-point function from which we generate a
MEX function, C/C++ library, or C/C++ executable code. By default, when no additional
arguments are specified, the codegen command generates a MEX function. The default name
given to the generated MEX function is the function name followed by the _mex suffix. In
this example, a MEX function called Equalizer_mex.mex<platform> is generated in the same
directory as the MATLAB entry-point function. The <platform> suffix refers to the operat-
ing system. For example, if MATLAB is installed on a 64 bit machine running the Windows
operating system, the full name is Equalizer_mex.mexw64.
To generate a C/C++ library instead of the default MEX function, at the command line the

–config option should be used:

Algorithm

>> codegen –args {u , coef} Equalizer.m –config:lib –report

The type of output generated can be specified by using the –config option. In this case,
using the –config:lib option generates a static C/C++ library composed of C source files and
header files. By default, these files are stored in a folder related to the directory where the
MATLAB entry-point function <fcn_name> resides. Table 10.1 shows how different uses of
the –config options map to different code-generation output types and the relative locations of
generated files.
The –report option provides a convenient hyperlink to the generated files. When we click

on the hyperlink, the Code Generation Report opens. The report contains the result of the code
generation. There are three tabs: MATLAB Code, Call Stack, and C Code. In the MATLAB
Code tab, MATLAB functions are shown. In the C Code tab, as illustrated in Figure 10.1, the
generated C files are shown.
The C source code generated has the same name as the MATLAB entry-point function (in

this example, Equalizer.c). As we can see, it implements the equalization efficiently as an

Table 10.1 Mapping of configuration options, generated output types,
and file locations

–config option Output type Relative location of generated files

mex MEX function codegen/mex/<fcn_name>

lib static C/C++ library codegen/lib/<fcn_name>

dll dynamic C/C++ library codegen/dll/<fcn_name>

exe static C/C++ executable codegen/exe/<fcn_name>

426 Understanding LTE with MATLAB®

Figure 10.1 Code Generation Report showing generated C code

element-by-element multiplication using a for loop. Note that in the testbench, we assigned
the function inputs a data type of double-precision floating point. As a result, the generated C
code defines C-code variables as real_T, which is a MATLAB data type that corresponds to
double-precision floating point.
The C code also features two header files. The first, rt_nonfinite.h, contains all the type

definitions in MATLAB, such as real_T, and definitions for nonfinite MATLAB data such as
nan and inf. The second, Equalizer.h, includes the function prototypes needed to include the
source file in a C/C++ calling function. In the next subsection, we discuss the structure of
generated C code and the corresponding files.

10.5.3 Using the MATLAB Coder Project

In this section we show how to generate C code using the MATLAB Coder Project
(Figure 10.2). The MATLAB Coder Project is an example of a MATLAB application. It uses
a Graphical User Interface (GUI) and is a handy tool in helping complete the code-generation
process.
First, we create the project by typing the following MATLAB command:

Algorithm

>> coder –new MyEqualizer.prj

Prototyping as C/C++ Code 427

Figure 10.2 MATLAB Coder Project for code generation

This command starts a new MATLAB Coder Project, which we have called MyEqualizer.
The Code Generation Project dialog box shown in Figure 10.3 opens, showing the path to the
project in the directory structure. By default it is set to generate a MEX function. The next
step is to add the MATLAB entry-point function to the project, either by dragging it to the
section of the project called Entry-Point Files or by using the Add Files link, as illustrated in
Figure 10.3.
At this stage,MATLABCoder adds the file to the project. This function has two input param-

eters, u and coefficients, which appear below the file name. Note that so far the data type, size,
and complexity properties of these input variables are still undefined. To compile this function,
we specify the testbench so that MATLAB Coder can infer types for function input variables.
By clicking on the Autodefine Types link, the Autodefine Entry-Point Input Types dialog box
will appear (Figure 10.4). In the dialog box, we click the “+” button to add a test file to the
project. Here, we add the testbench call_Equalizer.m as the test file.

428 Understanding LTE with MATLAB®

Figure 10.3 MATLAB Coder Project with MATLAB function selected

When we click on the Run button, the testbench executes. This enables MATLAB Coder to
infer the size, data type, and complexity of each input variable of the MATLAB entry-point
function. The results appear in a new dialog box, called Autodefine Input Types, as illustrated
in Figure 10.5.
By clicking on the Use These Types button, we accept these properties and assign them to

the input function parameters. As a last step, we click on the Build tab to select the output file
name and output type and then click on the Build button to generate code (Figure 10.6).
By default, the output type is a MEX function. This means that following code generation,

MATLAB Coder compiles the code as a MEX function that can only be called from within
MATLAB environment.
The Verification section in theMATLABCoder Project enables the generatedMEX function

to be run with the same testbench (calling script) used to define the data types. By comparing

Prototyping as C/C++ Code 429

Figure 10.4 MATLAB Coder Project: dialog to select the testbench

the result of running the Equalizer.m function with the result of running the MEX function,
we can verify that the MATLAB function and the generated MEX function are numerically
identical.
We can obtain the actual C source code generated byMATLABCoder by changing the output

type to either dynamic C/C++ library or static C/C++ library. In this example, we just change
the output type of the project to static C/C++ library and click on the Build button, as shown
in Figure 10.7. After the Build button is pressed, the code-generation Build dialog appears
(Figure 10.8). As illustrated in the figure, this dialog shows the code-generation progress and
illustrates any error or warning messages that might be generated during the code-generation
process.
If code generation is successful, we can click on a hyperlink that will open the Code Gen-

eration Report and show the result of code generation. In this example, the Code Generation
Report is identical to that shown in Figure 10.1.

10.6 Structure of the Generated C Code

The generated C code exhibits a predefined structure. By examining the C Code tab of the
Code Generation Report, we can see that besides the C source file and header file, which bear
the same name as the MATLAB entry-point function (Equalizer.c and Equalizer.h), other files
are generated. The list of generated files for this example is illustrated in Figure 10.9.
Operations performed in a MATLAB function can be subdivided into three categories

according to the stage of simulation:

• Initialization contains operations that take place only once, during the initialization phase,
before the processing loop starts.

430 Understanding LTE with MATLAB®

Figure 10.5 Autodefine Input Types dialog: inferring data types from testbench

• Function call (or in-loop processing) contains operations that are performed every time the
function is called.

• Termination contains operations that are performed at the end of the simulation, in order to
clean up the resources that were allocated during initialization and function calls.

The generated C code of a MATLAB function reflects the same structure for different types
of operations. Note, for instance, in the Equalizer example:

• Equalizer_initialize.c and Equalizer_initialize.h correspond to the operations performed
only during initialization.

• Equalizer.c and Equalize.h correspond to the main function-call operations performed
every time.

• Equalizer_terminate.c and Equalizer_terminate.h correspond to the operations performed
only during initializations.

For our simple case of element-wise operation performed in the Equalizer function, both the
initialization and the termination C files (Equalizer_initialize.c and Equalizer_terminate.c)
are empty and contain no operations. However, in more complex functions where variables
that implement constants or stored data need to be initialized, the initialization functions in
C are not empty and contain the initializations operations. Similarly, in functions where, for
example, dynamic memory allocation is used to create a variable, the termination functions

Prototyping as C/C++ Code 431

Figure 10.6 MATLAB Coder Project: using the Build tab to specify output type and file name

are not empty and contain typical free() operations in C that return the dynamically allocated
memory back to the system resources.
Beside the generated C files related to operations performed in various stages, we also find

six files that provide type definitions and operations for “nonfinite” numerical constructs in
MATLAB. These are data types that are not natively defined in C. They are useful if an
algorithm sometimes uses operations that allow variables to take on values such as nan (not-
a-number) and inf (infinity). The list of generated files dedicated to “nonfinite” definitions
includes rt_nonfinite.c, rt_nonfinite.h, rtGetInf.c, rtGetInf.h, rtGetNaN.c, and rtGetNaN.h.
The file rtwtypes.h contains all necessary type information and macros defining operation

and data types supported in MATLAB. Depending on the MATLAB function, different types
of other files are also generated. For a complete description of code generation and file parti-
tioning, refer to the MATLAB documentation [2].

432 Understanding LTE with MATLAB®

Figure 10.7 MATLAB Coder Project: choosing C/C++ source code as output type

10.7 Supported MATLAB Subset

A broad subset of the MATLAB language is supported for code generation. The supported
language features include all of the standard matrix operations, various data types, and vari-
ous program control constructs and structures. A comprehensive list of MATLAB language
features that generate code is available in the MATLAB documentation [2] and includes the
following: double-precision and single-precision floating-point, integer, and fixed-point arith-
metic, complex numbers, characters, numeric classes,N-dimensional arrays, structures, matrix
operations, arithmetic, relational, and logical operators, subscripting and function handles,

Prototyping as C/C++ Code 433

Figure 10.8 MATLAB Coder Project: Code Generation Report during the build process

persistent and global variables, program control statements (if, switch, for, and while loops),
variable-sized data, variable-length input and output argument lists, a subset of MATLAB
toolbox functions, and MATLAB classes.
More than 400 operators and functions from different toolboxes (including the Signal Pro-

cessing Toolbox) can generate code. In the latest release of MATLAB (R2013a), more than
300 System objects that are part of the System toolboxes (DSP System Toolbox, Communi-
cations System Toolbox, and Computer Vision System Toolbox) are also supported for code
generation. The following MATLAB language features are not supported for C/C++ code
generation: anonymous and nested functions, cell arrays, Java, recursion, sparse matrices, and
try/catch statements.

10.7.1 Readiness for Code Generation

MATLAB Coder provides automated tools to help assess the code-generation readiness of an
algorithm. These tools can identify the portions of a MATLAB code that cannot be translated
to C code.With a slew of detailed and targeted messages, these tools guide us through the steps

434 Understanding LTE with MATLAB®

Figure 10.9 Code Generation Report: list of generated files

necessary to modify the unsupported portions so that C code can successfully be generated.
Next we will discuss how to use two of these tools: the MATLABCode Analyzer and the Code
Readiness Report.

10.7.2 Case Study: Interpolation of Pilot Signals

In this section we use an example to illustrate how these tools help identify and correct code-
generation issues. This example is aMATLAB function that finds the equalizer coefficients that

Prototyping as C/C++ Code 435

are to be applied along all rows and columns – that is, along all subcarriers and all Orthogonal
Frequency Division Multiplexing (OFDM) symbols in a subframe – by interpolating the coef-
ficients found on a selected set of “pilot” symbols. This function (Equalizer.m) was developed
in Section 5.16. The first version of the algorithm is shown here as MyInterp0.m.

Algorithm

MATLAB function: MyInterp0.m

function out = MyInterp0(y)
%#codegen
UpsampFactor=6;
out=interp(y,UpsampFactor);

When we edit functions and scripts in the MATLAB Editor, the Code Analyzer continuously
checks the code as it is written. It shows warning and error messages about the code and
allows functions to be modified. The messages update automatically and continuously to show
whether the changes address the issues raised.
For example, in the function MyInterp0.m, if you end the line containing the call to the

interp function with a “}” character instead of a “)” character, the Code Analyzer displays
error messages in the MATLAB Editor (Figure 10.10). Note that the message indicator at the
top of the message bar is red. At line four, the Code Analyzer displays a message regarding
lack of code generation support for cell arrays. This message is correct, since cell arrays are
denoted by {} rather than (). By modifying the code to call the function with the right syntax,
these error messages will disappear and the message indicator will become green.
Let us see how theMATLABCoder project handles code-generation issues for this function.

Start by typing this command:

Algorithm

>> coder –new MyInterp

WhenMyInterp0.m is added as theMATLAB entry-point file, the followingmessage appears
in the project dialog box: “View code generation readiness issues.” Upon clicking on this link,
the Project Code Generation Readiness Report will appear as illustrated in Figure 10.11. The
report identifies an unsupported function (interp function from the Signal Processing Toolbox)

Figure 10.10 Code Analyzer reporting errors in the MATLAB editor

436 Understanding LTE with MATLAB®

Figure 10.11 MATLAB Coder Project: code-generation readiness report

in our algorithm. When the unsupported function is replaced with one that uses the supported
MATLAB functions and features, the readiness report will indicate that the code-generation
issues are resolved and code generation can proceed.

10.8 Complex Numbers and Native C Types

In this section, we use the Equalizer example to show how to generate C code for algorithms
that involve complex numbers. The Equalizer algorithm is written in such a way that the same
operations are applied whether the input variables are scalars, vectors, or matrices of any size.
For example, to generate code when the input is a matrix, we do not need to change the

algorithm: we only need to change the testbench that calls the function. The following test-
bench, call_Equalizer2.m, creates both input variables u and coef as complex matrices, with a
dimension of 72 rows and 14 columns and a data type of single-precision floating point.

Algorithm

MATLAB calling script: call_Equalizer2.m

u=complex(single(randn(72,14))); % First input
coef= single(randn(72,14)) +1j * single(randn(72,14)); % Second input
y=Equalizer(u,coef); % Function call

Prototyping as C/C++ Code 437

When you run this testbench, variables (u, coef, and y) are created in the MATLAB
workspace. By typing the MATLAB command whos, we can examine the sizes, classes (data
types), and complexities of these variables (Figure 10.12).
We can repeat the steps highlighted in the previous section to generate the C code for

the Equalizer.m function. First, by clicking on the Autodefine Types link in the MATLAB
Coder Project, we use the new testbench to define the types and sizes for the input variables
(Figure 10.13). At this point, we can accept the proposed data types as complex single-
precision floating-point matrices with a 72× 14 matrix size, as illustrated in Figure 10.14.
Finally, by selecting the Build tab and choosing the C/C++ static library as the output type,
we can generate the C code for the Equalizer function.
Figure 10.15 shows the output of code generation. Note that input variables in the C code are

of a new type called creal32_T, signifying complex variables of single-precision floating-point
type. All these type definitions, performed automatically by MATLAB Coder, can be found
in the file known as rtwtypes.h. This file contains all the necessary type information and the
macros defining complex variable operations. Essentially, every operation and every data type

Figure 10.12 Examining the data types, sizes, and complexities of input variables to a function

Figure 10.13 MATLAB Coder Project: selecting the testbench to test the generated MEX function

438 Understanding LTE with MATLAB®

Figure 10.14 MATLAB Coder Project: changing the data types of the input arguments that use
the test file

supported in MATLAB is also supported properly in the generated C code. The header files
and generated C source files reflect this one-to-one correspondence.
Note how the element-wise matrix multiplication in MATLAB is reflected by element-wise

array multiplication operations within a for loop. Since both input matrices are complex, in the
generated C source code the element-wise operations are repeated for the real part (denoted
by .re) and the imaginary part (denoted by .im) separately.

10.9 Support for System Toolboxes

A significant subset ofMATLAB operators and functions support code generation. In addition,
a majority of functions in the Signal Processing Toolbox and of System objects in the DSP and
Communications System Toolboxes also support code generation.

Prototyping as C/C++ Code 439

Figure 10.15 Code Generation Report: generated source code with complex data-type inputs

In this section we show examples of the use of System objects from System toolboxes for
code generation. The benefits of using System toolboxes for code generation are twofold: first,
System objects include many optimizations in the generated C code; second, by leveraging
algorithms available in System toolboxes, more time is spent composing system components
rather than recreating and optimizing algorithmic building blocks.

10.9.1 Case Study: FFT and Inverse FFT

The following function shows a simple example of a transceiver. In the transmitter, input bits
are modulated and an Inverse Fast Fourier Transform (IFFT) operation is then applied to the
modulated symbols before channel modelingwith anAdditiveWhite GaussianNoise (AWGN)
channel. At the receiver, we first perform a Fast Fourier Transform (FFT) operation and then
demodulate the signal to produce output bits. By comparing input and output bits, we com-
pute the Bit Error Rate (BER). This example does not correspond to any particular known
communications standard; we have chosen it for its simplicity and to demonstrate how to use
System objects for code generation. This example uses multiple System objects from Com-
munications System Toolbox, including: a modulator, a demodulator, a convolutional encoder,
a Viterbi decoder, a Cyclic Redundancy Check (CRC) generator, a CRC detector, and an
AWGN channel.

440 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function y=Transceiver0(u)
%% Constants
trellis=poly2trellis(7, [133 171]);
polynomial=[1 1 zeros(1, 16) 1 1 0 0 0 1 1];
%% Initializations
persistent Modulator DeModulator ConvEncoder Viterbi CRCGen CRCDet
if isempty(Modulator)

Modulator = comm.QPSKModulator('BitInput',true);
DeModulator = comm.QPSKDemodulator('BitOutput',true);
ConvEncoder = comm.ConvolutionalEncoder('TerminationMethod','Truncated',

'TrellisStructure', trellis);
Viterbi = comm.ViterbiDecoder('TrellisStructure', trellis,

'InputFormat','Hard','TerminationMethod','Truncated');
CRCGen = comm.CRCGenerator('Polynomial', polynomial);
CRCDet = comm.CRCDetector ('Polynomial', polynomial);

end
tb = step(CRCGen , u); % CRC generator
cod_sig = step(ConvEncoder , tb); % Convolutional encoder
mod_sig = step(Modulator, cod_sig); % QPSK Modulator
sig = ifft(mod_sig); % Perform IFFT
rec = fft(sig); % Perform FFT
demod = step(DeModulator, rec); % QPSK Demodulator
dec = step(Viterbi , demod); % Viterbi decoder
y = step(CRCDet , dec); % CRC detector

The process of code generation proceeds in the same way as in earlier examples and the
results are shown in the Code Generation Report. More complex algorithms can be composed
by using toolbox functionalities. This means that the size of the generated C file becomes
rather large, and the entire generated C code cannot be shown here; Figure 10.16 shows the first
few lines.
As a first optimization, we can turn off the support for nonfinite data types in order to reduce

the amount of generated C code. The customization page in the MATLAB Coder Project has
a Speed tab. Note that we can turn off the nonfinite data-type support by unchecking the
relevant checkboxes as shown in Figure 10.17. A second observation is that the algorithm
does not have variables that represent states and memory. Therefore, the generated C code
does have many lines of code in the initialization function (transceiver_initialize.c) shown in
Figure 10.18.
We would like to observe the effects of algorithms that contain variables representing states

on the generated C code. To this end, we add a random bit generator to create the input bits.
Since random number generators depend on maintaining the seed or states, there will be a
good amount of initialization code within the generated C code.

Prototyping as C/C++ Code 441

Figure 10.16 Code Generation Report: a few lines of the generated code

Algorithm

MATLAB function

function [u, y]=Transceiver1
%% Constants
trellis=poly2trellis(7, [133 171]);
polynomial=[1 1 zeros(1, 16) 1 1 0 0 0 1 1];
%% Initializations
persistent Modulator DeModulator ConvEncoder Viterbi CRCGen CRCDet
if isempty(Modulator)

Modulator = comm.QPSKModulator('BitInput',true);
DeModulator = comm.QPSKDemodulator('BitOutput',true);
ConvEncoder = comm.ConvolutionalEncoder('TerminationMethod','Truncated',

'TrellisStructure', trellis);
Viterbi = comm.ViterbiDecoder('TrellisStructure', trellis,

'InputFormat','Hard','TerminationMethod','Truncated');
CRCGen = comm.CRCGenerator('Polynomial', polynomial);
CRCDet = comm.CRCDetector ('Polynomial', polynomial);

end
u = randi([0 1], 2024,1); % Random bits generation
tb = step(CRCGen , u); % CRC generator
cod_sig = step(ConvEncoder , tb); % Convolutional encoder

442 Understanding LTE with MATLAB®

Figure 10.17 MATLAB Coder Project: options related to simulation speed

mod_sig = step(Modulator, cod_sig); % QPSK Modulator
sig = ifft(mod_sig); % Perform IFFT
rec = fft(sig); % Perform FFT
demod = step(DeModulator, rec); % QPSK Demodulator
dec = step(Viterbi , demod); % Viterbi decoder
y = step(CRCDet , dec); % CRC detector

In the updated function (Transceiver1.m), we generate the input bits using the MATLAB
randi function. As a result, the function will have no inputs and two outputs. Generating code
for this function illustrates how initializations involved in algorithms with states are handled in
the initialization file transceiver_initialize.c. Note that the initialization function in C updates
the variable b_state, which is defined in the generated C code as a static variable. Using a static
variable in C is one way of representing a variable that maintains its value across multiple calls
and implements a state variable (Figures 10.19 and 10.20).

Prototyping as C/C++ Code 443

Figure 10.18 Code Generation Report: content of the initialization function

Figure 10.19 Generated code for transceiver1.m, showing the first few lines of generated C code

444 Understanding LTE with MATLAB®

Figure 10.20 The new content of the initialization function – sets random-number-generator seeds

10.10 Support for Fixed-Point Data

So far, the functions developed in this chapter have performed operations on single- and
double-precision floating-point data. In the last section we also introduced functions from
MATLAB and some toolboxes that generate binary data to represent transmitted bits. The
corresponding variables were represented efficiently by the Boolean data type. In many cases,
the indices and quantized values used in functions are best represented as integers. MATLAB
supports six different native integer types: uint8 (unsigned 8 bit integer), uint16 (unsigned
16 bit integer), uint32 (unsigned 32 bit integer), int8 (signed 8 bit integer), int16 (signed 16 bit
integer), and int32 (signed 32 bit integer).
In some cases, we need to express data with a fixed-point data type. In fixed-point arith-

metic, the range of values the data can take is drawn from a finite set. However, the real value
is not necessarily a pure integer. As we described in Chapter 2, variables can be specified
in MATLAB with fixed-point representation and fixed-point arithmetic can be performed by
using Fixed-Point Designer (otherwise known as Fixed-Point Toolbox). Any fixed-point num-
ber in MATLAB can be expressed by the fi object. We need to specify three parameters of
the object: (i) signed property (whether or not a variable is signed), (ii) word length (how
many bits represent a number), and (iii) size of the fractional part (how many bits represent
the fractional part of a number). Obviously, the integer part (the number of bits representing
the integer part of the number) is equal to the word length minus the sum of the signed bit and
the fractional bits.

Prototyping as C/C++ Code 445

10.10.1 Case Study: FFT Function

In this section, we update the last example (the function Transceiver0.m) to express the output
of the Quadrature Phase Shift Keying (QPSK) modulator with a fixed-point data type. Since
all operations before modulation use variables of the Boolean data type, if modulators are
converted to fixed-point and forward and inverse FFT operations have been performed, the
entire function will be based on fixed-point and integer data types. The first version of this
algorithm is as follows.

Algorithm

MATLAB function

function y=Transceiver0_fixed(u)
%% Constants
trellis=poly2trellis(7, [133 171]);
polynomial=[1 1 zeros(1, 16) 1 1 0 0 0 1 1];
%% Initializations
persistent Modulator DeModulator ConvEncoder Viterbi CRCGen CRCDet
if isempty(Modulator)

Modulator = comm.QPSKModulator('BitInput',true,'OutputDataType','Custom');
DeModulator = comm.QPSKDemodulator('BitOutput',true);
ConvEncoder = comm.ConvolutionalEncoder('TerminationMethod','Truncated',

'TrellisStructure', trellis);
Viterbi = comm.ViterbiDecoder('TrellisStructure', trellis,

'InputFormat','Hard','TerminationMethod','Truncated');
CRCGen = comm.CRCGenerator('Polynomial', polynomial);
CRCDet = comm.CRCDetector ('Polynomial', polynomial);

end
tb = step(CRCGen , u); % CRC generator
cod_sig = step(ConvEncoder , tb); % Convolutional encoder
mod_sig = step(Modulator, cod_sig); % QPSK Modulator
sig = ifft(mod_sig); % Perform IFFT
rec = fft(sig); % Perform FFT
demod = step(DeModulator, rec); % QPSK Demodulator
dec = step(Viterbi , demod); % Viterbi decoder
y = step(CRCDet , dec); % CRC detector

Conversion of this function to fixed-point can be done in two ways: we can specify the output
data type of the modulator System object as fixed-point and specify its detail, or we can use
the fi object to create the fixed-point version of the modulator output after the (by default)
double-precision floating-point data have been created. The second approach maintains both
a floating-point and a fixed-point version of the same vector in the MATLAB workspace but
is not memory-efficient. After demodulation, since we use hard-decision decoding the output
data type is Boolean, again because hard-decision demodulation maps back to bits.
We can then run the testbench and generate code. When we examine the MATLAB Coder

Project, the readiness report indicates that the ifft and fft functions do not support fixed-point

446 Understanding LTE with MATLAB®

data as their function inputs. To ensure that the entire function can perform fixed-point arith-
metic, we must now find alternative algorithms that perform forward and inverse FFT opera-
tions and support fixed-point data types. The System objects dsp.FFT and dsp.IFFT from the
DSP System Toolbox satisfy these requirements. This example actually clarifies one of the
reasons for having redundant functionality in the Signal Processing Toolbox and DSP Sys-
tem Toolbox. The DSP System Toolbox has more implementation-oriented functionality and
a more substantial support for fixed-point arithmetic, which is of interest to users concerned
with hardware implementation. Support for fixed-point data types by dsp.FFT and dsp.IFFT
in DSP System Toolbox is an obvious example of the mandate of the toolbox-supporting algo-
rithm elaborations and shows the need for eventual hardware implementation. By replacing
fft and ifft functions with dsp.FFT and dsp.IFFT System objects, respectively, from the DSP
System Toolbox, the function can be made to handle fixed-point data.

Algorithm

MATLAB function

function y=Transceiver0_fixed2(u)
%% Constants
trellis=poly2trellis(7, [133 171]);
polynomial=[1 1 zeros(1, 16) 1 1 0 0 0 1 1];
%% Initializations
persistent Modulator DeModulator ConvEncoder Viterbi CRCGen CRCDet FFT IFFT
if isempty(Modulator)

Modulator = comm.QPSKModulator('BitInput',true,'OutputDataType','Custom');
DeModulator = comm.QPSKDemodulator('BitOutput',true, 'OutputDataType',

'Smallest unsigned integer');
ConvEncoder = comm.ConvolutionalEncoder('TerminationMethod','Truncated',

'TrellisStructure', trellis);
Viterbi = comm.ViterbiDecoder('TrellisStructure', trellis, 'InputFormat','Hard',...

'TerminationMethod','Truncated', 'OutputDataType','logical');
CRCGen = comm.CRCGenerator('Polynomial', polynomial);
CRCDet = comm.CRCDetector ('Polynomial', polynomial);
FFT = dsp.FFT;
IFFT = dsp.IFFT;

end
tb = step(CRCGen , u); % CRC generator
cod_sig = step(ConvEncoder , tb); % Convolutional encoder
mod_sig = step(Modulator, cod_sig); % QPSK Modulator
sig = step(IFFT, mod_sig); % Perform IFFT
rec = step(FFT, sig); % Perform FFT
demod = step(DeModulator, rec); % QPSK Demodulator
dec = step(Viterbi , demod); % Viterbi decoder
y = step(CRCDet , dec); % CRC detector

The MATLAB Coder Project will then successfully generate code for the function.

Prototyping as C/C++ Code 447

Figure 10.21 Code Generation Report: integer-based C code for the fixed-point version
of the transceiver

Figure 10.21 shows the Code Generation Report of this function. The generated C code
uses only integer data types. Note that no floating-point variables are present. Note also how
for every arithmetic operation, including scaling, saturation, and wrapping, inline functions
are defined.
For example, an inline function defining a multiword subtraction is illustrated in

Figure 10.22. These functions are needed to perform arithmetic and logical operations on the
integer data that implement the fixed-point arithmetic specified by the fixed-point data types.
These low-level fixed-point operations are precisely the type of operation that, if performed
manually, will add a lot of design time to our projects. By leveraging the Fixed-Point Toolbox
and MATLAB Coder, we can save time and avoid many of the critical and tedious steps
involved in converting a design from a floating-point to a fixed-point numerical representation.

10.11 Support for Variable-Sized Data

So far we have shown code generation fromMATLAB functions in which the size of the input
data is fixed. Fixed-sized code generation is quite straightforward; all that has to be done is to
specify the size of each function input, and the generated C code is based on the same fixed
data size.
In many situations, however, we need to generate code for a function whose input size

changes during simulation. For example, in adaptive coding, as the coding rate changes, the
output size of the channel coder changes, which means that the input size to the subsequent
scrambler and modulator operations changes. Similarly, in adaptive modulation, even for a
fixed number of bits at the input of the modulator, the output size can change depending on
whether a QPSK, 16QAM, or 64QAM modulation scheme is used.

448 Understanding LTE with MATLAB®

Figure 10.22 Sample of a multiword, integer-based routine developed automatically in fixed-point
code generation

In this section, we show how C code can be generated from a function that can accommodate
changes in variable size. When it comes to data sizes, we usually encounter three different
code-generation modes: (i) data with fixed sizes, (ii) variable-sized data with an upper bound
on the size, and (iii) unbounded variable-sized data. Each of these modes represents a tradeoff
in terms of computational complexity, memory usage, and flexibility.

10.11.1 Case Study: Adaptive Modulation

We will illustrate here all three data-sizing modes and their effects on code generation, using
an adaptive modulator as an example.

Algorithm

MATLAB function

function y=Modulator(u)
persistent QPSK
if isempty(QPSK)

Prototyping as C/C++ Code 449

QPSK = comm.PSKModulator(4, 'BitInput', true, 'PhaseOffset', pi/4, ...
'SymbolMapping', 'Custom', 'CustomSymbolMapping', [0 2 3 1]);

end
y=step(QPSK, u);

Let us start with a simple LTEQPSKmodulator, examining the function (Modulator.m). This
MATLAB function is very flexible in terms of input size. For example, for a QPSKmodulator,
as long as the input size is an even number, the function produces an output with half the size
of the input.
Figure 10.23 illustrates how to we can execute the modulator function, first with an input bit

vector of size 4200× 1 and then with an input size of 256× 1. We use the function MATLAB
whos to examine the input and output sizes in each case. Without code generation, the function
Modulator.m behaves in the way expected of MATLAB functions when it comes to changing
the size of its input. As we change input size, the function generates an output whose size
reflects the changes in input size. However, as we will see shortly, following code generation
the generated MEX function may behave differently when the input size is changed.

10.11.2 Fixed-sized Code Generation

At a next step, we create a new code-generation project by typing the following command:

Algorithm

>> coder –new Modulator

Figure 10.23 Calling a modulator function with different input sizes

450 Understanding LTE with MATLAB®

After adding the Modulator function to the project, we can use the following MATLAB
testbench in the Autodefine Types link to specify the sizes and data types:

Algorithm

MATLAB script

u=randi([0 1], 4200,1);
y=Modulator(u);

After running this script, the AutoDefine Input Types tool correctly proposes 4200× 1 as the
input size to the function, as illustrated in Figure 10.24. We can identify two checkboxes in this
window. These represent various options that determine the behavior of the generated MEX
function when faced with changing input function sizes. If we leave both of the checkboxes
unchecked, we are implementing a fixed-sized code generation. As we will see shortly, by
clicking on the first checkbox we implement a variable-sized code generation with an upper
bound. Finally, by clicking on the second checkbox, we implement an unbounded variable-
sized code generation. Details of these cases will be discussed shortly.
To fully understand what we mean by “fixed-sized code generation,” let us keep both

of the checkboxes unchecked, proceed to the Build tab (Figure 10.25), and generate

Figure 10.24 Options for fixed-sized code generation

Prototyping as C/C++ Code 451

Figure 10.25 MATLAB Coder Project: building a fixed-sized MEX function

the MEX function. We choose a default name of Modulator_mex for our output
MEX function.
If we now call the generated MEX function with an input of any size other than 4200× 1, the

call produces error messages. In the following experiment, we first call the function with the
correct input size and data type (a double vector with a 4200× 1 size) and then with a double
vector with a size of 256× 1. The results and error messages are shown in Figure 10.26.
As we can see, the resulting fixed-sized code generation is not flexible and requires a par-

ticular size for the input. Alternatively, we can generate the MEX function of our modulator

452 Understanding LTE with MATLAB®

Figure 10.26 Calling the fixed-sized MEX function of the modulator

function to implement fixed-sized code generation by using the following command line script,
which uses the codegen command:

Algorithm

MATLAB script

u=randi([0 1], 4200,1);
codegen Modulator -args {u}

If we want to examine the C source code of the function, we can simply add twomore options
to the codegen command line, as follows:

Algorithm

MATLAB script

u=randi([0 1], 4200,1);
codegen Modulator -args {u} –config:lib -report

The generated C source code can be examined by clicking on the View Report link the
in MATLAB command line. When we open the Code Generation Report, as illustrated in
Figure 10.27, we find that the C source file (Modulator.c) defines the modulator function with
a constant real input array of 4200 elements.
Another way of ensuring a fixed-sized code generation is to specify the size of one vari-

able based on the value of another. In this case, if the value is deemed constant then the

Prototyping as C/C++ Code 453

Figure 10.27 Code Generation Report: fixed-sized code generation of a modulator function

code-generation engine can easily infer the sizes of other variables. For example, in theMod-
ulator_fixedsize.m function, the value of variable N determines the size of variable u, which
corresponds to the input bits to the modulator. The Modulator_fixedsize.m function has no
inputs and all variables are local to the body of the function. As a result, the MATLAB com-
mand that generates a fixed-sized code for the Modulator_fixedsize is simply:

Algorithm

>> codegen Modulator_fixedsize

Algorithm

MATLAB function

function y=Modulator_fixedsize
N=4200;
persistent QPSK
if isempty(QPSK)

454 Understanding LTE with MATLAB®

QPSK = comm.PSKModulator(4, 'BitInput', true, 'PhaseOffset', pi/4, ...
'SymbolMapping', 'Custom', 'CustomSymbolMapping', [0 2 3 1]);

end
u=randi([0 1], N,1);
y=step(QPSK, u);

The generated C source code of this function is identical to the earlier version illustrated in
Figure 10.27.

10.11.3 Bounded Variable-Sized Data

We can arrive at a bounded variable-sized code generation for the modulator function simply
by modifying a single code-generation option. In the MATLAB Coder Project, all we need to
do is to click on the check box that reads “Make dimensions variable-sized if they are at least,”
as shown in Figure 10.28. We need to set an upper bound for the size of the input. In this case,
by setting a maximum size of 4200 we implement a variable-sized code generation with an
upper bound.
In order to arrive at the same results by using the command line function codegen, we can

modify the build command as follows. By using the coder.typeof option, we can specify, for
example, 4200 as the maximum size of the first dimension of the function input.

Figure 10.28 Options for bounded variable-sized code generation

Prototyping as C/C++ Code 455

Algorithm

MATLAB script

MaxSize = 4200;
u=randi([0 1], MaxSize,1);
codegen Modulator -args {coder.typeof(0,[MaxSize 1],1)}

The generated MEX function Modulator_mex can process input functions with sizes of up
to 4200, as illustrated in Figure 10.29, by calling it in various scenarios. Note that the MEX
function errors out whenever the input dimension exceeds 4200.
An alternative way of generating a variable-sized C code with an upper bound involves using

the assert function. To illustrate this case, let us now bring the bit-generation function randi
inside themodulator function.We call themodified functionModulator_varsize_bounded. The
input variable N determines the size of the modulator input and output. To generate a bounded
variable-sized C code for this function, we use the assert function to provide an upper limit
for the value of variable N.

Figure 10.29 Calling the bounded variable-sized MEX function of a modulator

456 Understanding LTE with MATLAB®

Algorithm

MATLAB function

function y=Modulator_varsize_bounded(N)
assert(N<=2400);
persistent QPSK
if isempty(QPSK)

QPSK = comm.PSKModulator(4, 'BitInput', true, 'PhaseOffset', pi/4, ...
'SymbolMapping', 'Custom', 'CustomSymbolMapping', [0 2 3 1]);

end
u=randi([0 1], N,1);
y=step(QPSK, u);

TheModulator_varsize_bounded.m function has only one input (N) that determines the size
of every variable inside the function. As a result, the MATLAB command that generates a
bounded variable-sized code for the Modulator_varsize_bounded is:

Algorithm

>> codegen –args {N} Modulator_varsize_bounded

10.11.4 Unbounded Variable-Sized Data

To arrive at an unbounded variable-sized code generation for the modulator function, we need
simply modify another code-generation option. In the MATLAB Coder Project, as illustrated
in Figure 10.30, when we set the parameters of the Autodefine Input Types dialog we must
click on the checkbox that reads “Make dimensions unbounded if they are at least.” By setting a
minimum size in the edit box that appears in this line, we signal to the code-generation engine
that any input variable larger than the given size will be regarded as unbounded variable-
sized data. As a result, the type of variable u reads as double(:inf x 1), meaning that the first
dimension of the variable is unbounded.
Alternatively, the codegen MATLAB command that generates a MEX function supporting

unbounded input sizes is as follows:

Algorithm

>> codegen Modulator -args {coder.typeof(0,[inf 1],1)}

To verify proper operation, we run the same MATLAB script as in the last section, and we
can see that nomatter what the input size, theMEX function can produce the correct modulated
outputs (Figure 10.31).

Prototyping as C/C++ Code 457

Figure 10.30 Options for unbounded variable-sized code generation

Figure 10.31 Calling the unbounded variable-sized MEX function of a modulator

458 Understanding LTE with MATLAB®

10.12 Integration with Existing C/C++ Code

In this section we show how to integrate the generated C/C++ code from aMATLAB function
with an existing C/C++ code or a C/C++ development environment. To do this we perform
the following steps:

1. Choose an algorithm and represent it as a MATLAB function.
2. Create a MATLAB testbench. A testbench is a calling script that executes the function with

different parameters, records the output of each test case, and records how much time it
takes to complete these test cases. Execute the testbench to generate reference numerical
results and reference execution times.

3. Generate C code from the function. Choose static C library as the code-generation output
type. All the source and header files (*.c and *.h) will be generated in a directory.

4. Compose a C/C++ main function that calls the generated C code.
5. Use a simple Makefile to compile and link the C main function and the generated C code of

the function. The result will be an executable that can run on a computer. This executable
is the C testbench.

6. Run the generated executable (the C testbench) outside the MATLAB environment. Ver-
ify that the C testbench generates the same numerical results as the reference MATLAB
testbench. Finally, compare the execution time of the C testbench to a MATLAB testbench
processing the same test cases.

10.12.1 Algorithm

To start the process of integrating MATLAB code with an external C code, we first need to
choose an algorithm. We have selected a simplified form of the Physical Downlink Control
Channel (PDCCH) processing algorithm [3]. In Chapter 9 we examined 17 different versions
of the PDCCH algorithm. In this section we have chosen version 9, the MEX function of
the eighth version of the algorithm, which incorporates all available System objects in the
Communications System Toolbox. Version 9 has been shown to simulate faster than the first
eight versions in the absence of parallel multicore processing. The MATLAB function that
captures the eighth version of the algorithm is as follows:

Algorithm

MATLAB function

function [ber, bits]=zPDCCH_v8(EbNo, maxNumErrs, maxNumBits)
%% Constants
FRM=2048;
M=4; k=log2(M); codeRate=1/3;
snr = EbNo + 10*log10(k) + 10*log10(codeRate);
trellis=poly2trellis(7, [133 171 165]);
L=FRM+24;C=6; Index=[L+1:(3*L/2) (L/2+1):L];
%% Initializations

Prototyping as C/C++ Code 459

persistent Modulator AWGN DeModulator BitError ConvEncoder1 ConvEncoder2 Viterbi
CRCGen CRCDet
if isempty(Modulator)

Modulator = comm.QPSKModulator('BitInput',true);
AWGN = comm.AWGNChannel('NoiseMethod', 'Variance', 'VarianceSource',

'Input port');
DeModulator = comm.QPSKDemodulator('BitOutput',true);
BitError = comm.ErrorRate;
ConvEncoder1=comm.ConvolutionalEncoder('TrellisStructure', trellis,

'FinalStateOutputPort', true, ...
'TerminationMethod','Truncated');

ConvEncoder2 = comm.ConvolutionalEncoder('TerminationMethod','Truncated',
'InitialStateInputPort', true,...

'TrellisStructure', trellis);
Viterbi=comm.ViterbiDecoder('TrellisStructure', trellis,

'InputFormat','Hard','TerminationMethod','Truncated');
CRCGen = comm.CRCGenerator('Polynomial',[1 1 zeros(1, 16) 1 1 0 0 0 1 1]);
CRCDet = comm.CRCDetector ('Polynomial',[1 1 zeros(1, 16) 1 1 0 0 0 1 1]);

end
%% Processing loop modeling transmitter, channel model and receiver
numErrs = 0; numBits = 0; nS=0;
results=zeros(3,1);
while ((numErrs < maxNumErrs) && (numBits < maxNumBits))

% Transmitter
u = randi([0 1], FRM,1); % Generate bit payload
u1 = step(CRCGen, u); % CRC insertion
u2 = u1((end-C+1):end); % Tail-biting convolutional coding
[̃, state] = step(ConvEncoder1, u2);
u3 = step(ConvEncoder2, u1,state);
u4 = fcn_RateMatcher(u3, L, codeRate); % Rate matching
u5 = fcn_Scrambler(u4, nS); % Scrambling
u6 = step(Modulator, u5); % Modulation
u7 = TransmitDiversityEncoderS(u6); % MIMO Alamouti encoder
% Channel
[u8, h8] = MIMOFadingChanS(u7); % MIMO fading channel
noise_var = real(var(u8(:)))/(10.^(0.1*snr));
u9 = step(AWGN, u8, noise_var); % AWGN
% Receiver
uA = TransmitDiversityCombinerS(u9, h8);% MIMO Alamouti combiner
uB = step(DeModulator, uA); % Demodulation
uC = fcn_Descrambler(uB, nS); % Descrambling
uD = fcn_RateDematcher(uC, L); % Rate de-matching
uE = [uD;uD]; % Tail-biting
uF = step(Viterbi, uE); % Viterbi decoding
uG = uF(Index);
y = step(CRCDet, uG); % CRC detection
results = step(BitError, u, y); % Update number of bit errors

460 Understanding LTE with MATLAB®

numErrs = results(2);
numBits = results(3);
nS = nS + 2; nS = mod(nS, 20);

end
%% Clean up & collect results
ber = results(1); bits= results(3);
reset(BitError);

In order to manage the files and directories associated with C-code generation properly, we
create a new directory in our computer and place all the MATLAB files in it. In this example,
we create a directory called C:\Examples\PDCCH and copy all the files needed to run the
eighth version of the algorithm to it. The MATLAB script performing these tasks is as fol-
lows:

Algorithm

MATLAB script: MATLAB_testbench_directory

%% Create new directory in C:\ drive
PARENTDIR='C:\';
NEWDIR='Examples\PDCCH';
mkdir(PARENTDIR,NEWDIR);
%% Make that your destination directory
DESTDIR=fullfile(PARENTDIR,NEWDIR);
%% Copy 10 necessary files to destination directory
copyfile('Alamouti_DecoderS.m',DESTDIR);
copyfile('Alamouti_EncoderS.m',DESTDIR);
copyfile('fcn_Descrambler.m',DESTDIR);
copyfile('fcn_RateDematcher.m',DESTDIR);
copyfile('fcn_RateMatcher.m',DESTDIR);
copyfile('fcn_Scrambler.m',DESTDIR);
copyfile('MIMOFadingChanS.m',DESTDIR);
copyfile('TransmitDiversityCombinerS.m',DESTDIR);
copyfile('TransmitDiversityEncoderS.m',DESTDIR);
copyfile('zPDCCH_v8.m',DESTDIR);
%% Go to destination directory
cd(DESTDIR);

10.12.2 Executing MATLAB Testbench

At this step we execute two scripts: a build script that generates a MEX function for the func-
tion zPDCCH_v8.m and a calling script, which constitutes our MATLAB testbench. These
scripts can be created in the same destination directory as the MATLAB functions are stored

Prototyping as C/C++ Code 461

in (C:\Examples\PDCCCH). Using the first script (MATLAB_build_version9.m), we can gen-
erate theMEX function of the eighth version of the PDCCH algorithm. The codegen command
for this build script is as follows:

Algorithm

MATLAB script: MATLAB_build_version9

MaxSNR=8;
MaxNumBits=1e7;
MaxNumErrs=MaxNumBits;
fprintf(1,'\nGenerating MEX function for PDCCH algorithm ...\n');
codegen –args { MaxSNR, MaxNumErrs, MaxNumBits} zPDCCH_v8 –o zPDCCH_v9
fprintf(1,'Done.\n\n');
MEX_FCN_NAME='zPDCCH_v9';
fprintf(1,'Output MEX function name: %s \n',MEX_FCN_NAME);

The testbench (MATLAB_testbench_version9.m) performs an iterative Eb/N0 parameter
sweep and records the BER values as a function of Eb/N0. The testbench uses eight test
cases, corresponding to Eb/N0 values of 0.5–4.0, increasing in steps of 0.5 dB. We compute
and record the BER value for each Eb/N0 value. The stopping criterion for the simulation is
a predetermined number of processed bits. This is achieved by setting both the maximum
number of errors (MaxNumErrs) and the maximum number of bits (MaxNumBits) parameters
to a single value; for example, 10million bits. Finally, we record the execution time of the
eight test cases by obtaining and then subtracting the system clock values before and after the
simulation.

Algorithm

MATLAB testbench: MATLAB_testbench_version9

MaxSNR=8;
MaxNumBits=1e7;
MaxNumErrs=1e7;
ber_vector=zeros(MaxSNR,1);
fprintf(1,'\nMATLAB testbench for PDCCH algorithm\n');
fprintf(1,'Maximum number of errors : %9d\n', MaxNumErrs);
fprintf(1,'Maximum number of bits : %9d\n\n', MaxNumBits);
tic;
for snr=1:MaxSNR

fprintf(1,'Iteration number %d\r',snr);
EbNo=snr/2;
ber= zPDCCH_v9(EbNo, MaxNumErrs, MaxNumBits);
ber_vector(snr)=ber;

end

462 Understanding LTE with MATLAB®

time_8=toc;
fprintf(1,'\nTime to complete %d iterations = %6.4f (sec)\n\n', MaxSNR, time_8);
for snr = 1:MaxSNR

fprintf(1,'Iteration %2d EbNo %3.1f BER %e\n', snr, snr/2, ber_vector(snr));
end

When we execute this testbench, the results shown in Figure 10.32 are displayed in the
MATLAB command window. Note that we have obtained reference BER values and simula-
tion times by running the MATLAB testbench. We will compare these values with the results
obtained by running the C testbench, which we will create shortly.

Figure 10.32 MATLAB testbench, furnishing reference values for execution time and output values

Prototyping as C/C++ Code 463

10.12.3 Generating C Code

In this step, we generate C code from the function zPDCCH_v8.m using the codegen command.
To generate a static C library we can use either the codegen command or the MATLAB Coder
Project. When using the codegen command line we need only specify lib as the configuration
option, as illustrated in the following script:

Algorithm

MATLAB script: MATLAB_build_version9

MaxSNR=8;
MaxNumBits=2e6;
MaxNumErrs=MaxNumBits;
fprintf(1,'Generating source files (*.c) and header files (*.h) for PDCCH algorithm ...');
codegen –args { MaxSNR, MaxNumErrs, MaxNumBits} zPDCCH_v8 –config:lib -report
fprintf(1,'Done.');
FCN_NAME='zPDCCH_v8';
Location=fullfile(pwd,'codegen','lib',FCN_NAME);
fprintf(1,'All generated files are in the following directory: \n%s\n', Location);

Upon completion, the codegen command prints a message in the MATLAB command line
that includes a hyperlink to the generated C code. When we click on the hyperlink, we open
the Code Generation Report (Figure 10.33).
All of the C source files and header files are stored in a unique folder under the Destination

directory. In this example, the destination directory is C:\Examples\PDCCH and all the source
files are in a subdirectory called codegen\lib\zPDCCH_v8. Figure 10.34 shows all the source
and header files generated, listed by the ls command.

10.12.4 Entry-Point Functions in C

Having already generated C code from our MATLAB function, the rest of the development
process can be performed completely outside the MATLAB environment. In order to generate
a C executable, otherwise known as a C testbench, all we have to do is to write a C main
function and call the generated entry-point functions in it.
In our example, the entry-point function in MATLAB is zPDCCH_v8.m. The generated

C code will therefore have three header files, which define the entry-point C function
prototypes for: (i) the main entry-point function, (ii) the initialization function, and (iii)
the termination function. These files are zPDCCH_v8.h, zPDCCH_v8_initialize.h, and
zPDCCH_v8_terminate.h, respectively.

464 Understanding LTE with MATLAB®

Figure 10.33 Code Generation Report: showing generated code for the zPDCCH_v8 algorithm

Figure 10.34 List of generated C source files and header files

Prototyping as C/C++ Code 465

Algorithm

C header file: zPDCCH_v8.h

/*
* zPDCCH_v8.h
*
* Code generation for function 'zPDCCH_v8'
*
#ifndef __ZPDCCH_V8_H__
#define __ZPDCCH_V8_H__
/* Include files */
#include <float.h>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "rt_nonfinite.h"
#include "rtwtypes.h"
#include "zPDCCH_v8_types.h"
/* Function Declarations */
extern void zPDCCH_v8(real_T EbNo, real_T maxNumErrs, real_T maxNumBits, real_T
*ber, real_T *bits);
#endif
/* end of code generation (zPDCCH_v8.h) */

Algorithm

C header file: zPDCCH_v8_initialize.h

/*
* zPDCCH_v8_initialize.h
*
* Code generation for function 'zPDCCH_v8_initialize'
*
*/
#ifndef __ZPDCCH_V8_INITIALIZE_H__
#define __ZPDCCH_V8_INITIALIZE_H__
/* Include files */
#include <float.h>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "rt_nonfinite.h"
#include "rtwtypes.h"
#include "zPDCCH_v8_types.h"
/* Function Declarations */

466 Understanding LTE with MATLAB®

extern void zPDCCH_v8_initialize(void);
#endif
/* end of code generation (zPDCCH_v8_initialize.h) */

Algorithm

C header file: zPDCCH_v8_terminate.h

/*
* zPDCCH_v8_terminate.h
*
* Code generation for function 'zPDCCH_v8_terminate'
*
*/
#ifndef __ZPDCCH_V8_TERMINATE_H__
#define __ZPDCCH_V8_TERMINATE_H__
/* Include files */
#include <float.h>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include "rt_nonfinite.h"
#include "rtwtypes.h"
#include "zPDCCH_v8_types.h"
/* Function Declarations */
extern void zPDCCH_v8_terminate(void);
#endif
/* end of code generation (zPDCCH_v8_terminate.h) */

These header files must be included in the Cmain function. It is important to understand how
the entry-point functions are called in the main C function. Usually an algorithm needs: (i) an
initialization function that sets up data and parameters outside a processing loop, (ii) a main
entry-point function that is called inside a processing loop, and (iii) a termination function that
cleans up all the resources (data, memory, etc.) that the initialization and entry-point function
utilized. The following pseudo-code describes the general structure of the C code inside the
main C file and the way it calls the entry-point functions.

Algorithm

>> Initialization_function();

>> An iterative processing loop

>> { that calls Main_entry_point_function many times;}

>> Terminate_function();

Prototyping as C/C++ Code 467

10.12.5 C Main Function

The following C main function follows exactly the calling structure described in the previous
section. Note that the first few lines of the main C file contain the typical variable declarations
and reads simulation parameters from the command line. The next portion of the C code is
the crux of the simulation. First we record the system clock by calling the clock function in
C before simulating our function. Then we call the zPDCCH_v8_initialize function to initial-
ize necessary data outside the processing loop. In the processing for loop we iterate through
Eb/N0 values, and by calling the main entry-point function (zPDCCH_v8) we obtain the BER
measures. Finally, after the processing loop is completed we call the zPDCCH_v8_terminate
function to release the data we have initialized and once again record the system clock by
calling the clock function. The elapsed time for the simulation is calculated as the difference
between the two recorded clock times. At the end of the function we print the elapsed time
and the BER results as a function of the Eb/N0 values.

Algorithm

C header file: zPDCCH_v8_terminate.h

#include <stdio.h>
#include <math.h>
#include <time.h>
#include "rtwtypes.h"
#include "zPDCCH_v8.h"
#define MIN_EBNO 1
#define MAX_EBNO 9
int main(int argc, char *argv[])
{
int EbNo, maxNumErrs, maxNumBits;
double snr, elapsed;
double ber_vector[MAX_EBNO], bits_vector[MAX_EBNO];
time_t t1,t2;
printf("\nMain C testbench for PDCCH algorithm\n");
if (argc!= 3) {

printf("Usage : main.exe Max_Number_of_Errors Max_Number_of_Bits\n");
exit(1);

}
maxNumBits = atoi(argv[1]);
maxNumErrs = atoi(argv[2]);
printf("Maximum Number of Errors : %d\n", maxNumErrs);
printf("Maximum Number of Bits : %d\n\n", maxNumBits);
/***/
t1=clock();
zPDCCH_v8_initialize();
for (EbNo=MIN_EBNO; EbNo<MAX_EBNO; EbNo++)
{
printf("Iteration number %2d\n", EbNo);
snr = 0.5*((double)EbNo);
zPDCCH_v8(snr, maxNumErrs, maxNumBits, &ber_vector[EbNo], &bits_vector[EbNo]);

468 Understanding LTE with MATLAB®

}
zPDCCH_v8_terminate();
t2=clock();
elapsed = ((double) (t2 - t1)) / CLOCKS_PER_SEC;
/***/
printf("\nTime to complete %2d iterations = %f (sec) in C\n\n", (MAX_EBNO-MIN_EBNO),

elapsed);
for (EbNo=MIN_EBNO; EbNo<MAX_EBNO; EbNo++)

printf("Iteration %2d EbNo: %3.1f BER: %e\n", EbNo, 0.5*EbNo ,ber_vector[EbNo]);

return(0);
} /* end of main() */

10.12.6 Compiling and Linking

So far we have added a C main function (main.c) to the same directory in which we gen-
erated all the files from our MATLAB algorithm. We also need to add a simple Makefile in
order to compile and link the source files and create an executable. The Makefile is illustrated
in Figure 10.35. It is intended for use on a PC (desktop or laptop) that runs the Microsoft

Figure 10.35 Simple Makefile for the generation of an executable (Microsoft Windows version)

Prototyping as C/C++ Code 469

Windows operating system. The C compiler command is cl (the Microsoft Visual C++ com-
piler command) and a level-2 optimization option is used. With some basic modifications, this
Makefile can be used in Linux and other Unix environments that use, for example, gcc or other
compilers. TheMakefile first compiles every source file (*.c) into an object file (*.obj) and then
links all the object files to generate the output executable file main.exe. We use gmake (GNU
Makefile utility) to call this Makefile and create the executable.
Figures 10.36 and 10.37 show the steps involved in calling the Makefile utility. First we

open the Windows SDK 7.1 Command Prompt, then we navigate to the directory where
the generated files, the C main file, and the Makefile are located (C:\Examples\PDCCH\
codegen\lib\zPDCCH_v8). Next we call the gmake utility with a clean key in order to remove
all the object files and the executable. Finally, by calling the all key, we compile one by
one all the source files and link them to create the main.exe executable. This executable is the
C testbench that we will use to verify the proper operation of code generation for our PDCCH
algorithm.

10.12.7 Executing C Testbench

By executing the executable (main.exe) as illustrated in Figure 10.38, we are effectively calling
the C testbench for our algorithm. In order to make a fair comparison, at the command line
we specify the same values for the maximum number of errors and maximum number of bits
processed in each iteration as in the MATLAB testbench.
The C testbench performs an iterative Eb/N0 parameter sweep and records the BER values

as a function of Eb/N0. It records the total time it takes to complete eight iterations and prints

Figure 10.36 Steps involved in executing a Makefile: compiling each generated C code

470 Understanding LTE with MATLAB®

Figure 10.37 Steps involved in executing a Makefile: linking the executable

Figure 10.38 Screenshot of the C testbench output

Prototyping as C/C++ Code 471

Table 10.2 Simulation time for PDCCH processing in MATLAB and C testbenches

Simulation method for PDCCH processing Simulation time (seconds)

C testbench calling generated C code 339.96

MATLAB testbench calling MEX function 354.84

the values of BER obtained at each. Table 10.2 illustrates the simulation time for the PDCCH
processing of 10million bits iterated over eight Signal-to-Noise Ratio (SNR) values.
The results indicate that the time it takes for the generated C code to process a given amount

of data in a native C testbench is very similar to that taken by a MATLAB testbench calling
the MEX function for the same algorithm. This is not surprising as any MEX function that is
generated by MATLAB Coder essentially translates MATLAB code to C code, compiles it,
and then calls it from the MATLAB command line. As such, the performance of the resulting
MEX function should be compatible with the results of manually integrating the generated
C code within an external C testbench.

10.13 Chapter Summary

In this chapter we examined the process of generating standalone C code from MATLAB
code using MATLAB Coder. We first reviewed various use cases for C/C++ code generation,
including: (i) accelerating simulation speed, (ii) prototyping a design with a standalone exe-
cutable, (iii) implementing in an embedded processors, and (iv) integrating with an existing
C-based project or software.
We then presented the process of code generation using two distinct methods: (i) calling

the codegen function from the MATLAB command line and (ii) using the MATLAB Coder
Project Application. We elaborated on various language features and constructs supported
for code generation and we highlighted the code-generation support given by selected Sys-
tem toolboxes for various data types, including fixed-point data, and for MATLAB programs
employing variable-sized data. Finally, we presented the workflow involved in integrating gen-
erated code from a MATLAB algorithm with an existing C/C++ testbench.

References

[1] MathWorks Product Releases, http://www.mathworks.com/support/compilers/R2013a/index.html (accessed
16 August 2013).

[2] MathWorks MATLAB Coder, http://www.mathworks.com/help/coder/index.html (accessed 16 August 2013).
[3] 3GPP Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation, Version

10.0.0 Release 10. TS 36.211.

11
Summary

In this chapter we summarize the topics discussed in the book and provide a framework for
future work. We have subdivided the summary into four sections. First, we review our learning
objectives regarding the modeling of the LTE (Long Term Evolution) transceiver system. Then
we summarize our findings regarding simulation of the system model and how to accelerate it.
Third, we relate what we have learned about bridging the gap between modeling and imple-
mentation and how to prototype the simulation model as C/C++ software. Finally, we review
some of the topics related to the LTE PHY (Physical Layer) that we have not had the chance
to study in detail. Considering the level of detail needed to do justice to these topics, we have
decided that they cannot be adequately covered in this volume and have left them as subjects
of a future work.

11.1 Modeling

As the first learning objective of this book, we provided an overview of the mathematical mod-
eling of the LTE PHY. Our aim was to provide a balanced approach to the discussion in order
to foster a deeper understanding. As such, we decided to incorporate three distinct yet com-
plementary conceptual elements: (i) providing an introductory theoretical overview of LTE-
enabling technologies such as Orthogonal Frequency Division Multiplexing (OFDM) mul-
ticarrier transmission and Multiple Input Multiple Output (MIMO) multi-antenna schemes;
(ii) providing an introductory technical overview of LTE specifications, focusing on a more
detailed coverage of downlink transmission; and (iii) providing detailed MATLAB® algo-
rithms and testbenches for step-by-step learning and hands-on simulation of the LTE standard.
This balanced multitier approach is one of the distinguishing features of this book.
In this section we will summarize what we have presented regarding each of these

conceptual elements.

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

474 Understanding LTE with MATLAB®

11.1.1 Theoretical Considerations

Throughout the book we have provided discussions regarding the theoretical background of
the enabling technologies of the LTE standard. We studied the LTE multicarrier transmission
schemes (i.e., OFDM in downlink and its single-carrier counterpart SC-FDM (Single-Carrier
Frequency Division Multiplexing) in the uplink), as well as the multi-antenna MIMO trans-
mission schemes.
We presented various aspects of the theoretical underpinnings for the MIMO–OFDM trans-

mission techniques. These revealed how MIMO and OFDM are combined in the standard and
helped explain the success of the technology in achieving its goals of high maximum data rates
and high throughputs inmobile communications.We also discussed how incorporating the best
technologies from previous standards, such as link adaptations through adaptive modulation
and coding and efficient turbo coding, contribute to the overall performance of the LTE stan-
dard. Examining the theoretical background of the underlying LTE technologies can also be
useful in understanding other modern communication systems. OFDM and MIMO technolo-
gies also form the fundamental basis of the WiMAX and the new wireless LAN standards.

11.1.2 Standard Specifications

Besides discussing the theoretical foundations, we provided a detailed presentation of PHY
signal processing, with a special focus on downlink processing. We reviewed various channels
and signals used in the standard. We also provided a more in-depth look at both the Down-
link Shared Channel (DLSCH) processing and Physical Downlink Shared Channel (PDSCH)
processing.
In particular, we examined in detail the composition of the time–frequency resource grid

used in both OFDM and SC-FDM transmission schemes. Understanding the structure of the
resource grid shed light on how the LTE standard organizes user data, control information, ref-
erence and other signals, and how it performs channel estimation and equalization operations
necessary to recover the data at the receiver. It also showed how easily the standard combines
the OFDMmulticarrier scheme with variousMIMOmulti-antenna techniques.We highlighted
the flexibility of the standard in maintaining a single transmission structure yet accommodat-
ing nine different transmission modes for downlink and various uplink transmission modes.
We also described how different transmission modes cater to different scheduling conditions
and different profiles of mobility and channel quality.

11.1.3 Algorithms in MATLAB

As the distinguishing feature of this book, we presented PHY modeling with a progressive set
of algorithms and testbenches in MATLAB and Simulink. Our goal in providing MATLAB
algorithms and testbenches was to introduce an initial platform for MATLAB users who are
involved in communications system design. Our hope was to offer a starting point that fosters
future collaborations among members of this community. Simulating an executable specifica-
tion of a communications system in MATLAB and Simulink can help take the guesswork out
of validating the effects of introducing innovative algorithms in system design.
Starting with MATLAB algorithms characterizing the basic scrambling, modulation,

and coding in Chapter 4, we proceeded to include the OFDM multicarrier transmission in

Summary 475

Chapter 5 and various MIMO techniques, including transmit diversity and spatial multi-
plexing, in Chapter 6. In Chapter 7 we presented MATLAB algorithms that model typical
link-adaptation strategies and in Chapter 8 we put together an LTE transceiver covering the first
four modes of downlink transmission, then provided various assessments of the quality and
performance of the physical-layer simulation model. Finally, in Chapters 9 and 10 we provided
MATLAB algorithms that accelerate simulations and generate C code for the prototyping of
designs as standalone applications. These topics will be discussed in further detail shortly.

11.1.3.1 Receiver Design

As with most communications standards, the LTE standard only specifies transmitter opera-
tions. Since the receiver operations are not explicitly specified, this provides an opportunity to
develop innovative receiver algorithms. The innovations, when integrated within the software
and hardware implementations by the network equipment and mobile terminal manufactur-
ers, represent the proprietary and value-added contributions of each mobile communications
system provider.
MATLAB and its communications system design tools provide an easy-to-use environment

for experimenting with the design of various receiver components. In this book we presented
various alternatives to different receiver components of the LTE system model. For example,
in Chapter 5 we discussed receiver operations related to estimation of the channel-frequency
response based on received reference signals. We examined an ideal channel estimator and
three different channel-estimation algorithms based on the interpolation of pilot signals. The
interpolation functions expand the channel responses computed at the pilots to cover the entire
resource grid. As another example, in Chapter 6 we examined various MIMO receiver oper-
ations, studying three different approaches to computing best estimates of the transmitted
symbols at the receiver. These techniques were based on the Zero Forcing (ZF), Minimum
Mean Square Error (MMSE), and Soft-Sphere Decoder (SSD) algorithms. In Chapter 8 we
examined the effects of each of these receiver algorithms on the overall system performance.
By looking at the algorithm-specific metrics, such as the memory footprint or the computa-
tional complexity, as well as the system-level metrics, such as the Bit Error Rate (BER) or the
throughput, we can assess the tradeoffs associated with each.

11.1.3.2 Simulation Testbenches

Throughout the book we created and updated MATLAB testbenches (or scripts) to evalu-
ate qualitatively and quantitatively the performance of our LTE transceivers. The testbenches
included the transmitter and receiver processing chains and the channel modeling sections
needed to represent a transceiver. They also included various qualitative measures, such as
spectrum analyzers and constellation diagrams, and quantitative measures, such as BER and
throughput computations.

11.1.3.3 Algorithmic Building Blocks

It is important to choose the right granularity for the components of the MATLAB algorithms
that model a complex system such as the LTE transceiver. We used a criterion that reflects
the system-modeling and simulation mandate of this book. We did not reimplement basic

476 Understanding LTE with MATLAB®

communications building blocks such as modulators, convolutional or turbo encoders,
decoders, or space–time block-coding components. For example, in order to implement
OFDM transmitter and receiver operations we used MATLAB functions for forward Fast
Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT). We also used the
dsp.FFT and dsp.IFFT System objects of the DSP System Toolbox as alternative implemen-
tations. These System objects can handle fixed-point modeling and block sizes that are not a
power of two. We also used modulators, turbo coders, and channel-modeling System objects
from the Communications System Toolbox. Leveraging available components from the
toolbox, and not spending time redeveloping basic building blocks such as turbo decoders in
MATLAB, helped accelerate the pace of the creation of systemmodels for the LTE transceiver.

11.2 Simulation

It is important to develop a full mathematical model for any communications standard. How-
ever, to validate a model’s accuracy, we must perform a representative number of software
simulations. Since many of the performance metrics used in communications systems, such
as throughputs and BERs, are measured in a statistical sense, a large amount of data must
be processed by a simulation model. Furthermore, in order to verify that a system is robust
against occasional outlier degradations, the simulations should be large enough to cover these
rare occurrences. These considerations prompted us to look at various ways in which a sys-
tem model can be optimized for speed. We looked at different methodologies for simulation
acceleration and highlighted various tools and techniques that sped up our simulation model
in MATLAB and Simulink.

11.2.1 Simulation Acceleration

Acceleration of a software simulation represents a classical tradeoff between an easy-to-
understand and readable description of the model on one hand and optimized performance on
the other. In our step-by-step approach to developing the components of the LTE model, we
took great pains to organize the MATLAB code in a way that is self-contained. To make the
code easy to understand, we represented most of the more complicated algorithms as a com-
bination of less complicated subcomponents, without using any shortcuts or code factoring.
As instructive as this approach is, in order to accelerate the simulation speed we sometimes

need to take advantage of typical methodologies that factor out repeated operations and fuse
processing loops and optimize for various compilers or platform-specific libraries. In Chapter
9, we highlighted many MATLAB programming techniques that rely on these typical acceler-
ation methodologies.
One of the most important and distinguishing features of the acceleration strategies pre-

sented in Chapter 9 was their preservation of numerical accuracy. As we went through various
code optimizations, we showcased the fact that as successive versions of MATLAB codes exe-
cute more rapidly, they still produce the same numerical results. On the other hand, taking a
more liberal approach to acceleration can be quite useful in receiver design where no standard
specification is available. Many designers use shortcuts or approximations that substantially
accelerate the simulation but do not preserve the numerical results. We deliberately took a
conservative approach to code optimization and limited its scope to a subset that preserves
numerical accuracy in order to make the process of validation easier and more direct.

Summary 477

11.2.2 Acceleration Methods

In Chapter 9, we showcased various techniques used to accelerate simulations of our LTE
system model in MATLAB and Simulink. We presented a series of six types of optimization
applied to control-channel processing. The techniques either provide ways of optimizingMAT-
LAB programs or gain performance improvements through the use of additional computing
power or by retargeting the design to compiled C code. We started with a baseline algorithm
and through successive profiling and code updates introduced the following optimizations:

• Better MATLAB serial programming techniques (vectorization, preallocation)
• Use of System objects
• MATLAB-to-C code generation (MATLAB Executable, MEX)
• Parallel computing (parfor, spmd)
• GPU (Graphics Processing Unit)-optimized System objects
• Rapid accelerator mode for simulation in Simulink.

We also showed how to further accelerate simulations by combining two or more of these
techniques. To take advantage of some of their benefits, specialized product capabilities
beyond what is offered in application-specific toolboxes must be used. For example, MAT-
LAB parallel-computing products provide computing techniques that take advantage of
multicore processors, computer clusters, and GPUs. MATLAB Coder provides the ability to
automatically convert a MATLAB code to C code, which can be compiled to provide faster
simulations.

11.2.3 Implementation

Besides discussions regarding modeling and simulation, in Chapter 10 we went through
the first steps involved in implementing the LTE-standard model. In order to bridge the gap
between modeling and implementation, we used the MATLAB Coder to generate a prototype
of the model as C code. We showed how the ANSI/ISO C source code generated by MATLAB
Coder can be integrated with existing C/C++ testbenches and applications.

11.3 Directions for Future Work

There is a lot more to be done before we can adequately specify every detail of the PHYmodel
of the LTE standard in MATLAB. In this book, our approach has mostly been pedagogic and
educational. We focused on the LTE-enabling technologies, aiming to shed light on user-plane
signal processing.We also covered as much detail as needed regarding various physical signals
and channels, the organization of data in the OFDM resource grid, and the handling of multi-
antenna techniques. These discussions clarified the underlying approach to transmission and
explained the feasibility of achieving high data rates and improved system throughputs, as
mandated by the standard specifications.
The next level of modeling is to provide a software solution that can be used as a reference

to verify conformity to the LTE-standard requirements. If our objective is to ensure standard
compliance, we must incorporate much more detail in our simulation model. The resulting
LTE simulation model in MATLAB needs to incorporate all standard tests and cover all trans-
mission modes and scenarios.

478 Understanding LTE with MATLAB®

Next we will go through a list of modeling components that need to be added in order to
evolve our baseline simulation model to the next level. With these upgrades, we can ultimately
turn the LTE system model into a simulation platform for LTE-standard compliance testing.
We will present these details in three sections: user-plane modeling, control-plane modeling,
and system-access modules.

11.3.1 User-Plane Details

In order to update the LTE simulation model developed in this book, we need first to cover all
aspects of user-plane modeling. These include the inclusion of both FDD (Frequency Division
Duplex) and TDD (TimeDivisionDuplex) duplexing for time framing, a complete treatment of
both downlink and uplink shared-channel processing, and the inclusion of the LTE-Advanced
features. These items are discussed in this section.

11.3.1.1 FDD and TDD Duplexing

As we saw in this book, two types of frame structure are specified in the LTE standard. Type
1 frames are used in FDD mode and type 2 frames in TDD mode. We have provided details
relating to the FDD and type 1 frames. With minor modifications, we can present MATLAB
functions that represent the time framing applicable to the TDD duplexing modes. Similarly,
throughout the book we used normal cyclic prefix lengths, and again with minor modifications
of the MATLAB code we can also accommodate extended cyclic prefixes in OFDM and SC-
FDM transmissions.

11.3.1.2 Uplink Processing (PUSCH)

We have focused entirely on downlink transmission details in this book. The future work
should contain the signal processing chain of the Physical Uplink Shared Channel (PUSCH).
Many of the MATLAB components developed for downlink transmission can be used for
uplink modeling almost without modification. However, there are some differences specifi-
cally related to the reference signals that are based on Zadoff–Chu sequences in the uplink
specifications.

11.3.1.3 Complete Downlink Transmission Modes

We examined in detail the first four downlink-transmission modes. A complete model should
include all of the modes, including the Downlink Enhanced MIMO modes (modes 7, 8,
and 9), UE (User Equipment)-specific beamforming modes, and single-layer spatial-
multiplexing modes. The modeling should include the generation and placement of various
types of reference signal, including the Channel State Information Reference Signal (CSI-RS)
and the Demodulation Reference Signal (DM-RS).

Summary 479

11.3.1.4 LTE-Advanced Features

LTE-Advanced features should also be included in the LTE MATLAB receiver model. These
include in particular an uplink MIMO transmission and carrier aggregation. A multi-user
uplink MIMO example populates and transmits PUSCH subframes in such a way that multi-
ple UEs can share resources in a transmission. This technique is quite effective in boosting the
uplink throughput. Carrier aggregation is another LTE-Advanced feature that enables downlink
transmission to cover multiple carriers. By leveraging up to five contiguous carriers, carrier
aggregation is the main technique responsible for achieving the maximum data rate of 1Gbps
provisioned within the LTE-Advanced standard. Functions that handle these two features must
be part of a standard compliant MATLAB model for LTE PHY. As each of the processing
chains in each of the carrier-aggregation bandwidths is independent, parallel processing can
provide an obvious boost to the processing time needed for implementation. As such, the tech-
niques we learned in Chapter 9 are directly applicable here.

11.3.2 Control-Plane Processing

As one of the features of this book, we focused on user-plane shared-channel processing. We
did not study in any depth the control information needed to make the user-plane transmission
possible. The collection of Downlink Control Information (DCI) and Uplink Control Informa-
tion (UCI) must be part of a comprehensive LTE system model in MATLAB.

11.3.3 Hybrid Automatic Repeat Request

In the LTE standard, a Hybrid Automatic Repeat Request (HARQ) protocol is specified to
ensure the reliability of data packet transmission and to manage occasional retransmissions.
With a positive acknowledgment of a received packet, new data is transmitted. However, a
negative acknowledgment initiates the retransmission of a previously sent packet. In order to
provide a continuous supply of data packets at the receiver and minimize the waiting time for
new data, we can send different data packets on different HARQ process numbers. In the LTE
downlink specification, the DCI format contains explicit signaling related to the HARQ pro-
cess. This includes an incremental-redundancy version and a new data indicator. In this book
we have not presented the MATLAB functions necessary to implement the HARQ process. As
an area of future work, inclusion of these routines will help contain the system delay resulting
from excessive retransmissions and will update the way DLSCH handles channel coding with
the inclusion of HARQ information.

11.3.4 System-Access Modules

In this book we focused on developing routines and functions that enable communications
between UE and eNodeB (enhanced Node Base station) once initial access has been
established. The LTE standard provides many components, signals, and capabilities for the
initial phase of system access, cell search, and handoff procedures. A comprehensive system

480 Understanding LTE with MATLAB®

model in MATLAB should include these types of functionality. Two particular examples are
described in further detail in this section.

11.3.4.1 Cell Search and Frame Timing

Encoded within the resource grid in the downlink transmitted signals are blocks of informa-
tion that are essential to system access, cell search, and frame timing by a mobile unit. As
we saw earlier, some of the initial system information is conveyed in the Master Information
Block (MIB) and encoded and represented in the grid with a fixed modulation and coding
scheme. The MIB contains information regarding system bandwidth, System Frame Number
(SFN), and Physical Hybrid ARQ Indicator Channel (PHICH) configuration. We studied the
Primary Synchronization Signal (PSS) and Secondary Synchronization Signal (SSS) and the
Physical Broadcast Channel (PBCH) (containing the MIB) in Chapter 5. However, we did
not present the MATLAB algorithms and functions that encode and transmit this information
or the receiver operations that use it to obtain the initial system bandwidth and other critical
information.

11.3.4.2 Random Access

In order to initiate access to the network, the UE uses the Physical Random Access Channel
(PRACH) to transmit a preamble. Since this corresponds to the first communication from the
UE to the eNodeB, the system does not know the type or specifications of the UE device.
Various transmission modes, such as Cyclic Delay Diversity (CDD) and Precoding Vector
Switching (PVS), provide a transparent way of decoding the preamble information. Aswe have
not presented the uplink transmission details, we have not presented the MATLAB algorithms
and functions needed for initial system access.

11.4 Concluding Remarks

In this chapter we summarized the learning objectives of this book and provided directions
for further study. We subdivided the topics covered into two main categories: modeling and
simulation. Within the modeling context, we elaborated on our stated goal of providing a bal-
anced approach in presenting three distinct aspects related to understanding the LTE standard.
We covered theoretical and mathematical descriptions of various enabling technologies, pre-
sented standard specifications as needed, and provided MATLAB programs and testbenches
that enable hands-on experimentation with concepts through simulation. In the section on sim-
ulation, we highlighted the necessity of an adequate simulation speed for effective use of
software that models a complex system like LTE. We reviewed various simulation acceler-
ation techniques and prototyping mechanisms presented in this book. Finally, we presented a
list of additional topics that need to be covered in a future work in order to provide a complete
treatment of LTE-standard PHY modeling.

Summary 481

Depending on the interest in the LTE and MATLAB communities, the completion of
our work in producing a fully standard-compliant LTE model in MATLAB may require
another book. Having laid the foundation here by focusing on the enabling technologies and
principles, the next volume would focus on standard compliance and full coverage of standard
specifications.

Index

2G, 1–3, 62
3G, 1, 3–5, 8, 62, 169, 263
3GPP, 3–5, 11, 13–14, 24–5, 41, 44, 46,

113, 131, 165, 173, 198, 262, 303,
304, 322, 325, 352, 471

3GPP2, 3
4G, 1–2, 12, 46, 262–3

Adaptive MIMO, 9, 39, 264, 291, 295, 303
Adaptive Modulation, 13, 27, 72, 277,

281–2, 285–6, 294, 303, 447–8
Adaptive Modulation and Coding, 3, 7, 9,

27, 275–6, 283–6, 289, 303, 305, 474
Adaptive precoding, 221, 234, 264, 287,

290, 303
Air Interface, 3, 11, 13, 26, 45, 115
Antenna port, 33, 38–9, 42–3, 130–2,

136–7, 143, 148, 151, 160, 174, 179,
198–9, 201, 225

Automatic Repeat Request (ARQ), 61–2

Bandwidth, 1–3, 5, 9, 14, 19, 24, 28–33,
44, 116–17, 126, 131, 143, 151–2,
161, 167, 219, 223, 318, 325, 479

allocation, 13, 263
channel, 16–17, 115, 128–29, 140, 154,

163, 206–7, 218, 323
system, 22, 30, 45, 155, 163, 263, 266,

480
transmission, 6–7, 9, 16–18, 20, 77,

119, 323

Understanding LTE with MATLAB®: From Mathematical Modeling to Simulation and Prototyping, First Edition.
Houman Zarrinkoub.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

utilization 6–7, 38, 77
Base station, 11, 13–14, 24, 27–8, 30–3,

39, 44–5, 116, 174, 248, 262, 264–5,
298, 479

Baseline, 277, 283, 353–4, 356, 361, 370,
374–5, 387, 398, 407, 409, 419

algorithm, 353, 356–9, 363, 370, 374,
407, 410, 477

model, 354, 390–1, 478
BCCH see Broadcast Control Channel
BCH see Broadcast Channel
Beam forming, 6, 8, 10, 39–41, 169–170,

222, 224, 478
BER see Bit-error-rate
Bit-error-rate, 49, 57, 60, 71, 78–9, 84,

90–1, 96–7, 105, 110–11, 119, 148,
168, 267, 277, 282, 286, 290, 295,
315, 357, 439, 475

Broadcast Control Channel, 26–27
Broadcast Channel, 34, 85, 121, 124–5,

183, 185, 196, 480

Carrier aggregation, 11, 479
CCCH see Common Control Channel
CDD see Cyclic-Delay Diversity
CDMA, 2–5
Cell-specific Reference Signal (), 23, 32,

124, 131, 135–6, 143, 149, 156, 159,
178–9, 186, 216, 235, 242, 254, 287,
292, 307, 310, 312–13, 334

484 Index

Channel
capacity, 6,8
coding, 8–10, 41–44, 46, 49, 52, 60–3,

71, 79, 85–6, 92, 99–100, 105–6,
108–9, 112–13, 267, 479

estimate, 190, 194–5, 204, 215, 231–2,
234, 251–2, 270, 272–5

estimation, 14, 24, 32–3, 39, 44, 130,
143, 146, 148–9, 151, 157, 161,
164, 178, 186–8, 190, 194, 197,
215, 221, 235, 299, 305, 313,
317–18, 320–1, 324, 351, 475

frequency response, 6, 8, 23, 38, 116,
187–8, 190, 194–5, 475

matrix, 38–9, 155, 170–2, 177, 186–7,
190, 194–5, 201–3, 221–3,
229–33, 250–1, 265–6, 270–72,
291, 311, 313, 322, 324

modeling, 48, 52, 115, 121, 137, 146,
148, 155, 167, 173, 175, 177, 215,
229, 233, 235, 253, 263, 299,
310–11, 327, 355, 407, 439,
475–6

models, 12, 48, 52, 112, 115–18, 120–2,
137, 146, 148, 173–5, 177, 194–5,
215, 219, 229, 233–5, 238, 242,
253, 261, 263, 299, 302–3, 305–6,
310, 407, 439, 475, 476

Channel Quality Indicator, 30–32, 264–9,
275–7, 279, 283–5, 287, 295–6, 303

Channel State Information, 32–4, 41, 45,
168, 275, 297–8, 302, 313, 478

Code optimization, 354, 358, 360–1, 367,
383, 476

Code profiling, 358
Code block Segmentation, 41, 43, 106, 109,

110, 308
Code generation, 11–12, 18, 51–4, 69, 339,

383–5, 387, 391, 395, 419, 421–9,
431–41, 443, 447–54, 456–8, 460,
463–6, 469, 471, 477

Common Control Channel, 26–7, 30–1,
461

Communications System Toolbox, 48, 50,
52, 54–5, 57, 61, 68–9, 73, 80, 87–8,
117, 146, 200, 204, 211, 233, 300,

328, 334, 351, 356, 371, 376, 378,
383–4, 387–8, 399–400, 433,
438–9, 458, 476

Control information, 24, 27–8, 295, 298,
302–3, 474, 479

Downlink (DCI), 26, 28, 124, 180, 265,
294, 479

Uplink (UCI), 26, 30, 479
Control plane, 5, 25, 49, 478–9
Convolutional coding, 8, 61–2, 85, 89

tail-biting, 299–300, 303, 368, 372, 381,
401, 404, 459

CQI see Channel Quality Indicator
CRC see Cyclic Redundancy Check
CSI see Channel State Information
CSI-RS see Reference Signal,

Channel-State Information
CSR see Cell-specific Reference Signal
Cyclic-Delay Diversity, 40, 207, 248,

480
Cyclic prefix, 18, 21–4, 44, 196, 322

extended, 18, 21–2, 33, 121, 128, 194
normal, 17–18, 21–2, 34–5, 478

Cyclic Redundancy Check, 9, 71
attachment, 1, 41–43, 71, 106–108, 148,

215, 267, 308
detection, 79, 85, 110, 148, 242, 299,

312–13, 355
detector, 96, 111, 119, 356, 368, 371,

439–40, 442, 445–6
generation, 95, 104, 242, 299, 307, 355,

381
generator, 96, 356, 368, 371, 439–41,

445–6

DC-subcarrier, 18, 20, 30, 34–5, 127–8,
133, 140

DCCH see Dedicated Control Channel
DCI see Control information
DCI format, 28–9, 294–6, 479
Dedicated Control Channel, 26–7, 30–1
Delay spread, 21–2, 116, 122, 124, 173,

316, 323–4, 351
DFT see Discrete Fourier Transform
Digital Signal Processor, 47, 54, 421
Discrete Fourier Transform, 8, 24, 44

Index 485

DM-RS, see Reference Signal,
Demodulation

Doppler shift, 22, 117, 119–21, 172–3,176,
218, 280, 310, 318, 322, 325, 346

DLSCH or DL-SCH see Downlink Shared
Channel

Downlink Shared Channel, 9–10, 27, 41–2,
71, 108, 112, 148, 150–1, 215,
234–5, 242, 253, 267, 296, 307–8,
312, 474, 479

Downlink channels, 27
DSP see Digital Signal Processor
DSP System Toolbox, 50, 52, 69, 146, 213,

268, 280, 328, 350, 351, 433, 446, 476

Early termination, 9, 85, 93–6, 98–9, 104,
109, 112, 218, 318

Enhanced Node Base Station, 13, 22,174,
264–5, 479–80

Enhanced Voice-Data Optimized, 2–4
Entry-point function, 466–7

C, 463, 466
MATLAB, 425, 427–9, 463

eNodeB or eNB see Enhanced Node Base
Station

Equalization, 6, 23, 37, 39, 52, 112, 123–4,
146, 151–4, 161–2, 164, 178, 211,
213, 219–20, 222, 230–33, 239,
246–7, 250–1, 255, 258–9, 312, 315,
319, 425

frequency-domain, 7–8, 21–22, 24,
115–16, 123–4, 145, 148, 164,
178, 313, 319, 424

mode, 45–6, 230, 324
time-domain, 6–7, 124

Equalized signal, 219, 231–3, 239, 247,
259, 267–8

EV-DO see Enhanced Voice-Data
Optimized

Evolved Data and Voice, 3
EV-DV see Evolved Data and Voice

FDD see Frequency Division Duplex
Fading,

large-scale, 116
small-scale, 116

multipath, 6–7, 14, 24, 38, 112–13,
115–16, 122–4, 153–4, 161–2,
164–5, 171, 173–4, 261, 319–20

Fixed-point
data, 52–3, 383, 421, 444–7, 471
designer, 53, 70, 444
toolbox, 53, 444, 447

Frame Structure, 29–30, 34, 115, 124, 478
Downlink, 34, 45,
Uplink, 35, 45

Frequency bands, 3, 13–16, 45
Frequency Division Duplex, 14–15, 29, 34,

49, 124, 128–9, 208, 325, 478
Frequency-Switched Transmit Diversity, 37,

199
FSTD see Frequency-Switched Transmit

Diversity

GSM, 2–4
GPU or GPUs see Graphics Processing Unit
GPU-optimized System objects, 400, 402,

404, 406, 411–12, 419
GPU processing 53, 354, 399–400, 403,

406
Graphics Processing Unit, 52–3, 383, 399,

403, 406, 477

HARQ or Hybrid ARQ see Hybrid
Automatic Repeat Request

Higher-order modulation, 7, 77, 79, 263,
286

High Speed Downlink Packet Access, 2–4,
High Speed Packet Access, 2–5, 8
High Speed Uplink Packet Access, 2–3
HSDPA see High Speed Downlink Packet

Access
HSPA or HSPA+ see High Speed Packet

Access
HSUPA see High Speed Uplink Packet

Access
Hybrid Automatic Repeat Request, 3, 26,

28–9, 61, 71, 85, 109–10, 294, 479

IEEE, 2–3, 5, 46, 262, 303–4 802.11, 2–3
802.16, 2–3

Implementation

486 Index

Implementation (continued)
efficient, 21, 44, 198, 200, 224, 354
hardware, 12, 47, 52–4, 446, 475
MEX, 371, 376–7
Software, 54, 421

IMT-2000, 3–4, 12
IMT-Advanced, 4–5, 10, 12, 16
Internet Protocol, 2, 303, 385
IP see Internet Protocol
ITU, 3–5, 12, 14

Layer mapping, 10, 41–3, 178, 197, 215,
221–6, 230, 234–5, 242, 253, 261,
275, 307–10

Link adaptation, 7,9, 11–12, 42, 263–5,
267, 269, 271, 273, 275,277, 279,
281–3, 285, 287, 289, 291, 293–5,
297, 299, 301–4, 475

Logical channels,
Long Term Evolution Advanced, 1, 4–5, 8,

11–13, 35, 40, 45–46, 165, 167, 262,
304, 478–9

LTE-Advanced see Long Term Evolution
Advanced

LTE-A see Long Term Evolution Advanced

MAC seeMedium Access Control
MATLAB language, 48, 50, 53, 370, 384,

421, 432–3
MATLAB Coder, 53–4, 69–70, 383–4,

421–3, 426–9, 431–3, 435–8, 440,
442, 445–7, 451, 454, 456, 463, 471,
477

MATLAB Executable, 51, 53, 383–4,
386–7, 394–5, 419, 421, 425, 427–9,
450–52, 455–8, 460–1, 471, 477

Master Information Block, 29–30, 34, 480
Maximum Ratio Combining, 36, 155–6,

169, 202, 319
MBMS seeMultimedia Broadcast Multicast

Services
MBSFN seeMultimedia Broadcast

Single-Frequency Network
MCCH seeMulticast Control Channel
MCH seeMulticast Channel
MCS seeModulation and Coding Scheme

Medium Access Control, 9, 24–7, 34, 42,
100, 105

MEX seeMATLAB Executable
MIB seeMaster Information Block
Minimum mean square error, 115, 145–6,

156,225, 230–33, 238, 252, 257, 270,
272, 318, 321, 324–5, 346, 475

Multiple-Input-Multiple-Output seeMIMO
MIMO

antenna configuration, 33, 174, 235, 253
channel, 38–9, 170–4, 176, 186, 194,

201, 218, 221–3, 229–31, 233,
262, 271–4, 310, 355, 376

channel matrix, 38–9, 201, 221, 223,
232, 271

detection, 313, 319–20, 324
equation, 38–9, 169, 221–4, 233, 313
modes, 10–11, 30–1, 37, 40–1, 205,

234, 478
receiver, 36, 178, 197, 210, 218, 224–5,

229–31, 232–3, 235, 238, 245,
250–3, 257, 261, 267, 271–3,
312–13, 317–19, 324–5, 475

schemes, 39, 45, 265
transmission, 7, 30, 39, 170, 173, 179,

197, 205, 222, 225, 248, 261, 263,
474, 479

MIMO-OFDM, 36, 165, 167, 261, 304,
316, 319, 474

MMSE seeMinimum mean square error
Modulation

16QAM, 72, 155, 163, 318, 320, 322
64QAM, 72–3, 78, 285, 320, 447
8PSK, 2
QPSK, 58, 59, 63, 65, 67–9, 72, 77, 355

Modulation and Coding Scheme, 29, 264,
266, 295–8, 302–3

MRC see Maximum Ratio Combining
MTCH seeMulticast Traffic Channel
Multi-antenna technique, 6, 27, 36, 167–9,

305, 474
Multi-carrier transmission, 7–8, 10, 13, 16,

20–1, 42, 164, 167, 178, 187, 305,
473–4

Multicast Control Channel, 27
Multicast Traffic Channel, 27

Index 487

Multipath fading, 6–7, 14, 24, 38, 112–13,
115–16, 122–4, 153–4, 161–2,
164–5, 171, 173–4, 261, 319–20

Multicast Channel, 15, 27, 85
Multicast Services, 11, 14
Multimedia Broadcast Multicast Services,

11, 14–15, 26–7
Multimedia Broadcast Single-Frequency

Network, 15, 26, 32
Multi-user MIMO, 39–40, 44–5, 170
MU-MIMO seeMulti-user MIMO

Nan or nan see Not-a-number
Not-a-number, 102, 426, 431
New-data indicator, 29, 294, 479
Numerical

accuracy, 353, 476
representation, 12, 447

OFDM
modulation, 21, 167
receiver, 23, 140, 156, 164, 312–13
signal generation, 10, 20–1, 23, 42–3,

124, 136, 164, 176, 197, 215, 235,
253, 299

subcarriers
symbols, 10, 17–18, 21–5, 28–30,

33–6, 42–3, 121–2, 124–31,
133–7, 140–6, 151–2, 158, 161,
167, 178–80, 190–6, 208,
218–19, 295, 298, 435

transmitter, 149, 156, 216, 236, 243, 254,
288, 292, 310, 317, 476

time-frequency grid, 143, 188
OFDMA, 11
Operating band, 15–16
Orthogonal-Frequency-Division-

Multiplexing see OFDM
Orthogonal-Frequency-Division-Multiple

Access see OFDMA

Paging Channel, 27, 85
Paging Control Channel, 26–7
Parallel Computing Toolbox, 52–3, 70,

385–6, 399, 400
Parallel processing, 69, 354, 387, 403, 479

Path loss, 116
PBCH see Physical Broadcast Channel
PCCH see Paging Control Channel
PCFICH see Physical Control Format

Indicator Channel
PCH see Paging Channel
PDCCH see Physical Downlink Control
PDSCH see Physical Downlink Shared

Channel
PHICH see Physical Hybrid-ARQ Indicator

Channel
Physical Broadcast Channel, 26–7, 29–30,

34, 124–5, 127, 179, 480
Physical channels, 9, 13, 24–7, 30–1, 41,

44–6, 113, 165, 262, 471
Physical Control Format Indicator Channel,

26–7, 29, 34, 127, 298
Physical Downlink Control Channel, 26–9,

34, 124–5, 127, 129–30, 134–6,
141–3, 158–9, 179–80, 182, 184–5,
208–9, 264–5, 295, 318, 355–6, 361,
363, 367, 371, 376, 384, 386, 388–91,
401, 458, 460–1, 463, 467, 469, 471

Physical Downlink Shared Channel, 10,
26–9, 32, 41–2, 71, 100, 108, 112,
124–5, 128–9, 133–7, 140–3, 148,
150–2, 158–9, 161, 179, -80, 182–5,
188, 195–7, 206, 208, 215, 218,
225–7, 230, 234–5, 238, 245–6,
249,-50, 253, 257, 264–5, 267, 277,
280, 295–6, 302, 307–8, 312, 346,
349, 474

Physical Hybrid-ARQ Indicator Channel,
26–7, 29–30, 34, 127, 298, 480

Physical Multicast Channel, 26–7, 32
Physical Random Access Channel, 30–1,

35, 480
Physical signals, 15, 30–1, 45, 477
Physical Uplink Control Channel, 28–30,

33, 35, 264–5
Physical Uplink Shared Channel, 28, 30–1,

33, 35, 43, 24, 478–9
PMCH see Physical Multicast Channel
PMI see Precoding-Matrix Indicator
PRACH see Physical Random Access

Channel

488 Index

Preallocation, 367, 370–1, 373, 375, 419,
477

Precoding,
closed-loop, 40, 225, 227, 307
codebook-based, 32, 41
non- codebook-based, 32, 41
open-loop, 225, 248–9, 307–8

Precoder matrix 40, 224–7, 230–4, 238,
245–6, 248–50, 257, 264–6, 271,
280, 303, 308, 313, 318, 346

Precoding-Matrix Indicator, 30–32, 238,
246, 248, 257, 264–66, 270–1,
275–6, 287–91, 293, 303, 346

PSS see Synchronization Signal, Primary
PUCCH see Physical Uplink Control

Channel
PUSCH see Physical Uplink Shared

Channel

QPSK see Quadrature Phase-Shift Keying
Quadrature Phase-Shift Keying, 55–60,

62–69, 72–79, 84, 90, 92, 112, 152,
161, 210, 219, 238, 241, 245, 27, 261,
268–9, 278, 280–2, 284–6, 296, 302,
320–1, 325, 346, 355, 407, 440, 442,
445–9, 453–4, 456

Radio frame, 30, 34
Radio Link Control, 9, 25
Rank deficiency, 174, 223–4, 322
Rank estimation, 39, 221, 24, 264, 266,

272–4, 293–5
Rank Indication, 30–2, 264–6, 271–5, 291,

293–5, 303
Rate matching, 9–10, 41–3, 71, 85–6,

99–102, 104–109, 112, 148–9, 152,
156, 161, 215–6, 219,235, 238, 242,
245

254, 257, 268, 280, 287, 291, 299–300,
307–9, 346, 355, 368, 372, 382, 401,
405, 459

Receive diversity, 6, 8, 36, 40, 147, 155,
161,319

Receiver combining, 169
Receiver operations, 23, 155, 17, 200, 222,

224–5, 250, 266, 306, 312–13, 317,
327, 475–6, 480

Redundancy version, 28–9, 294, 479
Reference signal

Cell-specific see Cell-specific Reference
Signal

Channel-State Information, 32–3, 41,
45, 478

Demodulation, 32–3, 41, 45, 478
MBSFN, 32
Positioning, 32
Sounding, 33

Release 8 (LTE), 4–5, 32, 41, 44
Release 9 (LTE), 5, 11, 32, 41
Release 10 (LTE-Advanced), 5, 11, 32–3,

40–1, 471
Resource block, 16–24, 28–33, 35, 39,

44–5, 126–9, 131–3, 143, 159,
178–9, 188, 190, 207–8, 266, 275,
277, 296, 323

Resource element, 10, 17–19, 22–4, 26,
28–9, 31–3, 35–6, 42–4, 115, 122,
124, 126–8, 131, 143–5, 148, 156,
160, 164, 168, 308

mapping, 10, 132–3, 178–80, 226,
234–5, 261, 307

demapping, 141, 148,156, 178–80, 183,
215, 235, 253, 312–13

Resource grid, 10, 17–20, 23–4, 27, 33–4,
36, 44–5, 122, 124–8, 130, 132–4,
136, 140–1, 143, 148–9, 156, 158–9,
164, 167, 176, 178–80, 183–4, 187,
190, 192, 193–4, 196–7, 215–16,
226, , 235–6, 243, 253–4, 261, 265,
288, 29, 295, 298–99, 308, 310, 313,
356, 474–5, 477, 480

RLC see Radio Link Control
RI see Rank Indicator

Scheduling, 3, 7–9, 14, 18, 22, 27–8, 30–1,
33, 42, 79, 263–5, 275, 294, 298,
327, 474

channel-dependent, 9, 31, 33
frequency-domain, 8, 18, 22

SC-FDM see Single-carrier Frequency
Division Multiplexing

Scrambling, 10, 41–4, 49, 71, 79
SD see Sphere decoder

Index 489

SFBC see Space-Frequency Block Coding
SFN see System Frame Number
SIB see System Information Block
SIMO see Single-Input-Multiple-Output
Simulation acceleration, 48, 52, 112, 354,

385, 419, 476, 480
Simulink, 11–12, 48–9, 51–4, 68–9,

305–6, 326–42, 346–50, 352–3,
387–92, 394–98, 419, 421, 474,
476–7

parameter dialogs, 328, 332, 336–8,
340–1, 344–8, 352, 427–30, 435,
456

Single Carrier Frequency Division
Multiplexing, 7–8, 11, 14, 22, 23–4,
35, 40, 43–5, 113, 115, 305, 474, 478

Single-Input-Multiple-Output, 28, 36, 121,
128, 147, 155–7, 160–4, 180, 306–9,
312–13, 317, 310, 325, 344, 351

Single-Input-Single-Output, 28, 36, 121,
128, 137, 147–56, 160–4, 180, 207,
351

Single-user MIMO, 39, 44
SISO see Single-Input-Single-Output
Slot, 17–19, 23, 30, 33–5, 121, 125–6,

130–1, 133, 136, 145, 190, 192–4,
208, 218–19, 321, 333

Soft Sphere Decoder, 233–4, 253, 274, 475
Space-Frequency Block Coding, 37, 167,

169, 197–200, 205, 215–17, 249,
260, 292, 309, 314

Space Time Block Coding, 37, 169,
198–201, 203–4, 359–60, 362,
364–5, 369, 372–3

Spatial multiplexing, 6, 8, 10, 27–8, 37–40,
167–9, 173, 197, 205, 221–25,
234–50, 253, 257–61, 264–66,
275–6, 287–8, 291–2, 294–5,
302–4, 306–9, 312–14, 317, 319,
351, 474

Spectral efficiency, 1, 3, 5, 7, 14, 21, 115,
167, 222, 260, 263, 267–9, 303, 305

Spectral null, 32, 178–80, 187, 196
Sphere Decoder, 115, 210, 231, 238, 246,

251, 257, 272–3, 280, 313, 324–5,
346

SSD see Soft Sphere decoder
SSS see Synchronization Signal, secondary
STBC see Space Time Block Coding
Subcarrier spacing, 18, 20–3, 121, 129,

137, 140, 208
SU-MIMO see Single-user MIMO
Synchronization Signal, 24, 31, 33–4, 121,

196
Primary, 33–4, 124–9, 132–5, 141–2,

158–9, 179–80, 182, 185, 480
Secondary, 34, 124–9, 132–5, 141–2,

158–9, 179–80, 182–3, 185, 480
System access, 121, 478–80
System Frame Number, 480
System object(s), 11, 52–60, 84, 68–9,

73–4, 76, 80, 87, 89, 94, 113, 117,
146, 171–3, 175, 200, 204, 211, 213,
233, 268, 280, 300, 354, 361, 371–85,
387–8, 400–1, 404, 406, 410–13,
419, 433, 438–9, 445–6, 458, 476–7

System throughput, 477

TDD see Time Division Duplexing
Throughput, 7–8, 72, 99, 263, 305, 325–6,

352, 474–7, 479
Time Division Duplexing, 13–14, 16, 29,

33–4, 49, 478
Time-Frequency Representation, 14, 17,

124, 164, 261
Time Framing, 13, 17, 22, 45, 121, 125, 478
Timing results, 355, 374–5, 378, 380, 383,

409–10, 413, 416, 418, 422
Transmission mode, 15, 32–3, 37,39–41,

44–5, 130, 147, 155, 164, 167–8,
179, 205–6, 215, 218, 222, 225, 234,
238, 241, 245, 248, 253, 257, 260–3,
274–5, 280, 291, 294–5, 305–8,
312–13, 316–22, 324–5, 341,
344–5, 351, 474, 478, 480

Transmit Diversity, 6, 8, 10, 37, 40–1, 167,
169, 197–201, 203–5, 215, 218–20,
222, 239, 247, 249, 259,-61, 276, 291,
295, 299, 302–3, 306–8, 312–13,
317, 319, 322, 351, 355, 359, 361,
367, 388, 474

Transmitter operations, 23, 265, 307–8, 475

490 Index

Transport block, 10, 24, 28–9, 41–3, 85,
95, 97, 100, 104–9, 111, 119,
148–50, 156–7, 215–17, 235–6,
242, 244, 255, 266, 287, 289, 291,
293–4, 2967, 299–30, 306–9, 313,
315

Transport channels, 9, 24–27, 31
Transport channel processing, 107–8
Turbo coding, 3, 7–9, 11, 41, 43, 61–2, 66,

68–9, 79, 85–6, 92–3, 95, 98–9,
104–7, 148–9, 155–6, 164, 176,
215–16, 218, 222, 235, 241–2, 254,
261, 268, 287, 291, 299, 302, 307–9,
318, 406–7, 409–11, 413, 415,
418–19, 474

Turbo decoder, 9, 68, 85, 87–94, 96–7,
102, 104, 119, 151, 318, 406, 408,
410–15, 417, 476

Turbo encoder, 9–19, 42–3, 66, 68, 86–90,
94, 96–7, 99–100, 104–6, 108, 407,
415, 476

UCI see Uplink Control Information
UE see User Equipment
UE-specific Reference Signal, see

Reference Signal, Demodulation
ULSCH see Uplink Shared Channel
Unicast Services, 14–15
Uplink Control Information, 26, 30, 479
Uplink Shared Channel, 26, 30–1, 43, 85,

478

Uplink physical channels, 13, 30
User Equipment, 13, 15, 22, 24, 29,

30–33, 39, 45, 174, 264–5, 325,
352, 478–80

User data, 9, 24–7, 30, 33–5, 41, 71, 92,
124–8, 130, 132–3, 135–6, 141, 143,
146, 148, 152–3, 159, 162, 179–80,
182–3, 185, 196, 211, 235, 238–9,
241, 245–7, 253, 257–8, 260, 265,
298, 302–3, 313, 474

User-plane, 5, 25, 49, 85, 295, 298–9, 305,
477–9

Variable-sized data, 421, 433, 447–8, 454,
456, 471

Vectorization, 361, 364, 370–1, 373, 375,
419, 477

Visualization, 49–50, 52, 58, 61, 150, 153,
205, 210, 217–18, 237–8, 244–5,
255, 257, 305, 315, 353

Viterbi decoding, 61, 63–7, 299–301, 368,
372, 379, 382, 402, 405, 459

WCDMA, 2, 4
WiMAX, 3–5, 169, 198, 474
WiFi, 3, 5, 169

Zadoff-Chu sequence, 33, 478
Zero Forcing algorithm, 115, 146, 160, 225,

272, 324, 475

 ~StormRG~

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Preface��������������
	List of Abbreviations����������������������������
	Chapter 1 Introduction�����������������������������
	1.1 Quick Overview of Wireless Standards���
	1.2 Historical Profile of Data Rates���
	1.3 IMT-Advanced Requirements������������������������������������
	1.4 3GPP and LTE Standardization���������������������������������������
	1.5 LTE Requirements���������������������������
	1.6 Theoretical Strategies���������������������������������
	1.7 LTE-Enabling Technologies������������������������������������
	1.7.1 OFDM�����������������
	1.7.2 SC-FDM�������������������
	1.7.3 MIMO�����������������
	1.7.4 Turbo Channel Coding���������������������������������
	1.7.5 Link Adaptation����������������������������

	1.8 LTE Physical Layer (PHY) Modeling��
	1.9 LTE (Releases 8 and 9)���������������������������������
	1.10 LTE-Advanced (Release 10)�������������������������������������
	1.11 MATLAB® and Wireless System Design��
	1.12 Organization of This Book�������������������������������������
	References�����������������

	Chapter 2 Overview of the LTE Physical Layer���
	2.1 Air Interface������������������������
	2.2 Frequency Bands��������������������������
	2.3 Unicast and Multicast Services���
	2.4 Allocation of Bandwidth����������������������������������
	2.5 Time Framing�����������������������
	2.6 Time-Frequency Representation��
	2.7 OFDM Multicarrier Transmission���
	2.7.1 Cyclic Prefix��������������������������
	2.7.2 Subcarrier Spacing�������������������������������
	2.7.3 Resource Block Size��������������������������������
	2.7.4 Frequency-Domain Scheduling��
	2.7.5 Typical Receiver Operations��

	2.8 Single-Carrier Frequency Division Multiplexing���
	2.9 Resource Grid Content��������������������������������
	2.10 Physical Channels�����������������������������
	2.10.1 Downlink Physical Channels��
	2.10.2 Function of Downlink Channels���
	2.10.3 Uplink Physical Channels��������������������������������������
	2.10.4 Function of Uplink Channels���

	2.11 Physical Signals����������������������������
	2.11.1 Reference Signals�������������������������������
	2.11.2 Synchronization Signals�������������������������������������

	2.12 Downlink Frame Structures�������������������������������������
	2.13 Uplink Frame Structures�����������������������������������
	2.14 MIMO����������������
	2.14.1 Receive Diversity�������������������������������
	2.14.2 Transmit Diversity��������������������������������
	2.14.3 Spatial Multiplexing����������������������������������
	2.14.4 Beam Forming��������������������������
	2.14.5 Cyclic Delay Diversity������������������������������������

	2.15 MIMO Modes����������������������
	2.16 PHY Processing��������������������������
	2.17 Downlink Processing�������������������������������
	2.18 Uplink Processing�����������������������������
	2.18.1 SC-FDM��������������������
	2.18.2 MU-MIMO���������������������

	2.19 Chapter Summary���������������������������
	References�����������������

	Chapter 3 MATLAB® for Communications System Design���
	3.1 System Development Workflow��������������������������������������
	3.2 Challenges and Capabilities��������������������������������������
	3.3 Focus����������������
	3.4 Approach�������������������
	3.5 PHY Models in MATLAB�������������������������������
	3.6 MATLAB�����������������
	3.7 MATLAB Toolboxes���������������������������
	3.8 Simulink�������������������
	3.9 Modeling and Simulation����������������������������������
	3.9.1 DSP System Toolbox�������������������������������
	3.9.2 Communications System Toolbox��
	3.9.3 Parallel Computing Toolbox���������������������������������������
	3.9.4 Fixed-Point Designer���������������������������������

	3.10 Prototyping and Implementation��
	3.10.1 MATLAB Coder��������������������������
	3.10.2 Hardware Implementation�������������������������������������

	3.11 Introduction to System Objects��
	3.11.1 System Objects of the Communications System Toolbox���
	3.11.2 Test Benches with System Objects��
	3.11.3 Functions with System Objects���
	3.11.4 Bit Error Rate Simulation���������������������������������������

	3.12 MATLAB Channel Coding Examples��
	3.12.1 Error Correction and Detection��
	3.12.2 Convolutional Coding����������������������������������
	3.12.3 Hard-Decision Viterbi Decoding��
	3.12.4 Soft-Decision Viterbi Decoding��
	3.12.5 Turbo Coding��������������������������

	3.13 Chapter Summary���������������������������
	References�����������������

	Chapter 4 Modulation and Coding��������������������������������������
	4.1 Modulation Schemes of LTE������������������������������������
	4.1.1 MATLAB Examples����������������������������
	4.1.2 BER Measurements�����������������������������

	4.2 Bit-Level Scrambling�������������������������������
	4.2.1 MATLAB Examples����������������������������
	4.2.2 BER Measurements�����������������������������

	4.3 Channel Coding�������������������������
	4.4 Turbo Coding�����������������������
	4.4.1 Turbo Encoders���������������������������
	4.4.2 Turbo Decoders���������������������������
	4.4.3 MATLAB Examples����������������������������
	4.4.4 BER Measurements�����������������������������

	4.5 Early-Termination Mechanism��������������������������������������
	4.5.1 MATLAB Examples����������������������������
	4.5.2 BER Measurements�����������������������������
	4.5.3 Timing Measurements��������������������������������

	4.6 Rate Matching������������������������
	4.6.1 MATLAB Examples����������������������������
	4.6.2 BER Measurements�����������������������������

	4.7 Codeblock Segmentation���������������������������������
	4.7.1 MATLAB Examples����������������������������

	4.8 LTE Transport-Channel Processing���
	4.8.1 MATLAB Examples����������������������������
	4.8.2 BER Measurements�����������������������������

	4.9 Chapter Summary��������������������������
	References�����������������

	Chapter 5 OFDM���������������������
	5.1 Channel Modeling���������������������������
	5.1.1 Large-Scale and Small-Scale Fading���
	5.1.2 Multipath Fading Effects�������������������������������������
	5.1.3 Doppler Effects����������������������������
	5.1.4 MATLAB® Examples�����������������������������

	5.2 Scope����������������
	5.3 Workflow�������������������
	5.4 OFDM and Multipath Fading������������������������������������
	5.5 OFDM and Channel-Response Estimation���
	5.6 Frequency-Domain Equalization��
	5.7 LTE Resource Grid����������������������������
	5.8 Configuring the Resource Grid��
	5.8.1 CSR Symbols������������������������
	5.8.2 DCI Symbols������������������������
	5.8.3 BCH Symbols������������������������
	5.8.4 Synchronization Symbols������������������������������������
	5.8.5 User-Data Symbols������������������������������

	5.9 Generating Reference Signals���������������������������������������
	5.10 Resource Element Mapping������������������������������������
	5.11 OFDM Signal Generation����������������������������������
	5.12 Channel Modeling����������������������������
	5.13 OFDM Receiver�������������������������
	5.14 Resource Element Demapping��������������������������������������
	5.15 Channel Estimation������������������������������
	5.16 Equalizer Gain Computation��������������������������������������
	5.17 Visualizing the Channel�����������������������������������
	5.18 Downlink Transmission Mode 1��
	5.18.1 The SISO Case���������������������������
	5.18.2 The SIMO Case���������������������������

	5.19 Chapter Summary���������������������������
	References�����������������

	Chapter 6 MIMO���������������������
	6.1 Definition of MIMO�����������������������������
	6.2 Motivation for MIMO������������������������������
	6.3 Types of MIMO������������������������
	6.3.1 Receiver-Combining Methods���������������������������������������
	6.3.2 Transmit Diversity�������������������������������
	6.3.3 Spatial Multiplexing���������������������������������

	6.4 Scope of MIMO Coverage���������������������������������
	6.5 MIMO Channels������������������������
	6.5.1 MATLAB® Implementation�����������������������������������
	6.5.2 LTE-Specific Channel Models��
	6.5.3 MATLAB Implementation����������������������������������
	6.5.4 Initializing MIMO Channels���������������������������������������
	6.5.5 Adding AWGN������������������������

	6.6 Common MIMO Features�������������������������������
	6.6.1 MIMO Resource Grid Structure���
	6.6.2 Resource-Element Mapping�������������������������������������
	6.6.3 Resource-Element Demapping���������������������������������������
	6.6.4 CSR-Based Channel Estimation���
	6.6.5 Channel-Estimation Function��
	6.6.6 Channel-Estimate Expansion���������������������������������������
	6.6.7 Ideal Channel Estimation�������������������������������������
	6.6.8 Channel-Response Extraction��

	6.7 Specific MIMO Features���������������������������������
	6.7.1 Transmit Diversity�������������������������������
	6.7.2 Transceiver Setup Functions��
	6.7.3 Downlink Transmission Mode 2���
	6.7.4 Spatial Multiplexing���������������������������������
	6.7.5 MIMO Operations in Spatial Multiplexing��
	6.7.6 Downlink Transmission Mode 4���
	6.7.7 Open-Loop Spatial Multiplexing���
	6.7.8 Downlink Transmission Mode 3���

	6.8 Chapter Summary��������������������������
	References�����������������

	Chapter 7 Link Adaptation��������������������������������
	7.1 System Model�����������������������
	7.2 Link Adaptation in LTE���������������������������������
	7.2.1 Channel Quality Estimation���������������������������������������
	7.2.2 Precoder Matrix Estimation���������������������������������������
	7.2.3 Rank Estimation����������������������������

	7.3 MATLAB® Examples���������������������������
	7.3.1 CQI Estimation���������������������������
	7.3.2 PMI Estimation���������������������������
	7.3.3 RI Estimation��������������������������

	7.4 Link Adaptations between Subframes���
	7.4.1 Structure of the Transceiver Model���
	7.4.2 Updating Transceiver Parameter Structures��

	7.5 Adaptive Modulation������������������������������
	7.5.1 No Adaptation��������������������������
	7.5.2 Changing the Modulation Scheme at Random���
	7.5.3 CQI-Based Adaptation���������������������������������
	7.5.4 Verifying Transceiver Performance��
	7.5.5 Adaptation Results�������������������������������

	7.6 Adaptive Modulation and Coding Rate��
	7.6.1 No Adaptation��������������������������
	7.6.2 Changing Modulation Scheme at Random���
	7.6.3 CQI-Based Adaptation���������������������������������
	7.6.4 Verifying Transceiver Performance��
	7.6.5 Adaptation Results�������������������������������

	7.7 Adaptive Precoding�����������������������������
	7.7.1 PMI-Based Adaptation���������������������������������
	7.7.2 Verifying Transceiver Performance��
	7.7.3 Adaptation Results�������������������������������

	7.8 Adaptive MIMO������������������������
	7.8.1 RI-Based Adaptation��������������������������������
	7.8.2 Verifying Transceiver Performance��
	7.8.3 Adaptation Results�������������������������������

	7.9 Downlink Control Information���������������������������������������
	7.9.1 MCS����������������
	7.9.2 Rate of Adaptation�������������������������������
	7.9.3 DCI Processing���������������������������

	7.10 Chapter Summary���������������������������
	References�����������������

	Chapter 8 System-Level Specification���
	8.1 System Model�����������������������
	8.1.1 Transmitter Model������������������������������
	8.1.2 MATLAB Model for a Transmitter Model���
	8.1.3 Channel Model��������������������������
	8.1.4 MATLAB Model for a Channel Model���
	8.1.5 Receiver Model���������������������������
	8.1.6 MATLAB Model for a Receiver Model��

	8.2 System Model in MATLAB���������������������������������
	8.3 Quantitative Assessments�����������������������������������
	8.3.1 Effects of Transmission Modes��
	8.3.2 BER as a Function of SNR�������������������������������������
	8.3.3 Effects of Channel-Estimation Techniques���
	8.3.4 Effects of Channel Models��������������������������������������
	8.3.5 Effects of Channel Delay Spread and Cyclic Prefix��
	8.3.6 Effects of MIMO Receiver Algorithms��

	8.4 Throughput Analysis������������������������������
	8.5 System Model in Simulink�����������������������������������
	8.5.1 Building a Simulink Model��������������������������������������
	8.5.2 Integrating MATLAB Algorithms in Simulink��
	8.5.3 Parameter Initialization�������������������������������������
	8.5.4 Running the Simulation�����������������������������������
	8.5.5 Introducing a Parameter Dialog���

	8.6 Qualitative Assessment���������������������������������
	8.6.1 Voice-Signal Transmission��������������������������������������
	8.6.2 Subjective Voice-Quality Testing���

	8.7 Chapter Summary��������������������������
	References�����������������

	Chapter 9 Simulation���������������������������
	9.1 Speeding Up Simulations in MATLAB��
	9.2 Workflow�������������������
	9.3 Case Study: LTE PDCCH Processing���
	9.4 Baseline Algorithm�����������������������������
	9.5 MATLAB Code Profiling��������������������������������
	9.6 MATLAB Code Optimizations������������������������������������
	9.6.1 Vectorization��������������������������
	9.6.2 Preallocation��������������������������
	9.6.3 System Objects���������������������������

	9.7 Using Acceleration Features��������������������������������������
	9.7.1 MATLAB-to-C Code Generation��
	9.7.2 Parallel Computing�������������������������������

	9.8 Using a Simulink Model���������������������������������
	9.8.1 Creating the Simulink Model��
	9.8.2 Verifying Numerical Equivalence��
	9.8.3 Simulink Baseline Model������������������������������������
	9.8.4 Optimizing the Simulink Model��

	9.9 GPU Processing�������������������������
	9.9.1 Setting up GPU Functionality in MATLAB���
	9.9.2 GPU-Optimized System Objects���
	9.9.3 Using a Single GPU System Object���
	9.9.4 Combining Parallel Processing with GPUs��

	9.10 Case Study: Turbo Coders on GPU���
	9.10.1 Baseline Algorithm on a CPU���
	9.10.2 Turbo Decoder on a GPU������������������������������������
	9.10.3 Multiple System Objects on GPU��
	9.10.4 Multiple Frames and Large Data Sizes��
	9.10.5 Using Single-Precision Data Type��

	9.11 Chapter Summary���������������������������

	Chapter 10 Prototyping as C/C++ Code
	10.1 Use Cases���������������������
	10.2 Motivations�����������������������
	10.3 Requirements������������������������
	10.4 MATLAB Code Considerations��������������������������������������
	10.5 How to Generate Code��������������������������������
	10.5.1 Case Study: Frequency-Domain Equalization���
	10.5.2 Using a MATLAB Command������������������������������������
	10.5.3 Using the MATLAB Coder Project��

	10.6 Structure of the Generated C Code���
	10.7 Supported MATLAB Subset�����������������������������������
	10.7.1 Readiness for Code Generation���
	10.7.2 Case Study: Interpolation of Pilot Signals��

	10.8 Complex Numbers and Native C Types��
	10.9 Support for System Toolboxes��
	10.9.1 Case Study: FFT and Inverse FFT���

	10.10 Support for Fixed-Point Data���
	10.10.1 Case Study: FFT Function���������������������������������������

	10.11 Support for Variable-Sized Data��
	10.11.1 Case Study: Adaptive Modulation��
	10.11.2 Fixed-sized Code Generation��
	10.11.3 Bounded Variable-Sized Data��
	10.11.4 Unbounded Variable-Sized Data��

	10.12 Integration with Existing C/C++ Code
	10.12.1 Algorithm������������������������
	10.12.2 Executing MATLAB Testbench���
	10.12.3 Generating C Code��������������������������������
	10.12.4 Entry-Point Functions in C���
	10.12.5 C Main Function������������������������������
	10.12.6 Compiling and Linking������������������������������������
	10.12.7 Executing C Testbench������������������������������������

	10.13 Chapter Summary����������������������������
	References�����������������

	Chapter 11 Summary�������������������������
	11.1 Modeling��������������������
	11.1.1 Theoretical Considerations��
	11.1.2 Standard Specifications�������������������������������������
	11.1.3 Algorithms in MATLAB®�����������������������������������

	11.2 Simulation����������������������
	11.2.1 Simulation Acceleration�������������������������������������
	11.2.2 Acceleration Methods����������������������������������
	11.2.3 Implementation����������������������������

	11.3 Directions for Future Work��������������������������������������
	11.3.1 User-Plane Details��������������������������������
	11.3.2 Control-Plane Processing��������������������������������������
	11.3.3 Hybrid Automatic Repeat Request���
	11.3.4 System-Access Modules�����������������������������������

	11.4 Concluding Remarks������������������������������

	Index������������

