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Preface

My goal in teaching communications (and in authoring this text) is to provide
students with

■ an exposition of the theory required to build modern communication systems.
■ an insight into the required trade-offs between spectral efficiency of trans-

mission, fidelity of message reconstruction, and complexity of system imple-
mentation that are required for a modern communication system design.

■ a demonstration of the utility and applicability of the theory in the homework
problems and projects.

■ a logical progression in thinking about communication theory.

Consequently, this textbook will be more mathematical than most and does not
discuss examples of communication systems except as a way to illustrate how
important communication theory concepts solve real engineering problems. My
experience has been that my approach works well in an elective class where
students are interested in communication careers or as a self-study guide to
communications. My approach does not work as well when the class is a required
course for all electrical engineering students as students are less likely to see
the advantage of developing tools they will not be using in their career. Matlab
is used extensively to illustrate the concepts of communication theory as it is
a great visualization tool and probably the most prevalent system engineering
tool used in practice today. To me the beauty of communication theory is the
logical flow of ideas. I have tried to capture this progression in this text. Only
you the reader will be able to decide how I have done in this quest.

Teaching from This Text

This book is written for the modern communications curriculum. The course
objectives for an undergraduate communication course that can be taught from
this text are (along with their ABET criteria)

■ Students learn the bandpass representation for carrier modulated signals.
(Criterion 3(a))

xv
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xvi Preface

■ Students engage in engineering design of communications system compo-
nents. (Criteria 3(c),(k))

■ Students learn to analyze the performance, spectral efficiency and complexity
of the various options for transmitting analog and digital message signals.
(Criteria 3(e),(k))

■ Students learn to characterize noise in communication systems. (Criterion
3(a))

Prerequisites to this course are probability and random variables and a signal
and systems course.

I have taught out of this book material in several ways. I have been lucky
to teach at three universities (Purdue University, the Ohio State University,
and the University of California Los Angeles) and each of these experiences
has profoundly impacted my writing of this book. The material in this book has
been used to teach three classes

■ Undergraduate analog communications and noise (30 lecture hours)
■ Undergraduate digital communications (30 lecture hours)
■ Undergradute communications (40–45 lecture hours)

The course outline for the 30 lecture hours of analog communication is

1. Chapters 1 & 2 — 1 hour. This lecture was a review of a previous class.

2. Chapter 4 — 2 hours. These lectures build heavily on signal and system
theory and specifically the frequency translation theorem of the Fourier
transform.

3. Chapter 5 — 1 hour. This lecture introduces the concept of analog modu-
lation and the performance metrics that engineers use in designing analog
communication systems.

4. Chapter 6 — 5 hours. These lectures introduce amplitude modulation and
demodulation algorithms. Since this course was an analog only course, I
spend more time on the practical demodulation structures for DSB-AM
and VSB-AM.

5. Chapter 7 — 5 hours. These lectures introduce angle modulation and de-
modulation algorithms. I like to emphasize that the understanding of the
spectrum of angle modulations is best facilitated by the use of the Fourier
series.

6. Chapter 8 — 2 hours. These lectures introduce multiplexing and the phase-
locked loop. Multiplexing is an easy concept and yet students enjoy it be-
cause of the practical examples that can be developed.

7. Chapters 3 & 9 — 6 hours. These lectures introduce random variables and
random processes. This, from the student’s perspective, is the most difficult
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part of the class as the concept of noise and random processes are mathe-
matically abstract. Undergraduates are not used to abstract concepts being
important in practice.

8. Chapter 10 — 3 hours. These lectures introduce bandpass random pro-
cesses. This goes fairly well once Chapter 9 has been swallowed.

9. Chapter 11 — 3 hours. These lectures introduce fidelity analysis and the
resulting SNR for each of the modulation types that have been introduced.
The payoff for all the hard work to understand random processes.

10. Test — 1 hour.

The 30 hour digital only communication course followed the analog course so
it could build on the material in the previous course. This course often contained
some graduate students from outside the communications field that sat in on
the course so some review was necessary. The course outline for 30 lecture hours
of digital communications is

1. Chapter 1 & 4 — 2 hours. These lectures introduce communications and
bandpass signals.

2. Chapter 9 & 10 — 2 hours. These lectures introduce noise and noise in
communication systems.

3. Chapter 12 — 1 hour. This lecture introduces the concept of digital modula-
tion and the performance metrics that engineers use in designing systems.
This lecture also introduces Shannon’s limits in digital communications.

4. Chapter 13 — 6 hours. These lectures emphasize the five-step design process
inherent in digital communications. In the end these lectures show how far
single-bit transmission is from Shannon’s limit.

5. Chapter 14 — 4 hours. These lectures show how to extend the single bit
concepts to M-ary modulation. These lectures show how to achieve different
performance-spectral efficiency trade-offs and how to approach Shannon’s
limit.

6. Chapter 15 — 8 hours. These lectures introduce most of the modulation
formats used in engineering practice by examing the complexity associated
with demodulation.

7. Chapter 16 — 3 hours. These lectures introduce bandwidth efficient trans-
mission and tools used to test digital communication systems.

8. Chapter 17 — 2 hours. These lectures introduce coded modulations as a way
to reach Shannon’s bounds.

9. Test — 1 hour.

The 40–45 hour analog and digital communication course I taught tradition-
ally had a much more aggressive schedule. The course outline for 40 lecture
hours of communications is
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1. Chapters 1 & 2 — 1 hour. The signal and systems topics were a review of a
previous class.

2. Chapter 4 — 2 hours. These lectures build heavily on Fourier transform
theory and the frequency translation theorem of the Fourier transform.

3. Chapter 5 — 1 hour. This lecture introduces the concept of analog modula-
tion and the performance metrics that engineers use in designing systems.

4. Chapter 6 — 4 hours. These lectures introduce amplitude modulation and
demodulation algorithms. The focus of the presentation was limited to co-
herent demodulators and the envelope detector.

5. Chapter 7 — 4.5 hours. These lectures introduce angle modulation and
demodulation algorithms. I like to emphasize that the understanding of the
spectrum of angle modulations is best facilitated by the use of the Fourier
series.

6. Chapter 8 — 0.5 hour. Only covered multiplexing.

7. Chapters 3 & 9 — 5 hours. This is the toughest part of the class as the
concept of noise and random processes are mathematically abstract. Un-
dergraduates are not used to abstract concepts being important in practice.

8. Chapter 10 — 2 hours. This goes fairly well once Chapter 9 has been swal-
lowed.

9. Chapter 11 — 2 hours. The payoff for all the hard work to understand
random processes.

10. Chapter 12 — 1 hour. This lecture introduces the concept of digital modula-
tion and the performance metrics that engineers use in designing systems.
This lecture also introduces Shannon’s limits in digital communications.

11. Chapter 13 — 6 hours. These lectures emphasize the five-step design pro-
cess inherent in digital communications. In the end these lectures show
how far single-bit transmission is from Shannon’s limit.

12. Chapter 14 — 4 hours. These lectures show how to extend the single bit
concepts to M-ary modulation. These lectures show how to achieve different
performance-spectral efficiency trade-offs and how to approach Shannon’s
limit.

13. Chapter 15 — 3 hours. These lectures introduce most of the modulation
formats used in engineering practice by examing the complexity associated
with demodulation.

14. Chapter 16 — 1 hours. These lectures introduce bandwidth efficient trans-
mission and tools used to test digital communication systems.

15. Chapter 17 — 1 hours. These lectures introduce coded modulations as a
way to reach Shannon’s bounds.

16. Test — 1 hour.

The 45 hour course added more details in the digital portion of the course.
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Style Issues

This book takes a stylistic approach that is different than the typical commu-
nication text. A few comments are worth making to motivate this style.

Property–Proof

One stylistic technique that I adopted in many of the sections, especially where
tools for communication theory are developed, was the use of a property state-
ment followed by a proof. There are two reasons why I choose this approach

1. The major result is highlighted clearly in the property statement. Students,
in a first pass, can understand the flow of the development without getting
bogged down in the details. I have found that this flow is consistent with
student (and my) learning patterns.

2. Undergraduate students are increasingly not well trained in logical thinking
in regard to engineering concepts. The proofs give them some flavor for the
process of logical thinking in engineering systems.

General Concepts Followed by Practical Examples

My approach is to teach general concepts and then follow up with specific ex-
amples. To me the most important result from a class taught from this book
is the learning of fundamental tools. I emphasize these tools by making them
the focus of the book. Students entering the later stages of their engineering
education want to see that the hard work they have put into an engineering
education has practical benefits. The course taught from this book is really fun
for the students as old tools (signals and systems and probability) and newly
developed tools are needed to understand electronic communication.

Two Types of Homework Problems

This book contains two types of homework problems: (1) direct application
problems and (2) extension problems. The application problems try to define
a problem that is a straightforward application of the material developed in
the text. The extension problem requires the student to think “outside the box”
and extend the theory learned in class to cover other important topics or cover
practical applications. As a warning to students and professors: Often times
the direct application problems will appear ridiculously simple if you carefully
read the text and the extension problems, as they are often realistic engineer-
ing problems, appear to be much too extensive for a homework problem. I have
found that both types of problems are important for undergraduate education.
Direct application problems allow you to practice the theory but are usually not
indicative of the types of problems an engineer sees in practice. Alternatively
students often desire realistic problems as they want a feel for “real” engineer-
ing but often get overwhelmed with the details needed in realistic problems. All
direct application leads to a boring sterile course and all extension problems
discourage all but the exceptionally smart and motivated. Having a book with
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both types of problems allows the student to both exercise and extend their
learning in the proper balance.

Examples and Example Solutions

My learning style is one where a very succinct presentation of the issues works
best. I originally wrote this book where the material was presented in a con-
densed version with little or no examples. I then followed each chapter with a
set of example solutions to homework problems. During the many revisions of
the book I came to realize that many students learn best with examples along
with a presentation of the theory. I added a significant number of in-text exam-
ples to meet this learning need. I still like a succinct presentation so I did not
move all example solutions to in chapter examples. Consequently, each chapter
has a set of in-chapter examples and a set of worked solutions. This method was
viewed as a compromise between a succinct presentation (my learning style and
hopefully a few others) and lots of examples (many students’ learning style).

Miniprojects

Both for myself and the students I have taught, learning is consumated in
“doing.” I include “Miniprojects” in the book to give the students a chance to
implement the theory. The project solutions are appropriate for oral presenta-
tion and this gives the students experience that will be a valuable part of an
engineering career. The format of the project is such that it is most easily done
in Matlab as that is the most common computer tool used in communication
engineering systems. To aid students who are not familiar with Matlab pro-
gramming I have included the code for all the Matlab generated figures in the
text on the book web page. This also allows students to see how the theory can
be implemented in practice.

Writing of the Book

The big question that has to be answered in this preface is “Why should anyone
write another communication theory book?” The short answer is “There is no
good reason for the book and a rational person would not have written the book.”
The book resulted from a variety of random decisions and my general enjoyment
of communication engineering. A further understanding of this book and my
decision to write it can be obtained by understanding the stages I perceived
in looking back on the writing this book. This documentation is done in some
sense for those who will follow in my folly of attempting to write a book to give
them a sense of the journey.

1. Captured. As a child, a high school student and a college student I was
always drawn to math and science, to problem solving, and to challenges.
Quickly my career path steered toward engineering, toward electrical en-
gineering, and finally toward communication engineering. I took a job as a
communication engineer while pursuing a graduate education. In the first
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four years of working I used all of my graduate classes in solving communi-
cation problems and was a key engineer in a team that built and field tested
a sophisticated wireless modem. I was hooked by communications engineer-
ing: It is a field that has a constant source of problems, a well-defined set of
metrics to be used in problem solving, and a clear upperbound (due to Claude
Shannon) to which each communication system could aspire.

2. Arrogance. I started my academic career, after being reasonably success-
ful while working in industry, with the feeling that I knew a great deal. I
was convinced that my way of looking at communications was the best and I
started teaching as such. I found the textbooks available at the time to have
inadequate coverage of the complex envelope representation of bandpass sig-
nals and bandpass noise and other modern topics. Hence my writing career
started by preparing handouts for my classes on these topics. I quickly got
up to 100 pages of material.

3. Humbled but Learning. It was not too long after starting to teach and
direct graduate student research that I came to the realization that the field
of communications was a mighty river and I had explored only a few fairly
minor tributaries. I came to realize I did not know much and still needed to
learn much. This realization began to be reflected in my teaching as well. I
branched out and learned other fields and reflected my new understanding in
my teaching methods and approaches. Much to my students’ chagrin, I often
used teaching as a method to explore the boundaries of my own learning. This
resulted in many poorly constructed homework problems and lectures that
were rough around the edges. As I am not very bright, when I synthesized
material I always had to put it into my own notation to keep things clear in
my own mind. After these bouts with new material that were very confusing
for my students, I often felt guilty and wrote up notes to clarify my ramblings.
Soon I was up to 200 pages of material on digital communications. As I would
discover later these notes, while technically correct, were agonizingly brief
for students and lacked sufficient examples to aid in learning.

4. Cruise Control. I soon got to the point where I had reasonable notes and
homework and my family and professional committments had grown to the
point where I needed not to focus so much on my teaching and let things run
a bit in cruise control. During this time I added a lot of homework and test
problems and continued to write up and edit material that was confusing to
students. My research always seems filled with interesting side issues that
make great homework problems. I started the practice of keeping a note book
of issues that have come up during research and then tried to morph these
issues into useful homework problems. Some problems were successes and
some were not. In 2002, I was up to about 300 pages.

5. Well I have 300 Pages . . . At the point of 300 pages I felt like I turned a
corner and had a book almost done and started shopping this book around
to publishers. My feeling was that there was not much left to complete and
once I signed a contract the book would appear in 6 months. This writing
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would magically take place while my professional and family life flourished.
I eagerly wrote more material and was up to 400 pages.

6. . . . And Then Depression Set In. When I looked at my project with the
critical eye produced by signing a contract, it quickly became apparent that
lots of pages do not necessarily equate to a book of any quality. At this time
I also got my first reviews back on the book and quickly came to realize
why all textbooks on communications look the same to me. If you took the
union of the reviews you would end up with a book close to all the books
on the market (that I obviously did not fully appreciate). During this time I
struggled mightily at trying to smooth out the rough edges of the book and
address reviewers’ concerns, while trying to keep what I thought was my
personal perspective on communications. This was a significant struggle for
me, as I learned the difficult lesson that each person is unique in how they
perceive the world and consequently in what they want in a textbook but I
stubbornly soldiered through to completion.

In summary the book resulted not from a well thought out plan but from two
disjointed themes: (1) my passionate enjoyment of communication engineering,
(2) my constant naive thinking as a professional. The book is done and it is
much different than I first imagined it. It is unique in its perspective but not
necessarily markedly different than the other books out there. It is time to
release my creation.

Heresies in the Book

The two things I learned in writing this book is that engineering professionals
do not see the field the same and engineering professors do not like change.
In trying to tell my version of the communication story I thought long and
hard about how to make the most consistent and compelling story of commu-
nication engineering for my students. In spite of what I considered a carefully
constructed pedagogy, I have been accused (among other things) of making up
nomenclature and confusing the student needlessly. Since I now realize that
I am guilty of several potential heresies to the field of communication educa-
tion, I decided to state these heresies clearly in the preface so all (especially
those that teach from this book) know my positions (and structure their classes
appropriately).

1. System Engineering Approach. I have worked as a communication en-
gineer in industry and academia. I do not have a detailed knowledge of
circuit theory and yet from all outward appearances I have thrived in my
profession by only being an expert in system modeling and analysis. This
text will not give circuits to build communication systems as circuits will
change over time but will discuss mathematical concepts as these are con-
sistent over time. I am a firm believer that communications engineering is
perhaps unique in how theory directly gets implemented in practice.
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2. Fidelity, Complexity, and Spectral Efficiency. Everything in electronic
communications engineering comes down to a trade-off between fidelity of
message reconstruction, complexity/cost of the electronic systems used to
implement this communication, and the spectral efficiency of the transmis-
sion. I have decided to adopt this approach in my teaching. This approach
clearly deviates from past practice and has not proven to be universally
popular.

3. Stationary versus Wide-Sense Stationary. An interesting characteris-
tic in my education was that a big deal was made out of the difference be-
tween stationary and wide-sense stationary random processes – and most
likely for all communication engineers of my generation. As I went through
my life as a communication engineering professional I came to the real-
ization that this additional level of abstraction was only needed because
the concept of stationarity was arbitrarily introduced before the concept of
Gaussianity. For my book, I introduce Gaussian processes first and then the
idea of wide-sense stationarity is never needed. My view is clearly not ap-
preciated by all1 but my book has only stationary Gaussian processes and
random variables. I felt the less new concepts in random processes that
are introduced in teaching students how to analyze the fidelity of message
reconstruction, the better the student learning experience would be.

4. Information Theory Bounds. My view is that digital communication is
an exciting field to work in because there are some bounds to motivate what
we do. Claude Shannon introduced a bound on the achievable fidelity and
spectral efficiency in the 1940s [Sha48]. Communication engineers have
been pursuing how to achieve these bounds in a reasonable complexity
ever since. Many people feel strongly that Shannon’s bounds cannot be
introduced to undergraduates and I disagree with that notion! It is arguable
that Claude Shannon has a bigger impact on modern life than does Albert
Einstein yet name recognition among engineering and science students
is not high for Claude Shannon. Hopefully introducing Shannon and his
bounds to undergraduates can give him part of his due.

5. Erfc(•) versus Q(•). The tail probability of a Gaussian random variable
comes up frequently in digital communications. The tail probability of a
Gaussian random variable is not given by a simple expression but instead
must be evaluated numerically. Past authors have used three different tran-
scendental functions to specify tail probabilities: Erfc(•), �(•), and the Q(•).
Historically, communication engineers have gravitated to the use of Q(•) as
its definition matches more closely how the usage comes up in digital com-
munications. I have chosen to buck this trend because of one simple fact:
Matlab is the most common tool used in modern communications engineer-
ing and Matlab uses Erfc(•). Most people who read this text after having

1Some reviewers went so far as to suggest I needed to review my random processes background
to get it right!
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used other communication texts do not appreciate the usage of Erfc(•) but
frankly this book is written for students first learning communications.
This notation serves these students much better (even while it irritates
reviewers) as it gives a more consistent view betweeen the text and the
common communication tools.

6. Signal Space Representations. A major deficiency in my approach, ac-
cording to some reviewers, is that I do not include signal space represen-
tations of digital signals. While I understand the advantages and insights
offered by this approach I think signal space representations lead the stu-
dents off course. Specifically, I do not know of a single communication sys-
tem that uses the signal space concepts in designing a demodulator or a
modulator other than to exploit orthogonality to send bits independently
(see orthogonal modulations below). The best example of a high dimension
signaling scheme is a direct sequence code division multiple access (DS-
CDMA) system. To the best of my knowledge no DS-CDMA system does
“chip” level filtering and then combining as would be suggested by a signal
space approach but directly implements each spreading waveform or each
spreading waveform matched filter. All demodulators I am familiar with
are based on the concept of the matched filter. I feel taking the matched
filter approach leads to a more consistent discussion, while many of my
colleagues feel a signal space approach is necessary for their students to
comprehend digital communications.

7. Noncoherent and Differentially Coherent Detection in Digital Com-
munications. These subjects never enter this introductory treatment of
communication theory as they are really secondary topics in modern com-
munications theory. When I started my career there were three situations
where tradition ruled that noncoherent or differentially coherent tech-
niques were mandatory for high performance communications: (1) in the
presence of jamming, (2) with short packets, and (3) in land mobile wire-
less communications. In the past 15 years I have worked on these types of
systems in both an academic environment and as part of commercial en-
gineering teams and not once were noncoherent or differentially coherent
techiques used2 in modern communication systems. I decided that rather
than confuse the student with a brief section on these topics that I would
just not present them in this book and let students pick up this material,
if needed, in graduate school or with experience.

8. Cyclostationarity and Spectrum of Digital Modulations. This is a
sensitive subject for many of my professional colleagues. I am strongly of
the opinion that spectral efficiency is a key component of all digital com-
munication discussions. Consequently, all digital transmissions must have
an associated bandwidth. Interestingly nowhere in the previous teaching

2Except to support legacy systems.
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texts was there a method to compute the spectral content of finite length
transmissions even though this must be done in engineering practice. To
be mathematically consistent with the standard practice for defining the
power spectrum of random processes, I settled on the concept of an average
energy spectrum. Here the average is over the random data sequences that
are transmitted. For students to understand this concept they only need to
understand the concept of expectation over a random experiment. This av-
erage energy spectrum is defined for any modulation format and for finite
or infinite length transmissions. In contrast, many professors who teach
communications are wed to the idea of computing the power spectrum of
digital transmissions by

(a) Assuming an infinite length transmission
(b) Defining cyclostationarity
(c) Averaging over the period of the correlation function of a cyclostationary

process to get a one parameter correlation function
(d) Taking the Fourier transform of this one parameter correlation function

to get a power spectrum

This procedure has four drawbacks: (1) it introduces a completely new
type of random process (to undergraduates who struggle with random pro-
cesses more than anything else), (2) it introduces a time averaging for no
apparent logical reason (this really confused me as a student and as a young
engineer), (3) it only is precise for infinite length transmissions (no station-
arity argument can be used on a finite length transmission), and (4) these
operations are not consistent with the theory of operation of a spectrum
analyzer that will be used in practice. Hopefully it is apparent why this
traditional approach seems less logical than computing the average energy
spectrum. In addition, the approach used in this book gives the same an-
swers in the cases when cyclostationarity can be used (without the strange
concept of cyclostationarity) and gives answers in cases where cyclostation-
arity cannot be used, and is consistent with spectral analyzer operations.
Unfortunately, I have learned (perhaps too late in life) that when you are a
heretic, logic does not help your case against true believers of the status quo.

9. Orthogonal Modulations. My professional career has led me on many in-
teresting rides in terms of understanding of communication theory. Early
in my career the communciation field was roiled by a debate of narrowband
modulation versus wideband modulation sparked by Qualcomm’s introduc-
tion of IS-95. At the time I felt wideband modulation was a special case of a
general modulation theory. I remember at the time (roughly 1990) someone
making the comment during a discussion that narrowband modulation was
a special case of wideband modulation3 and at the time I was dismissive of

3I believe this discussion was with Wayne Stark or Jim Lehnert.
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this attitude. These concepts stayed in the back of my mind and fermented.
My research focus around 1994 went to multiple antenna modems and in
this field one of the most powerful and interesting ideas proposed was the
Alamouti signaling scheme [Ala98]. Alamouti signaling was a method to
multiplex data across antennas in an orthogonal fashion. Unfortunately, to
further upset my thinking, I started doing research on wireless orthogonal
frequency division multiplexing (OFDM) systems (2000) and at first the uni-
fication of all of these concepts was not apparent to my simple mind. Then
I struck upon the idea that Nyquist’s criteria, Alamouti signaling, OFDM,
and orthogonal spreading waveforms in CDMA systems were all just vari-
ations on a theme of orthogonality. This orthogonality allows bits to be sent
and decoded independently in a very simple way. Once the orthogonality
thread was put in place in my teaching then the relationship among all
these apparent disparate systems, with wideband signaling being the most
general modulation fell into place nicely. Finally, I hated the idea of calling
“normal” modulation “orthogonal time division multiplexing” and wanted
a shorter nomenclature. Since the idea was that bits were sent one after
another in time and that students were comfortable with the idea of stream-
ing video that comes with internet usage, I adopted the notation of stream
modulation. Many of my colleagues and book reviewers really were frus-
trated by my unified view and by my making up this new terminology4. Also
the methodology of teaching a general concept (orthogonality) applicable to
multiple situations did not resonate with many professors’ teaching styles.

10. Pulse Shapes. My discussion of spectrally efficient digital modulations
again does not follow standard practice. The key ideas in pulse shaping re-
sult from orthogonality. I develope these ideas and introduce a cosine pulse
shape and a squared cosine pulse shape that can be used either in the time
or frequency domain. This approach gives a better understanding of why
the pulse shapes evolved but does not use the standard notation in the lit-
erature (e.g., spectral square root raised cosine). Hence I have introduced
new notation but this notation is only used to make the material more clear
conceptually.

11. OMWM. Communication engineers have approached Shannon’s limits by
adding structured redundancy into transmitted waveforms. I try to capture
this idea in this undergraduate book and keep a consistent theme by in-
troducing the concept of orthogonal modulations with memory (OMWM).
OMWM as a paradigm does not limit coding to time or frequency domain
signaling but enables a general approach. This general approach is different
from what has been done in the past and hence is not universally accepted
as the correct way to teach this subject. A new notation was introduced as
a way to highlight the important ideas of modern communications without
writing a toothless chapter on capacity approaching signaling.

4The first time I taught stream modulation a student Googled the term with zero hits!
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Key Teachable Moments in the Book

I thought it useful to enumerate my view of the key teachable moments in an
undergraduate communications course. My view will likely give the users of
the book a better idea of how to get the most out of the book.

1. Communication Signals Are Two Dimensional. Bandpass communi-
cation signals are inherently two dimensional. Electronic communication
is about embedding information in these two dimensions and retrieving in-
formation from the two dimensions of a corrupted received bandpass signal
in a manner that best achieves a set of engineering trade-offs. Using the
complex envelope representation throughout the book emphasizes this idea
of communications signals being two dimensional in a continuous manner.

2. Fidelity, Complexity, and Spectral Efficiency. Communication engi-
neering is a vibrant field because there is no one best solution to all com-
munication problems but a wide variety of solutions that define a different
operating point within a three dimensional trade-off space. The dimensions
of the trade-off space for all communication systems are: (1) the fidelity of
message reconstruction, (2) the cost and complexity of the electronics to
implement the system, and (3) the amount of bandwidth used to accomo-
date the electronic transmission of information. An important concept that
must be understood is that this trade-off is a constantly changing trade-off.
The reason this trade-off evolves with time is that the cost of electronics is
decreasing for a fixed complexity with time or equivalently the complexity
is increasing for a fixed cost with time. It is important for the readers of this
book to understand engineering decisions made in the last century should
not be the same as the engineering decisions made in the coming century.
Consequently, communications engineering requires lifelong learning.

3. Filter Design to Improve Spectral Efficiency. When I was taught about
single-sideband and vestigial-sideband amplitude modulation (AM), I came
away with the impression that the modulation resulted from a particular
judicious choice of a bandpass filter. This gave me no insight into the prob-
lem and how I might apply the solution to different problems. I was directly
faced with the shortcoming of my education when I had a chance to work
on digital television broadcast where vestigial sideband transmission is one
option and I realized there was no straightforward way to generalize my
education to apply to digital transmissions. My approach in teaching these
concepts is to note that a degree of freedom is not used in traditional AM
(the quadrature channel) and to turn a desire to achieve better spectral effi-
ciency into a design problem with an intuitive answer. This approach gives
a much better flavor for what communication engineering tasks are like
as well as giving a nontrivial answer to why single-sideband and vestigial-
sideband amplitude modulations are used in communication systems.

4. Fourier Series to Analyze the Bandwidth of Angle Modulation.
Finding the spectrum of an angle modulated signal is the first problem
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encountered by a communication engineer that cannot be solved by ap-
plication of signal and system theory (as angle modulation is a nonlinear
transformation). This is a great case study of how engineers gain insight
into complex problems by examining simple special cases, here a simple
periodic message signal. This analysis is important for both the insight
it provides and the demonstration of a critical engineering approach that
works in a wide variety of problems. Additionally, there is no better example
of how the Fourier series can help solve practical communication problems.

5. Pre-emphasis/De-emphasis in FM. My favorite example of how engi-
neering understanding can lead to significant performance gains is the idea
of pre-emphasis and de-emphasis in angle modulations. Pre-emphasis and
de-emphasis is used in broadcast radio because engineers realized that
in demodulation of frequency modulation (FM) that the noise spectrum
at the demodulator output was shaped in the frequency domain (a col-
ored noise). This colored noise and the constant envelope characteristic
of FM led to an improved signal processing technique that increased the
output demodulation fidelity. It is a great example of how true understand-
ing leads to a 10-dB gain in demodulation fidelity with little increase in
complexity.

6. Single Bit Modulation and Demodulation. I find the single bit trans-
mission and demodulation process very illustrative of the tasks communi-
cation engineering professionals must complete. The process of identifying
a need (sending a bit of information), building a mathematical model of
the processing (detection theory), and then completing a series of design
problems (best threshold, best filter, best signals) to optimize performance
of the system is very typical in a communication engineering career. The
issue related to single bit detection are all developed in detail to build a
comprehensive understanding of the communication engineering process.

7. Digital Communications and Shannon’s Bound. The generalization
of the modulation and demodulation of multiple bits is a straightforward
extension of single bit ideas. The interesting part occurs when examples
are examined and the realization is made that choices in modulation di-
rectly translate to different points in the fidelity versus spectral efficiency
performance space parameterized by Shannon’s bounds. Showing this re-
lationship between simple modulation ideas and the bound proposed by
Shannon demonstrates the power of Shannon’s theory.

8. Two Dimensional Digital Signaling. The idea of linear modulation is
a simple and insightful one. The mapping of bits into symbols in the com-
plex plane is simple to understand. The demodulation by computing the
distances between the received signal and all the constellation points is in-
tuitive. What really makes this a teachable moment is that probably more
than 90 percent of the digitial communication systems use linear modula-
tions in some form.



Preface xxix

9. Orthogonality to Reduce Complexity. Almost all modern digital com-
munication systems use the concept of orthogonality but sometimes in dis-
parate forms. The traditional way of introducing these topics is for each
type of orthogonality to be a special advanced topic. For example, mobile
telephone service is often used to introduce the idea of code division mul-
tiplexing. Unfortunately, what is lost in this discussion is that the orthog-
onality is designed into modems primarily to reduce the complexity of the
demodulator. Modern communication engineers should be able to see the big
picture and consequently this book teaches a general idea (orthogonality)
and introduces code division multiplexing, frequency division multiplexing,
and Nyquist theory as the important examples of this general idea. Modern
engineers need modern training to understand the trade-offs these systems
offer.

10. Spectral Shaping in Communications. No modern communication sys-
tem can afford to ignore the spectral impacts of modulation as that is one
of the three dimensions that define the operating point of a modern com-
munication system. Since spectral efficiency has such importance in mod-
ern communications, techniques to achieve the practical spectral charac-
teristics are introduced in a separate chapter. The nontrivial idea of pulse
shaping in communications is one of the first steps a communication engi-
neer must take to really understand the practical aspects of communication
engineering. As an interesting contrast of practice versus academia, aca-
demics tend to dismiss this spectral shaping as relatively unimportant and
straightforward while most engineering teams in practice agonize over the
practical aspects of spectral shaping and meeting the prescribed spectral
mask.

11. Adding Memory to Improve Performance. While this is a first course
in communications, there is a final chapter that shows how far modern com-
munications has progressed and how close the profession of communication
engineering is to the bounds Shannon identified in certain situations. This
chapter highlights these ideas by showing the fundamental signal design
techniques from a communication theory perspective, i.e., signal design to
address the Euclidean distance spectrum and average energy spectrum.
This is a powerful final perspective on modern communication engineering
for an engineer/student to take away from the book.
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Chapter

1
Introduction

The students who read this book have grown up with pervasive communica-
tions. A vast majority have listened to broadcast radio and television, used a
mobile phone, surfed the World Wide Web, and played a compact or video disk
recording. Hence there is no need for this book to motivate the student about
the utility of communication technology. They use it everyday. This chapter will
consequently be focused on the engineering aspects of communication technol-
ogy that are not apparent from a user perspective.

1.1 Historical Perspectives on Communication
Theory

The subject of this book is the transportation of information from point A
to point B using electricity or magnetism. This field was born in the mid-
1800s with the telegraph and continues today in a vast number of applications.
Humans have needed communications since prehistoric times for capitalistic
endeavors and the waging of war. These social forces with the aid, at various
points in time, of government-sponsored monopolies have continuously pushed
forward the performance of communications. It is perhaps interesting to note
that the first electronic communications (telegraphy) were sending digital data
(words were turned into a series of electronic dashes and dots). As the inven-
tion of the telephone took hold (1870s), communication became more focused
on analog communication as voice was the information source of most interest
to convey. The First World War led to great advances in wireless technology
and television and radio broadcast soon followed. Again the transmitted infor-
mation sources were analog. The digital revolution was spawned by the need
for the telephone network to multiplex and automatically switch a variety of
phone calls. A further technology boost was given during the Second World
War in wireless communications and system theory. The Cold War led to rapid
advances in satellite communications and system theory as the race for space

1.1
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gripped the world’s major technology innovation centers. The invention of the
semiconductor transistor and the impact of Moore’s law have spurred the march
of innovation since the early 1980s. The evolving power of the microprocessor,
the embedded computer, and the signal processor has enabled algorithms, that
were considered preposterous at their formulation, to see cost-effective imple-
mentation. Distilling this 150 plus years of innovation into a small part of an
engineering curriculum is a challenge but one this book arrogantly attempts.

The relative growth rate of electronic communications is phenomenal. Con-
sider, for example, transatlantic transmission of information using undersea
cables. This system has gone from roughly 10 bits/s in 1866 to roughly 1012 bits/s
in the year 2000 [Huu03]. The world community has gone in a very short period
of time from accepting message delivery delays of weeks down to seconds. The
period from 1850–1900 was one filled with remarkable advances in technol-
ogy. It is noteworthy that the advances in communications prior to 1900 can
almost all be attributed to a single individual or invention. This started to
change as technology became more complex in the 1900s. Large corporations
and research labs began to be formed to support the large and complex sys-
tems that were evolving. The evolution of these technologies and the personal-
ities involved in their development are simply fascinating. Several books that
are worth some reading if you are interested in the history of the field are
[Huu03, Bur04, SW49, Bra95, Les69]. It is a rare invention that has an uncon-
tested claim to ownership. These intellectual property disputes have existed
from the telegraph up until modern times, but the tide of human innovation
seems to be ever rising in spite of who gets credit for all the advances.

The ability to communicate has been markedly pushed by advances in tech-
nology but this book is not about technology. From the invention of the mi-
crophone, to the electric motor, to the electronic tube, to the transistor, and
to the laser, engineers and physicists have made great technological leaps for-
ward. These technological leaps have made great advances in communications
possible. As technology has advanced, the job of an engineer has become multi-
faceted and specialized over time. What once was a field where nonexperts
could contribute1 prior to 1900 became a field where great specialization was
needed in the post 1900 era. Two areas of specialization formed through the
1900s: the devices engineer and the systems engineer. The devices engineer is
focused on designing technology to complete certain tasks. Devices engineers,
for example, build antennas, amplifiers, and/or oscillators are heavily involved
with current technology. Systems engineers try to put devices together in a way
that will work as a system to achieve an overall goal. System engineers try to
form mathematical models for how systems operate and use these models to
design and specify systems. This text is written with a systems engineering
perspective. In fact, as a reflection of this focus, this book has exactly one cir-
cuit diagram. This is not an academic shortcoming of this book as the author,

1For example, Samuel Morse of Morse code and telegraph systems fame in the United States
was a professor in the liberal arts.
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for example, has worked for 20 years and for five companies designing com-
munication systems with only a rudimentary knowledge of circuit theory. Sys-
tems engineering in communications did not really come to be a formalized
field until the early 1900s, hence few of the references in this book were pub-
lished before 1900. Some interesting historical system engineering references
are [Car26, Nyq28a, Arm35, Har28, Ric45, Sha48, Wie49]. This systems level
perspective is very useful for education in that; while technology will change
greatly during an engineer’s career, the theory will be reasonably stable.

1.2 Goals for This Text

What this text is attempting to do is to show the mathematical and engineering
underpinings of communication systems and systems engineering. While most
students have used communication technology, few realize that the technology
is built upon a strong core of engineering principles and over 100 years of hard
work by a large group of talented people. Without a talented engineering work-
force who understood the fundamental theory and put this theory into practice,
humans would not have been able to deploy the pervasive communications soci-
ety experiences. The goal for this text is to have some small part in the education
of the workforce that will implement the next 50 years of progress. To reach
this goal this text will focus on teaching the fundamentals of communication
theory by:

■ demonstrating that the mathematical tools the students have learned in their
undergraduate education are useful in engineering practice.

■ showing that with modern integrated circuits the theory is directly reflected
in engineering practice.

■ detailing how engineering trade-offs in a communication system are ever
evolving and that these trade-offs involve fidelity of message reconstruction,
bandwidth efficiency, and complexity of the implementation.

Hopefully in addition to these professional goals, the reader of this text will
come away with:

■ a historical perspective on the hard work that has led to the current state of
the art.

■ a sense of how fundamental engineering tools have real impact on system
design.

■ a realization that fundamental engineering tools have changed little even as
the technology to implement designs has evolved at a withering pace.

■ an understanding that communications engineering is a growing and evolv-
ing entity and that continued education will be an important part of a career
as a communication engineer.
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1.3 Modern Communication System Engineering

Modern communication systems are very complex systems and no one engi-
neer can be an expert in all the areas of the system. The initial communication
systems were very simple point-to-point communication systems (telegraphy)
or broadcast systems (commercial radio). As these systems were simple, the
engineering expertise could be common. As systems started to get more so-
phisticated (public telephony), a bifurcation of the needed expertise to address
problems became apparent. There was a need to have an engineer who under-
stood the details of the physical channel and how the information was trans-
mitted and decoded. In addition there was a need to have an engineer who
abstracted the problem at a higher level. This “higher level” engineer needed to
think about switching architectures, supporting multiple users, scalability of
networks, fault tolerance, and supporting applications. As the amount of infor-
mation, system design options, and technology to implement these options grew,
further subdisciplines arose within the communications engineering field.

Modern communication systems are typically designed in layers to compart-
mentalize the different expertise and ease the interfacing of these multitude of
expertises. In a modern system, the communication system has a high-level net-
work architecture specification. This high-level architecture is typically broken
down into layers for implementation. The advantage of the layered architecture
in the design process is that in designing a system for a particular layer the
next lower layer can be dealt with as an abstract entity and the higher layer
functions do not impact the design. Another advantage to the layered design
is that components can be reused at each layer. This allows services and sys-
tems to be developed much more quickly in that designs can reuse layers from
previous designs when appropriate. This layered design eliminated monolithic
communication systems and allowed incremental changes much more readily.

An example of this layered architecture is the open systems interconnection
(OSI) model. The OSI model was developed by the International Organization
for Standardization (ISO) and has found significant utilization in practice. The
OSI reference model is shown in Figure 1.1. Each layer of abstraction communi-
cates logically with entities at the same layer but produces this communication
by calling the next lower layer in the stack. Using this model, for instance,
it is possible to develop different applications (e.g., e-mail vs. web browsing)
on the same base architecture (e.g., public phone system) as well as provide a
method to insert new technology at any layer of the stack without impacting the
rest of the system performance (e.g., replace a telephone modem with a cable
modem). This concept of a layered architecture has allowed communications
to take great advantage of prior advances and leap-frog technology along at a
phenomenal pace.

This text is entirely focused on what is known as physical layer commu-
nications. The physical layer of communications refers to the direct transfer
of physical messages (analog waveforms or digital data bits) over a commu-
nications channel. The model for a physical layer communication abstraction
is shown in Figure 1.2. Examples of physical communication channels include
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Figure 1.1 The OSI reference model.

copper wire pairs (telephony), coaxial cables, radio channels (mobile telephony),
or optical fibers. It is interesting to note that wireless computer modems for local
area networking are typically referred to as WiPhy in popular culture, which is
an acronym for wireless physical layer communications. The engineering tools,
the technology, and design paradigms are significantly different at the physical
layer than at the higher layers in the stack. Consequently, systems engineer-
ing expertise in practice tends to have the greatest divide at the boundary to
the physical layer. Engineering education has followed that trend and typically
course work in telecommunications at both the undergraduate level and the
graduate level tends to be bifurcated along these lines. To reflect the trend in
both education and in industrial practice, this book will only try to educate in
the area of physical layer communication systems. To reflect this abstraction
the perspective in this text will be focused on point-to-point communications.
Certainly multiple-access communications is very important in practice but it
will not be considered in this text to maintain a consistent focus. Students who
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Figure 1.2 The physical layer model.
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want a focus more on the upper layers of the communication stack should refer
to [KR04, LGW00, Tan02] as examples of this higher layer perspective.

1.4 Technology’s Impact on This Text

This text has been heavily influenced by the relatively recent trends in the field
of physical layer communications system engineering:

■ Advanced communication theory finding utility in practice
■ Baseband processing power increasing at a rate predicted by Moore’s law

Physical layer communications (with the perhaps partial exception of fiber
optics) is filled with examples of sophisticated communication theory being di-
rectly placed into practice. Examples include wireless digital communications
and high-speed cable communications. A communication engineer should truly
feel lucky to live in a time when theory and practice are linked so closely. It
allows people to work on very complex and sophisticated algorithms and have
the algorithms almost immediately be put into practice. Because of this rea-
son it is not surprising that many of the prominent communication theorists
have also been very successful entrepreneurs (Andrew Viterbi [VO79] and Irwin
Jacobs [WJ65] being two obvious examples). In this text, we will attempt to fea-
ture the underlying theory as this theory is so important in practical systems
from mobile phones to television receivers.

The reason that theory is migrating to practice so quickly is the rapid ad-
vance of baseband processing power. Moore’s law is now almost outstrip-
ping the ability of communication theory to use the available processing. In
fact, a great paradigm shift occurred in the industry (in my humble opinion)
when Qualcomm, in championing the cellular standard IS-95, started the de-
sign philosophy of designing a system that was too complicated for the current
technology with the knowledge that Moore’s law would soon enable the design
to be implemented in a cost-effective fashion. Because of this shift in the design
philosophy, future engineers are going to be exploring ways to better utilize this
ever increasingly cost-efficient processing power. Since the future engineers will
be using baseband processing power to implement their algorithms, this text
is written with a focus on the baseband signal processing. To reflect this focus,
this text starts immediately with the complex envelope representation of car-
rier signals and uses this representation throughout the entire text. This is a
significant deviation from most of the prior teaching texts but directly in line
with the notation used in research and in industry.

This book is constructed to align with the quote by Albert Einstein:

Everything should be made as simple as possible, but not one bit simpler.

Consequently, this text will be void of advanced topics in communication
theory that I did not see as fundamental in an introductory communication
theory book. Examples of material left out of the treatment in this text include,
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for example, details of noncoherent detection of digital signals, information
theory and source coding. While these topics are critical to the training of a
communications engineer, it is not necessary to the understanding of analog
and digital information transmission. The goal is essentially not to lose the
proverbial forest for the trees. Many interesting advanced issues and systems
are pursued in the homework problems and projects. The text is written to build
up a tool set in students that allow them to flourish in their profession over a
full career. Readers looking for a buzzword-level treatment of communications
will not find the text satisfactory. Since the focus of this text is the tools that
will be important in the future, many ideas are not discussed in detail that
traditionally were prominent in communication texts (e.g., pulse modulations).
While a communication text can often take the form of an encyclopedia I have
purposely avoided this format for a more focused tool-oriented version. Writing
this paragraph I feel a little like my mom telling me to “eat my vegtables” but
as I grow in age (and hopefully wisdom), I more fully appreciate the wisdom of
my parents and of learning fundamental tools in physical layer communication
engineering.

1.5 Book Overview

The book consists of four parts:

I Mathematical Foundations

II Analog Communication

III Noise in Communications Systems

IV Fundamentals of Digital Communications

This organization allows a slow logical buildup from a base knowledge in
Fourier transforms, linear systems, and probability to an understanding of the
fundamental concepts in communication theory. A significant effort has been
made to make the development logical and to cover the important concepts.

1.5.1 Mathematical Foundations

This part of the book consists of three chapters that provide the mathematical
foundations of communication theory. There are three pieces of test equipment
that are critical for a communication engineer to be able to use to understand
and troubleshoot communication systems: the oscilloscope, the spectrum ana-
lyzer, and the vector signal analyzer. Most communications laboratories contain
this equipment and examples of this equipment are:

1. Digital oscilloscope and logic analyzer – Agilent 54622D

2. Spectrum analyzer – Agilent E4402B

3. Vector signal analyzer – Agilent 89600
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The first chapter of this part of the book covers material that is included in the
core undergraduate electrical engineering curriculum that provides the theory
for the operation for the oscilloscope (time domain characterizations of signals)
and the theory for the operation of the spectrum analyzer (frequency domain
characterization of signals). The fundamental difference between a communi-
cation engineer and a technician is that engineers will consider noise to provide
a complete characterization of the system trade-offs. The tools used to charac-
terize noise are based on probability theory. The second chapter reviews this
material. Courses covering the material on signal and systems and probability
theory are taken before a course in communication theory. These two chapters
are included strictly as review and to establish notation for the remainder of
the book. The chapter on bandpass signals and the complex envelope notation
is where the student steps into modern communication systems theory. This
chapter will teach students how to characterize bandpass signals in the time
domain and in the frequency domain. This chapter also introduces the vector di-
agram, the theoretical basis of the vector signal analyzer. This tool is frequently
used by the modern communication engineer. These mathematical foundations
will provide the basis for communications engineering.

1.5.2 Analog Communication

This part of the book consists of four chapters that introduce the theory of
bandpass analog communication. The approach taken here is to introduce ana-
log communications before the concepts of random processes. Consequently, the
message signal is treated as a known deterministic waveform in the discussion
of analog communications. The downside of this approach is that many of the
powerful results on the power spectrum of analog communication waveforms
cannot be introduced. The advantage of this approach is that since the message
signals are known and deterministic, the tools of Fourier series, Fourier trans-
forms, and signals and systems can be applied to the understanding of analog
modulation systems. This approach allows students to ease into the world of
communications by building upon their prior knowledge in deterministic sig-
nal and system analysis. By tying these tools from early undergraduate courses
into the process of assessing the spectral efficiency and complexity of analog
communications, the student will see the efficacy of an education in the fun-
damentals of electrical engineering. The first chapter of this part of the book
presents the performance metrics in communications: performance, complex-
ity, and spectral efficiency. This three-level trade-off is a recurring theme in the
book. The following chapters introduce the classic methods of communicating
analog information; amplitude and angle modulation. Amplitude modulation
is a modulation format where the message signal is impressed upon the am-
plitude of the bandpass signal. Similarly, angle modulation is a modulation
format where the message signal is impressed in some way in the phase of
the bandpass signal. Finally, the important ideas in analog communications of
multiplexing and the phase-locked loop are presented.
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Many of my professional colleagues have made the suggestion that analog
modulation concepts should be removed from the modern undergraduate cur-
riculum. Comments such as “We do not teach about vacuum tubes so why should
we teach about analog modulations?” are frequently heard. I heartily disagree
with this opinion but not because I have a fondness for analog modulation but
because analog modulation concepts are so important in modern communica-
tion systems. The theory and notation for analog signals learned in this text is a
solid foundation for further explorations into modern communication systems
because modern digital communications use analog waveforms. For example,
in the testing of modern communication systems and subsystems analog modu-
lation and demodulation concepts are used extensively. In fact, most of my good
problems for the analog communication chapters have come as a result of my
work in experimental wireless communications even though my research work
has always been focused on digital communication systems! Another example
of the utility of analog communications is that I am unaware of a synthesized
signal generator that does not have an option to produce amplitude modulated
(AM) and frequency modulated (FM) test signals. While modern communica-
tion engineers do not often design analog communication systems, the theory is
still a useful tool. Consequently, this part of the book focuses on analog commu-
nications but using a modern perspective that will provide students the tools
to flourish in their careers.

1.5.3 Noise in Communication Systems

Understanding the effects of noise and interference on communication systems
what makes a communication system engineer uniquely trained. I have always
been struck by the fact that engineering technicians have a training in time
domain analysis, Fourier analysis, modulation techniques, and demodulation
techniques. The main thing a technician does not understand is how to char-
acterize how noise impacts the trade-offs that must be made in system design.
On the other hand, the understanding of noise is often a frustrating subject for
students as the level of mathematics and abstraction can often seem not worth
the gains in useful skills. The approach taken in this text is to introduce the
minimal amount of abstraction necessary to get useful results for engineering
practice.

There are four topics/chapters that are presented in this section to introduce
the techniques to analyze the impact of noise and interference. The first chapter
focuses on the characterization of Gaussian stationary random processes and
how linear filters impact this characterization. This material builds heavily on
probability and random variable concepts. This text offers little new insights
than has been available since the 1950s [DR87, Pap84] other than a reordering
of topic presentation. The next chapter generalizes the concepts of random pro-
cesses to the case of noise in bandpass communication receivers. The impact of
filters in the receiver on the noise characteristics is explored. After these prelim-
inary tools are in place, a revisiting of all the forms of analog communications in
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the presence of noise is completed. At this point an understanding of the trade-
offs associated with analog communications can be completed and interpreted.

1.5.4 Fundamentals of Digital Communication

This part of the book consists of six chapters that introduce the theory of dig-
ital communication. The first chapter of this part of the book again presents
the performance metrics in communications: fidelity, complexity, and spectral
efficiency and reinterprets these metrics for digital communications. This re-
emphasizes the trade-off first introduced with analog modulation. Interestingly
there is a more powerful statement, due to Claude Shannon, that can be made
about the achievable fidelity and spectral efficiency that will frame this in-
troductory presentation of digital communication presented in this book. The
following chapter introduces the classic methods of communicating 1 bit of in-
formation. This is developed by going through a five-step design process. The
digital communication design problem is generalized for the transmission of
multiple bits of information in the following chapter. The unfortunate situation
exists with multiple bit transmission that the complexity of the optimum de-
coder grows exponentially with the number of bits to be transmitted. To address
this exponential growth in complexity, signal structures that offer reduced com-
plexity optimum demodulation structures are introduced. Several examples of
these reduced complexity modulations that are used in engineering practice are
introduced and these examples are considered in detail. The penultimate chap-
ter of the book considers techniques to greatly improve the spectral efficiency
of digital communications. A section of this part of the book considers the tools
used to test digital communication systems in practice. The ideas and uses of
the vector diagram and the eye diagram in the testing of digital communication
systems are explained and motivated. The idea of modulations with memory,
which provides the structure to approach Shannon’s bounds on communication
fidelity and spectral efficiency, are briefly introduced in the final chapter.

Now on to the fun stuff!

1.6 Homework Problems

Problem 1.1. Research the following person whose letter matches the first letter
of your last name and write a paragraph about why they were important in
communication theory.

(a) Jean Baptiste Joseph Fourier (b) Antoine Parseval (c) John R. Carson
(d) Friedrich Wilhelm Bessel (e) John William Strutt (f) Samuel B. Morse
(g) Emile Baudot (h) Georg Simon Ohm (i) Reginald Fessenden
(j) Stephen O. Rice (k) Claude Shannon (l) Alexander Graham Bell
(m) Hedy Lamarr (n) Claude Berrou (o) Lee de Forest
(p) Harold Nyquist (q) Andrei Andreyevich Markov (r) Reverend Thomas Bayes
(s) Gottfried Wilhelm Leibniz (t) Carl Friedrich Gauss (u) Pierre Simon Laplace
(v) Christian Doppler (w) Norbert Wiener (x) David Hilbert
(y) Gordon Moore (z) Euclid of Alexandria
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Problem 1.2. Research the following person whose letter matches the first letter
of your last name and write a paragraph about why they were important in
communication theory.

(a) James Maxwell (b) Ralph Vinton Lyon Hartley (c) David Sarnoff
(d) William Shockley (e) Guglielmo Marconi (f) Hermann Schwarz
(g) Charles Hermite (h) Philo Farnsworth (i) Leonhard Euler
(j) Max Planck (k) Edwin A. Armstrong (l) Ludwig Boltzmann
(m) Aleksandr Yakovlevich Khinchin (n) Thomas Edision (o) Dwight O. North
(p) Andrew J. Viterbi (q) Edwin A. Armstrong (r) John Bertrand Johnson
(s) Andre Marie Ampere (t) Gottfried Ungerboeck (u) Robert G. Gallagher
(v) Jules Henri Poincare (w) Alessandro Volta (x) Heinrich Hertz
(y) Charles Wheatstone (z) Vladimir Zworykin
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Chapter

2
Signals and Systems Review

This chapter provides a brief review of signals and systems theory usually
taught in an undergraduate curriculum. The purpose of this review is to
introduce the notation that will be used in this text. Most results will be given
without proof as these can be found in most undergraduate texts in signals and
systems [May84, ZTF89, OW97, KH97].

2.1 Signal Classification

A signal, x(t), is defined to be a function of time (t ∈ R). Signals in engi-
neering systems are typically described with five different mathematical
classifications:

1. Deterministic or random

2. Energy or power

3. Periodic or aperiodic

4. Complex or real

5. Continuous time or discrete time

We will only consider deterministic signals at this point as random signals
are a subject of Chapter 9.

2.1.1 Energy versus Power Signals

Definition 2.1 The energy, Ex, of a signal x(t) is

Ex = lim
Tm→∞

∫ Tm/2

−Tm/2
|x(t)|2dt (2.1)

2.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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x(t) is called an energy signal when Ex < ∞. Energy signals are normally
associated with pulsed or finite duration waveforms (e.g., speech or a finite
length information transmission). In contrast, a signal is called a power signal if
it does not have finite energy. In reality, all signals are energy signals (infinity is
hard to produce in a physical system) but it is often mathematically convenient
to model certain signals as power signals. For example, when considering a
voice signal it is usually appropriate to consider the signal as an energy signal
for voice recognition applications but in radio broadcast applications we often
model voice as a power signal.

EXAMPLE 2.1
A pulse is an energy signal:

x(t) =

⎧⎨
⎩

1√
Tp

0 ≤ t ≤ Tp

0 elsewhere

Ex = 1 (2.2)

A common signal that will be used frequently in this text is the sinc function.

Definition 2.2 The sinc function is

sinc(x) = sin(πx)
πx

(2.3)

It should be noted that no standard definition exists among authors for sinc(•)
so care must be exercised in using results from other authors. This text uses
the definition of sinc(•) as adopted by Matlab.

EXAMPLE 2.2
Not all energy signals have finite duration:

x(t) = 2W
sin(2πWt)

2πWt
= 2Wsinc(2Wt) Ex = 2W (2.4)

EXAMPLE 2.3
A voice signal. Figure 2.1 shows the time waveform for a computer-generated voice
saying “Bingo.” This signal is an obvious energy signal due to its finite time duration.

Definition 2.3 The signal power, Px, is

Px = lim
Tm→∞

1
Tm

∫ Tm/2

−Tm/2
|x(t)|2dt (2.5)

Note that if Ex < ∞, then Px = 0 and if Px > 0, then Ex = ∞.
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Figure 2.1 The time waveform for a computer-generated voice saying “Bingo.”

EXAMPLE 2.4

x(t) = cos(2π fct)

Px = lim
Tm→∞

1
Tm

∫ Tm/2

−Tm/2
cos2(2π fct)dt

= lim
Tm→∞

1
Tm

∫ Tm/2

−Tm/2

(
1
2

+ 1
2

cos(4π fct)

)
dt = 1

2
(2.6)

EXAMPLE 2.5
The waveform in Figure 2.2 is an analytical representation of the transmitted signal
in a simple radar or sonar system. A signal pulse is transmitted for τ seconds and the
receiver then listens for T seconds for returns from airplanes, ships, stormfronts, or
other targets. After T seconds another pulse is transmitted. For this signal

Px = lim
Tm→∞

1
Tm

∫ Tm/2

−Tm/2
|x(t)|2dt = 1

T

∫ τ

0
dt = τ

T
(2.7)
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…

1
x(t)

τ T T + τ

Figure 2.2 A periodic pulse train.

Throughout this text, signals will be considered and analyzed independent
of physical units but the concept of units is worth a couple of comments at this
point. Energy is typically measured in Joules and power is typically measured
in Watts. Most signals electrical engineers consider are voltages or currents,
so to obtain energy and power in the appropriate units a resistance needs to
be specified (e.g., Watts = Volts2

/Ohms). To simplify notation, we will just
define energy and power as earlier which is equivalent to having the signal x(t)
measured in Volts or Amperes and the resistance being unity (R = 1�).

2.1.2 Periodic versus Aperiodic

A periodic signal is one that repeats itself in time.

Definition 2.4 x(t) is a periodic signal when

x(t) = x(t + T0) ∀t and for some T0 �= 0 (2.8)

Definition 2.5 The signal period is

T = min(|T0|) (2.9)

The fundamental frequency is then

f T = 1
T

(2.10)

EXAMPLE 2.6
A simple example of a periodic signal is

x(t) = cos(2π fmt) T0 = n
fm

T = 1
fm

(2.11)

Most periodic signals are power signals (note if the energy in one period is
nonzero, then the periodic signal is a power signal) and again periodicity is a
mathematical convenience that is not rigorously true for any real signal. We
use the model of periodicity when the signal has approximately the property in
Eq. (2.8) over the time range of interest. An aperiodic signal is defined to be a
signal that is not periodic.
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EXAMPLE 2.7
Examples of aperiodic signals are

x(t) = e− t
τ x(t) = 1

t
(2.12)

2.1.3 Real versus Complex Signals

Complex signals arise often in communication systems analysis and design.
The most common example is Fourier transforms which is discussed later in
this chapter. Another important communication application of complex signals
is in the representation of bandpass signals and Chapter 4 discusses this in
more detail. For this review, we will consider some simple characteristics of
complex signals. Define a complex signal and a complex exponential to be

z(t) = x(t) + j y(t) e j θ = cos(θ ) + j sin(θ ) (2.13)

where x(t) and y(t) are both real signals. Note this definition is often known as
Euler’s rule. A magnitude (α(t)) and phase (θ(t)) representation of a complex
signal is also commonly used, i.e.,

z(t) = α(t)e j θ (t) (2.14)

where

α(t) = |z(t)| =
√

x2(t) + y2(t) θ (t) = arg(z(t)) = tan−1(y(t), x(t)) (2.15)

It should be noted that the inverse tangent function in Eq. (2.15) uses two
arguments and returns a result in [0, 2π ]. The complex conjugate operation is
defined as

z∗(t) = x(t) − j y(t) = α(t)e− j θ(t) (2.16)

Some important formulas for analyzing complex signals are

|z(t)|2 = α(t)2 = z(t)z∗(t) = x2(t) + y2(t) cos(θ )2 + sin(θ )2 = 1


[z(t)] = x(t) = α(t) cos(θ (t)) = 1
2 [z(t) + z∗(t)] cos(θ ) = 1

2 [e j θ + e− j θ ] (2.17)

�[z(t)] = y(t) = α(t) sin(θ(t)) = 1
2 j [z(t) − z∗(t)] sin(θ ) = 1

2 j [e j θ − e− j θ ]

EXAMPLE 2.8
The most common complex signal in communication engineering is the complex expo-
nential, i.e.,

exp[ j 2π fmt] = cos(2π fmt) + j sin(2π fmt)

This signal will be the basis of the frequency domain understanding of signals.



2.6 Chapter Two

2.1.4 Continuous Time Signals versus Discrete Time Signals

A signal, x(t), is defined to be a continuous time signal if the domain of the
function defining the signal contains intervals of the real line. A signal, x(t), is
defined to be a discrete time signal if the domain of the signal is a countable
subset of the real line. Often a discrete signal is denoted by x(k), where k is an
integer and a discrete signal often arises from (uniform) sampling of a contin-
uous time signal, e.g., x(k) = x(kTs), where Ts is the sampling period. Discrete
signals and systems are of increasing importance because of the widespread
use of computers and digital signal processors, but in communication systems
the vast majority of the transmitted and received signals are continuous time
signals. Consequently since this is a course in transmitter and receiver design
(physical layer communications), we will be primarily concerned with contin-
uous time signals and systems. Alternately, the digital computer is a great
tool for visualization and discrete valued signals are processed in the com-
puter. Section 2.4 will discuss in more detail how the computer and specifically
the software package Matlab can be used to examine continuous time signal
models.

2.2 Frequency Domain Characterization of Signals

Signal analysis can be completed in either the time or frequency domains. This
section briefly overviews some simple results for frequency domain analysis. We
first review the Fourier series representation for periodic signal, then discuss
the Fourier transform for energy signals and finally relate the two concepts.

2.2.1 Fourier Series

If x(t) is periodic with period T , then x(t) can be represented as

x(t) =
∞∑

n=−∞
xn exp

[
j 2πnt

T

]
=

∞∑
n=−∞

xn exp[ j 2π f T nt] (2.18)

where f T = 1/T and

xn = 1
T

∫ T

0
x(t) exp[− j 2π f T nt]dt (2.19)

This is known as the complex exponential Fourier series. Note a sine-cosine
Fourier series is also possible with equivalence due to Euler’s rule. Note in
general the xn are complex numbers. In words: A periodic signal, x(t), with
period T can be decomposed into a weighted sum of complex sinusoids with
frequencies that are an integer multiple of the fundamental frequency
( f T = 1/T ).
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EXAMPLE 2.9
Consider again the signal in Example 2.4 where

x(t) = cos(2π fmt) = 1
2

exp[ j 2π fmt] + 1
2

exp[− j 2π fmt]

fT = fm x1 = x−1 = 1
2

, xn = 0 for all other n (2.20)

EXAMPLE 2.10
Consider again the signal in Example 2.8 where

x(t) = exp( j 2π fmt)

fT = fm x1 = 1, xn = 0 for all other n (2.21)

EXAMPLE 2.11
Consider again the signal in Example 2.5. The Fourier series for this example is

xn = 1
T

∫ τ

0
exp

(
− j

2πnt
T

)
dt

= 1
T

exp( − j 2πnt
T )

− j 2πn
T

∣∣∣∣∣
τ

0

= 1
T

1 − exp( − j 2πnτ
T )

j 2πn
T

(2.22)

Using sin(θ) = e j θ −e− j θ

j 2 gives

xn = τ

T
exp
[
− j

πnτ

T

] sin( πnτ
T )

πnτ
T

= τ

T
exp
[
− j

πnτ

T

]
sinc
(nτ

T

)
(2.23)

A number of things should be noted about this example

1. τ and the bandwidth of the waveform are inversely proportional, i.e., a smaller τ

produces a larger bandwidth signal.

2. τ and the signal power are directly proportional.

3. If T /τ = integer, some terms will vanish (i.e., sin(mπ ) = 0).

4. To produce a rectangular pulse requires an infinite number of harmonics.
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Properties of the Fourier Series
Property 2.1 If x(t) is real, then xn = x∗−n. This property is known as Hermitian
symmetry. Consequently the Fourier series of a real signal is a Hermitian symmet-
ric function of frequency. This implies that the magnitude of the Fourier series is an
even function of frequency, i.e.,

|xn| = |x−n| (2.24)

and the phase of the Fourier series is an odd function of frequency, i.e.,

arg(xn) = − arg(x−n) (2.25)

Property 2.2 If x(t) is real and an even function of time, i.e., x(t) = x(−t), then all the
coefficients of the Fourier series are real numbers.

EXAMPLE 2.12
Recall Example 2.4, where x(t) = cos(2π fmt). For this signal T = 1/ fm and the only
nonzero Fourier coefficients are x1 = 0.5, x−1 = 0.5.

Property 2.3 If x(t) is real and odd, i.e., x(t) = −x(−t), then all the coefficients of the
Fourier series are imaginary numbers.

EXAMPLE 2.13
For x(t) = sin(2π fmt), where T = 1/ fm and the only nonzero Fourier coefficients are
x1 = − j 0.5, x−1 = j 0.5.

Theorem 2.1 (Parseval)

Px = 1
T

∫ T

0
|x(t)|2dt =

∞∑
n=−∞

|xn|2 (2.26)

Parseval’s theorem states that the power of a signal can be calculated using
either the time or the frequency domain representation of the signal and the
two results are identical.

EXAMPLE 2.14
For both x1(t) = cos(2π fmt) and x2(t) = sin(2π fmt) it is apparent that

Px1 = (0.5)2 + (0.5)2 = 0.5 = Px2 (2.27)
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2.2.2 Fourier Transform

If x(t) is an energy signal, then the Fourier transform is defined as

X (f ) =
∫ ∞

−∞
x(t)e− j 2π f tdt = F{x(t)} (2.28)

X (f ) is in general complex and gives the frequency domain representation of
x(t). The inverse Fourier transform is

x(t) =
∫ ∞

−∞
X (f )e j 2π f tdf = F−1{X (f )}

EXAMPLE 2.15
Example 2.1 (cont.). The Fourier transform of

x(t) =
{

1 0 ≤ t ≤ Tp

0 elsewhere
(2.29)

is given as

X (f ) =
∫ Tp

0
e− j 2π f tdt = exp[− j 2π f t]

− j 2π f

∣∣∣∣
Tp

0
= Tp exp[ j π f Tp]sinc( f Tp) (2.30)

EXAMPLE 2.16
Example 2.2(cont.). The Fourier transform of

x(t) = 2W
sin(2πWt)

2πWt
= 2Wsinc(2Wt)

is given as

X (f ) =
{

1 | f | ≤ W

0 elsewhere
(2.31)

Properties of the Fourier Transform
Property 2.4 If x(t) is real then the Fourier transform is Hermitian symmetric, i.e.,
X (f ) = X∗(− f ). This implies

|X (f )| = |X (− f )| arg(X (f )) = − arg(X (− f )) (2.32)

Property 2.5 If x(t) is real and an even function of time, i.e., x(t) = x(−t), then X (f ) is
a real valued and even function of frequency.
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Property 2.6 If x(t) is real and odd, i.e., x(t) = −x(−t), then X (f ) is an imaginary valued
and odd function of frequency.

Theorem 2.2 (Rayleigh’s Energy)

Ex =
∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|X (f )|2df (2.33)

EXAMPLE 2.17
Example 2.1 (cont.). For the Fourier transform pair of

x(t) =
{

1 0 ≤ t ≤ Tp

0 elsewhere
X (f ) = Tp exp[ j π f Tp]sinc( f Tp) (2.34)

the energy is most easily computed in the time domain

Ex =
∫ Tp

0
|x(t)|2dt = Tp (2.35)

EXAMPLE 2.18
Example 2.2 (cont.). For the Fourier transform pair of

x(t) = 2Wsinc(2Wt) X (f ) =
{

1 | f | ≤ W

0 elsewhere
(2.36)

the energy is most easily computed in the frequency domain

Ex =
∫ W

−W
|X (f )|2df = 2W (2.37)

Theorem 2.3 (Convolution) The convolution of two time functions, x(t) and h(t), is
defined as

y(t) = x(t) ∗ h(t) =
∫ ∞

−∞
x(λ)h(t − λ)dλ (2.38)

The Fourier transform of y(t) is given as

Y (f ) = F{y(t)} = H (f )X (f ) (2.39)

Theorem 2.4 (Duality) If X (f ) = F{x(t)}, then

x(f ) = F{X (−t)} x(− f ) = F{X (t)} (2.40)
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Theorem 2.5 Translation and Dilation If y(t) = x(at + b), then

Y (f ) = 1
|a| X

(
f
a

)
exp

[
j 2π

b
a

f

]
(2.41)

Theorem 2.6 Frequency Translation Multiplying any signal by a sinusoidal signal
results in a frequency translation of the Fourier transforms, i.e.,

xc(t) = x(t) cos(2π fct) ⇒ Xc(f ) = 1
2

X ( f − fc) + 1
2

X ( f + fc) (2.42)

xc(t) = x(t) sin(2π fct) ⇒ Xc(f ) = 1
j 2

X ( f − fc) − 1
j 2

X ( f + fc) (2.43)

Definition 2.6 The correlation function of a signal x(t) is

Vx(τ ) =
∫ ∞

−∞
x(t)x∗(t − τ )dt (2.44)

Three important characteristics of the correlation funtion are

1. Vx(0) = ∫∞
−∞ |x(t)|2dt = Ex

2. Vx(τ ) = V ∗
x (−τ )

3. |Vx(τ )| < Vx(0)

EXAMPLE 2.19
Example 2.1 (cont.). For the pulse

x(t) =
{

1 0 ≤ t ≤ Tp

0 elsewhere
(2.45)

the correlation function is

Vx(τ ) =

⎧⎨
⎩Tp

(
1 − |τ |

Tp

)
|τ | ≤ Tp

0 elsewhere
(2.46)

Definition 2.7 The energy spectrum of a signal x(t) is

Gx(f ) = X (f )X∗(f ) = |X (f )|2 (2.47)

The energy spectral density is the Fourier transform of the correlation
function, i.e.,

Gx(f ) = F{Vx(τ )} (2.48)

The energy spectrum is a functional description of how the energy in the signal
x(t) is distributed as a function of frequency. The units on an energy spectrum
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are J/Hz. Because of this characteristic, two important properties, of the energy
spectral density are

Gx (f ) ≥ 0 ∀ f (Energy in a signal cannot be negative valued)

Ex =
∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
Gx(f )df (2.49)

This last result is a restatement of Rayleigh’s energy theorem and the analogy
to Parseval’s theorem should be noted.

EXAMPLE 2.20
Example 2.1(cont.). For the Fourier transform pair of

x(t) =
{

1 0 ≤ t ≤ Tp

0 elsewhere
X (f ) = Tp exp[− j π f Tp]sinc( f Tp) (2.50)

the energy spectrum is

Gx(f ) = T 2
p (sinc( f Tp))2 (2.51)

The energy spectrum of the pulse is shown in Figure 2.3 (a).

EXAMPLE 2.21
Example 2.2(cont.). For the Fourier transform pair of

x(t) = 2Wsinc(2Wt) X (f ) =
{

1 | f | ≤ W

0 elsewhere
(2.52)

the energy spectrum is

Gx(f ) =
{

1 | f | ≤ W

0 elsewhere
(2.53)

EXAMPLE 2.22
Example 2.3(cont.). The energy spectrum of the computer-generated voice signal is
shown in Figure 2.3 (b). The two characteristics that stand out in examining this spec-
trum are that the energy in the signal starts to significantly drop off after about 2.5 kHz
and that the DC content of this voice signal is small.
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Figure 2.3 (a) The energy spectrum of a pulse from Example 2.1 and (b) the computer-generated voice signal from
Example 2.3.

Theory of Operation: Signal Analyzers

Electronic test equipment (such as power meters and spectrum analyzers) are
tools that attempt to provide the important characteristics of electronic sig-
nals to the practicing engineer. The main differences between test equipment
and the theoretical equations like those discussed in this chapter are that test
equipment only observes the signal over a finite interval. For instance a power
meter outputs a reading, which is essentially a finite time average power.

Definition 2.8 The average power over a measurement time, Tm, is

Px(Tm) = 1
Tm

∫ Tm/2

−Tm/2
|x(t)|2dt W (2.54)

Definition 2.9 The Fourier transform of a signal truncated to a time length of Tm is

XTm (f ) =
∫ Tm/2

−Tm/2
x(t)e− j 2π f tdt (2.55)

An ideal spectrum analyzer produces the following measurement for a span
of frequencies

Sx( f , Tm) = 1
Tm

|XTm(f )|2 W/Hz (2.56)

The function in Eq. (2.56) is often termed the sampled power spectral density
and it is a direct analog to the energy spectral density of Eq. (2.47). The sampled
power spectrum is a functional description of how the power in the truncated
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signal x(t) is distributed as a function of frequency. The units on a power spec-
trum are Watts/Hz. Because of this characteristic, two important characteristics
of the power spectral density are

Sx( f , Tm) ≥ 0 ∀ f (Power in a signal cannot be negative valued)

Px(Tm) = 1
Tm

∫ Tm/2

−Tm/2
|x(t)|2dt =

∫ ∞

−∞
Sx( f , Tm)df (2.57)

In practice, the actual values output by a spectrum analyzer test instrument
are closer to

S̃x( f , Tm) = 1
Tm

∫ f +Br /2

f −Br /2
|XTm(λ)|2dλ W (2.58)

where Br is denoted as the resolution bandwidth (see [Pet89] for a good dis-
cussion of spectrum analyzers). Signal analyzers are designed to provide the
same information for an engineer as signal and systems theory does within the
constraints of electronic measurement techniques.

Also when measuring electronic signals practicing engineers commonly use
the decibel terminology. Decibel notation can express the ratio of two quanti-
ties, i.e.,

P = 10 log
[

P1

P2

]
dB (2.59)

In communication systems, we often use this notation to compare the power
of two signals. The decibel notation is used because it compresses the mea-
surement scale (106 = 60 dB). Also multiplies turn into adds, which is often
convenient in the discussion of electronic systems. The decibel notation can
also be used for absolute measurements if P2 becomes a reference level. The
most commonly used absolute decibel scales are dBm (P2 = 1 mw) and dBW
(P2 = 1 W). In communication systems, the ratio between the signal power and
the noise power is an important quantity and this ratio is typically discussed
with decibel notation.

2.2.3 Bandwidth of Signals

Engineers often like to quantify complicated entities with simple parameteriza-
tions. This often helps in developing intuition and simplifies discussion among
different members of an engineering team. Since the frequency domain descrip-
tion of signals is not often easily parameterized, engineers often like to describe
signals in terms of a single number. Most often in communications engineering,
this single parameter is a description of the bandwidth. Bandwidth in commu-
nication engineering most often refers to the amount of positive frequency
spectrum that a signal occupies. Unfortunately, the bandwidth of a signal does
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not have a common definition across all engineering disciplines. The common
definitions of bandwidth used in engineering practice can be enumerated as

1. X dB relative bandwidth, BX Hz

2. P % energy (power) integral bandwidth, BP Hz

For lowpass energy signals we have the following two definitions

Definition 2.10 If a signal x(t) has an energy spectrum Gx(f ), then BX is determined as

10 log(max
f

Gx(f )) = X + 10 log(Gx(BX )) (2.60)

where Gx(BX ) > Gx(f ) for | f | > BX

In words, a signal has a relative bandwidth BX , if the energy spectrum is at
least XdB down from the peak at all frequencies at or above BX Hz. Often used
values for X in engineering practice are the 3-dB bandwidth and the 40-dB
bandwidth.

Definition 2.11 If a signal x(t) has an energy spectrum Gx(f ), then BP is deter-
mined as

P =
∫ BP

−BP
Gx(f )df

Ex
(2.61)

In words, a signal has an integral bandwidth BP if the percent of the total
energy in the interval [−BP , BP ] is equal to P%. Often used values for P in
engineering practice are 98% and 99%.

EXAMPLE 2.23
Consider the rectangular pulse which is given as

x(t) =
{

1 0 ≤ t ≤ Tp

0 elsewhere
(2.62)

The energy spectrum of this signal is given as

Gx(f ) = |X (f )|2 = T 2
p (sinc( f Tp))2 (2.63)

Figure 2.3 shows a normalized plot of this energy spectrum. Examining this plot carefully
produces the 3-dB bandwidth of B3 = 0.442/Tp and the 40-dB bandwidth of B40 =
31.54/Tp . Integrating the power spectrum in Eq. (2.63) gives a 98% energy bandwidth
of B98 = 5.25/Tp . These bandwidths parameterizations demonstrate that a rectangular
pulse is not very effective at distributing the energy in a compact spectrum.
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EXAMPLE 2.24
Example 2.2 (cont.). For the Fourier transform pair of

x(t) = 2Wsinc(2Wt) Gx(f ) =
{

1 | f | ≤ W

0 elsewhere
(2.64)

the 3-dB bandwidth, B3 = W , and the 40-dB bandwidth, B40 = W , are identical.
Integrating the power spectrum gives a 98% energy bandwidth of B98 = 0.98W. These
bandwidths parameterization demonstrate that a sinc pulse is effective at distributing
the energy in a compact spectrum.

EXAMPLE 2.25
Example 2.3 (cont.). For the computer generated voice signal the 3-dB bandwidth is
B3 = 360 Hz and the 40-dB bandwidth is B40 = 4962 Hz. Integrating the power spec-
trum gives a 98% energy bandwidth of B98 = 2354 Hz.

It is clear from the preceding examples that one parameter such as bandwidth
does not do a particularly good job of characterizing a signal’s spectrum. There
are many definitions of bandwidth and these numbers while giving insight into
the signal characteristics, do not fully characterize a signal.

For lowpass power signals similar ideas hold with Gx(f ) being replaced with
Sx( f , Tm).

Definition 2.12 If a signal x(t) has a sampled power spectral density Sx( f , Tm), then
BX is determined as

10 log(max
f

Sx( f , Tm)) = X + 10 log(Sx(BX , Tm)) (2.65)

where Sx(BX , Tm) > Sx( f , Tm) for | f | > BX .

Definition 2.13 If a signal x(t) has a sampled power spectral density Sx( f , Tm), then
BP is determined as

P =
∫ BP

−BP
Sx( f , Tm)df

Px(Tm)
(2.66)

2.2.4 Fourier Transform Representation of Periodic Signals

The Fourier transform for power signals is not rigorously defined and yet we
often want to use frequency representations of power signals. Typically the
power signals we will be using in this text are periodic signals that have a
Fourier series representation. A Fourier series can be represented in the fre-
quency domain with the help of the following result

δ( f − f 1) =
∫ ∞

−∞
exp[ j 2π f 1t] exp[− j 2π f t]dt (2.67)
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In other words, a complex exponential of frequency f 1 can be represented in
the frequency domain with an impulse at f 1. Consequently the Fourier trans-
form of a periodic signal is represented as

X (f ) =
∫ ∞

−∞

∞∑
n=−∞

xn exp
[

j
2πnt

T

]
exp[− j 2π f t]dt =

∞∑
n=−∞

xnδ
(

f − n
T

)
(2.68)

Throughout the remainder of the text the spectrum of a periodic signal will
be plotted using lines with arrows at the top to represent the delta functions.
The bandwidth of periodic signals can be defined now by using the results of
Section 2.2.3.

EXAMPLE 2.26
Consider again the the cosine signal introduced in Example 2.5.

F(cos(2π fmt)) = 1
2

δ( f − fm) + 1
2

δ( f + fm)

By all definitions the bandwidth of this signal is B = fm.

EXAMPLE 2.27
Consider again the the periodic pulse signal introduced in Example 2.5. The plot of the
resultant energy spectrum is given in Figure 2.4 for τ = 0.2T . For τ = 0.2T , B3 = 3/T ,
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Figure 2.4 The energy spectrum of the periodic pulse. τ = 0.2T .
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B40 = 152/T , and B98 = 26/T . Note the computation of B98 required a Matlab program
to be written to sum the magnitude square of the Fourier series coefficients. B40 can
only be identified by expanding the x-axis in Figure 2.4 as the spectrum has not yet gone
40 dB down in this figure.

2.2.5 Laplace Transforms

This text will use the one-sided Laplace transform for the analysis of tran-
sient signals in communications systems. The one–sided Laplace transform of
a signal x(t) is

X (s) = L{x(t)} =
∫ ∞

0
x(t) exp[−st]dt (2.69)

The use of the one-sided Laplace transform implies that the signal is zero for
negative time. The inverse Laplace transform is given as

x(t) = 1
2π j

∮
X (s) exp[st]ds (2.70)

The evaluation of the general inverse Laplace transform requires the evalu-
ation of contour integrals in the complex plane. For most transforms of interest
the results are available in tables.

EXAMPLE 2.28

x(t) = sin(2π fmt) X (s) = 2π fm

s2 + (2π fm)2

x(t) = cos(2π fmt) X (s) = s
s2 + (2π fm)2

2.3 Linear Time-Invariant Systems

Electronic systems are often characterized by the input/output relations. A block
diagram of an electronic system is given in Figure 2.5, where x(t) is the input
and y(t) is the output.

Definition 2.14 A linear system is one in which superposition holds, i.e.,

ax1(t) + bx2(t) → ay1(t) + by2(t) (2.71)

Electronic System
x t( ) y t( )

Figure 2.5 A system block
diagram.
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Definition 2.15 A time-invariant system is one in which a time shift in the input only
changes the output by a time shift, i.e.,

x(t − τ ) → y(t − τ ) (2.72)

A linear time-invariant (LTI) system is described completely by an impulse
response, h(t). The output of the linear system is the convolution of the input
signal with the impulse response, i.e.,

y(t) =
∫ ∞

−∞
x(λ)h(t − λ)dλ = x(t) ∗ h(t) (2.73)

The Fourier transform (Laplace transform) of the impulse response is denoted
the frequency response (transfer function), H (f ) = F{h(t)}(H (s) = L{h(t)}),
and by the convolution theorem for energy signals we have

Y (f ) = H (f )X (f ) (Y (s) = H (s)X (s)) (2.74)

Likewise the linear system output energy spectrum has a simple form

Gy(f ) = H (f )H ∗(f )Gx(f ) = |H (f )|2Gx(f ) = Gh(f )Gx(f ) (2.75)

EXAMPLE 2.29
If a linear time-invariant filter had an impulse response given in Example 2.2, i.e.,

h(t) = 2W
sin(2πWt)

2πWt
= 2Wsinc(2Wt)

it would result in an ideal lowpass filter. A filter of this form has two problems for an
implementation: (1) the filter is anticausal and (2) the filter has an infinite impulse
response. The obvious solution to having an infinite duration impulse response is to
truncate the filter impulse response to a finite time duration. The way to make an
anticausal filter causal is simply to time shift the filter response. Figure 2.6 (a) shows
the resulting impulse response when the ideal lowpass filter had a bandwidth of W =
2.5 kHz and the truncation of the impulse response is 93 ms and the time shift of
46.5 ms. The truncation will change the filter transfer function slightly while the delay
will only add a phase shift. The resulting magnitude for the filter transfer function
is shown in Figure 2.6 (b). If the voice signal of Example 2.3 is passed through this filter,
then due to Eq. (2.75), the output energy spectrum should be filtered heavily outside of
2.5 kHz and roughly the same within 2.5 kHz, as shown in Figure 2.7. Figure 2.7 shows
the measured energy spectrum of the input and output and these measured values match
exactly that predicted by theory. This is an example of how communications engineers
might use linear system theory to predict system performance. This signal will be used
as a message signal throughout the remainder of this text to illustrate the ideas of
analog communication.
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Figure 2.6 A lowpass filter impulse response and the spectrum. (a) The impulse response, h(t), of a filter obtained
by truncating (93 ms) and time-shifting (46.5 ms) (b) an ideal lowpass (W = 2.5 kHz) filter impulse response.

EXAMPLE 2.30
In this example the signal from Example 2.1 is to be filtered by the filter from the
previous example. For this example we assume that Tp = 907µs. Figure 2.8 shows the
measured energy spectrum of the input and output, and Figure 2.9 shows the input and
output time waveforms for this example. The impact of filtering in the frequency domain
is clearly evident. The elimination of the high-frequency components of the pulse signal
eliminates the sharp transitions and produces some ringing effects.
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Figure 2.7 (a) The energy spectrum of the voice signal before and (b) after filtering by a lowpass filter of bandwidth
2.5 kHz.
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Figure 2.8 (a) The energy spectrum of the pulse signal before and (b) after filtering by a lowpass filter of band-
width 2.5 kHz.

For a periodic input signal the output of the LTI system will be a periodic
signal of the same period and have a Fourier series representation of

y(t) =
∞∑

n=−∞
H
( n

T

)
xn exp

[
j 2πnt

T

]
=

∞∑
n=−∞

yn exp
[

j 2πnt
T

]
(2.76)

where yn = H ( n
T )xn. In other words the output of an LTI system with a periodic

input will also be periodic. The Fourier series coefficients are the product of
input signal’s coefficients and the transfer function evaluated at the harmonic
frequencies.
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Figure 2.9 (a) The time domain signals of the pulse signal before and (b) after filtering by a lowpass filter of
bandwidth 2.5 kHz.
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EXAMPLE 2.31
Consider the signal from Example 2.1, x(t) = cos(2π fmt) input into an arbitrary filter
characterized with a transfer function H (f ). The output Fourier series coefficients are

fT = fm y1 = H ( fm)
2

y−1 = H (− fm)
2

xn = 0 (2.77)

and denoting the amplitude of the transfer funtion with HA(f ) and the phase of the
transfer function with HP (f ) the output signal is

y(t) = HA( fm) cos(2π fmt + HP ( fm)) (2.78)

EXAMPLE 2.32
Consider the repeating pulse signal with 1/T = 500 Hz and τ = 2500 Hz from Example
2.5, input into a filter with an impulse response given in Example 2.2, i.e.,

h(t) = 2W
sin(2πWt)

2πWt
= 2Wsinc(2Wt)

where W = 2500 Hz. The input signal spectrum is given in Figure 2.4. The output
Fourier series coefficients are the same over the passband of the filter and are zero out-
side the passband. The output spectrum and output time plot are shown in Figure 2.10.

An important linear system for the study of frequency modulated (FM) signals
is the differentiator. The differentiator is described with the following transfer
function

y(t) = d nx(t)
dtn ⇔ Y (f ) = ( j 2π f )nX (f ) (2.79)
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Figure 2.10 A filtered repetitive pulse, τ = 1/2500 and T = 1/500.
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2.4 Utilizing Matlab

The signals that are discussed in a course on communications are typically
defined over a continuous time variable, e.g., x(t). Matlab is an excellent package
for visualization and learning in communications engineering and will be used
liberally throughout this text. Unfortunately Matlab uses signals that are de-
fined over a discrete time variable, x(k). Discrete time signal processing basics
are covered in the prerequisite signals and linear systems and comprehensive
treatments are given in [Mit98, OS99, PM88, Por97]. This section provides a
brief discussion of how to transition between the continuous time functions
(communication theory) and the discrete time functions (Matlab). The exam-
ples considered in Matlab will reflect the types of signals you might measure
when testing signals in the lab.

2.4.1 Sampling

The simplest way to convert a continuous time signal, x(t), into a discrete time
signal, x(k), is to sample the continuous time signal, i.e.,

x(k) = x(kTs + ε)

where Ts is the time between samples. The sample rate is denoted f s = 1
Ts

. This
conversion is an important part of analog–to–digital conversion (ADC) and is
a common operation in practical communication system implementations. The
discrete time version of the signal is a faithful representation of the continuous
time signal if the sampling rate is high enough.

To see that this is true it is useful to introduce some definitions for discrete
time signals.

Definition 2.16 For a discrete time signal x(k), the discrete time Fourier transform
(DTFT) is

X (e j 2π f ) =
∞∑

k=−∞
x(k)e j 2π f k (2.80)

For clarity when the frequency domain representation of a continuous time
signal is discussed it will be denoted as a function of f , e.g., X (f ) and when
the frequency domain representation of a discrete time signal is discussed it
will be denoted as a function of e j 2π f , e.g., X (e j 2π f ). This DTFT is a continuous
function of frequency and since no time index is associated with x(k), the range
of where the function can potentially take unique values is f ∈ [−0.5, 0.5].
Matlab has built-in functions to compute the discrete Fourier transform (DFT),
which is simply the DTFT evaluated at uniformly spaced points.

For a sampled signal, the DTFT is related to the Fourier transform of the
continuous time signal via [Mit98, OS99, PM88, Por97].

X (e j 2π f ) = 1
Ts

∞∑
n=−∞

X
(

f − n
Ts

)
(2.81)
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Examining Eq. (2.81) shows that if the sampling rate is higher than twice
the highest significant frequency component of the continuous time signal then

X (e j 2π f ) = 1
Ts

X
(

f
Ts

)
(2.82)

and

X (f ) = Ts X (e j 2π( f Ts)) (2.83)

Note the highest significant frequency component is often quantified through
the definition of the bandwidth (see Section 2.2.3). Consequently the rule of
thumb for sampling is that the sampling rate should be at least twice the band-
width of the signal. A sampling rate of exactly twice the bandwidth of the signal
is known as Nyquist’s sampling rate.

2.4.2 Integration

Many characteristics of continuous time signals are defined by an integral. For
example, the energy of a signal is given in Eq. (2.1) as an integral. The Fourier
transform, the correlation function, convolution, and the power are other exam-
ples of signal characteristics defined through integrals. Matlab does not have
the ability to evaluate integrals but the values of the integral can be approx-
imated to any level of accuracy desired. The simplest method of computing
an approximation solution to an integral is given by the Riemann sum first
introduced in calculus.

Definition 2.17 A Riemann sum approximation to an integral is

∫ b

a
x(t)dt ≈ b − a

N

N∑
k=1

x

(
a − ε + k(b − a)

N

)
= h

N∑
k=1

x(k) (2.84)

where ε ∈ [−(b − a)/N , 0] and h = b−a
N is the step size for the sum.

A Riemann sum will converge to the true value of the finite integral as the
number of points in the sum goes to infinity. Note that the DTFT for sampled
signals can actually be viewed as a Riemann sum approximation to the Fourier
transform.

2.4.3 Commonly Used Functions

This section details some Matlab functions that can be used to implement the
signals and systems that are discussed in this chapter. Help with the details of
these functions is available in Matlab.

Standard Stuff
■ cos — cosine function
■ sin — sine function
■ sinc — sinc function
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■ sqrt — square root function
■ log10 — log base ten, this is useful for working in dB
■ max — maximum of a vector
■ sum — sum of the elements of a vector

Complex signals
■ abs — | • |
■ angle — arg(•)
■ real — 
[•]
■ imag — �[•]
■ conj — (•)∗

Input and Output
■ plot — 2D plotting
■ xlabel, ylabel, axis — formatting plots
■ sound,soundsc — play vector as audio
■ load — load data
■ save — save data

Frequency Domain and Linear Systems
■ fft — computes a discrete Fourier transform (DTF)
■ fftshift — shifts an DFT output so when it is plotted it looks more like a

Fourier transform
■ conv — convolves two vectors

2.5 Homework Problems

Problem 2.1. Let two complex numbers be given as

z1 = x1 + j y1 = a1 exp( j θ1) z2 = x2 + j y2 = a2 exp( j θ2) (2.85)

Find

(a) 
[z1 + z2]

(b) |z1 + z2|
(c) �[z1z2]

(d) arg[z1z2]

(e) |z1z2|
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Problem 2.2. Plot, find the period, and find the Fourier series representation of
the following periodic signals

(a) x(t) = 2 cos(200πt) + 5 sin(400πt)

(b) x(t) = 2 cos(200πt) + 5 sin(300πt)

(c) x(t) = 2 cos(150πt) + 5 sin(250πt)

Problem 2.3. Consider the two signals

x1(t) = m(t) cos(2π fct) x2(t) = m(t) sin(2π fct)

where the bandwidth of m(t) is much less than fc. Compute the simplest form
for the following four signals

(a) y1(t) = x1(t) cos(2π fct)

(b) y2(t) = x1(t) sin(2π fct)

(c) y3(t) = x2(t) cos(2π fct)

(d) y4(t) = x2(t) sin(2π fct)

Postulate how a communications engineer might use these results to recover
a signal, m(t), from x1(t) or x2(t).

Problem 2.4. (Design Problem) This problem gives you a little feel for microwave
signal processing and the importance of the Fourier series. You have at your
disposal

(1) a signal generator that produces ± 1 V amplitude square wave in a 1 � sys-
tem where the fundamental frequency, f 1, is tunable from 1 kHz to 50 MHz

(2) an ideal bandpass filter with a center frequency of 175 MHz and a bandwidth
of 30 MHz (±15 MHz).

The design problem is

(a) Select an f 1 such that when the signal generator is cascaded with the filter
that the output will be a single tone at 180 MHz. There might be more than
one correct answer (that often happens in real life engineering).

(b) Calculate the amplitude of the resulting sinusoid.

Problem 2.5. This problems exercises the signal and system tools. Compute the
Fourier transform of

(a)

x(t) =
{

A 0 ≤ t ≤ Tp

0 elsewhere
(2.86)
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(b)

x(t) =
{

Asin
(

πt
Tp

)
0 ≤ t ≤ Tp

0 elsewhere
(2.87)

and give the value of A such that Eu = 1. Compute the 40-dB relative band-
width, B40, of each signal.

Problem 2.6. This problem is an example of a problem which is best solved with
the help of a computer. The signal x(t) is passed through an ideal lowpass filter
of bandwidth B/Tp Hz. For the signals given in Problem 2.5 with unit energy
make a plot of the output energy versus B .

Hint: Recall the trapezoidal rule from calculus to approximately compute this
energy.

Problem 2.7. This problem uses signal and system theory to compute the output
of a simple memoryless nonlinearity. An amplifier is an often used device in com-
munication systems and is simply modeled as an ideal memoryless system, i.e.,

y(t) = a1x(t)

This model is an excellent model until the signal levels get large then non-
linear things start to happen, which can produce unexpected changes in the
output signals. These changes often have a significant impact in a communica-
tion system design. As an example of this characteristic consider the system in
Figure 2.11 with the following signal model

x(t) = b1 cos(200000πt) + b2 cos(202000πt)

the ideal bandpass filter has a bandwidth of 10 kHz centered at 100 kHz, and
the amplifier has the following memoryless model

y(t) = a1x(t) + a3x3(t)

Give the system output, z(t), as a function of a1, a3, b1, and b3.

Problem 2.8. (PD) A nonlinear device that is often used in communication systems
is a quadratic memoryless nonlinearity. For such a device if x(t) is the input
the output is given as

y(t) = ax(t) + bx2(t)

x t( ) y t( ) z t( )
Amplifier Ideal BPF

Figure 2.11 The system diagram
for Problem 2.7.
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(a) If x(t) = Acos(2π fmt), what is y(t) and Y (f )?

(b) If

X (f ) =
{

A || f | − fc| ≤ fm

0 elsewhere
(2.88)

what is y(t) and Y (f )?

(c) A quadratic nonlinearity is often used in a frequency doubler. What com-
ponent would you need to add in series with this quadratic memoryless
nonlinearity such that you could put a sine wave in and get a sine wave out
of twice the input frequency?

Problem 2.9. Consider the following signal

x(t) = cos(2π f 1t) + a sin(2π f 1t)

= X A(a) cos(2π f 1t + X p(a)) (2.89)

(a) Find X A(a).

(b) Find X p(a).

(c) What is the power of x(t), Px?

(d) Is x(t) periodic? If so, what is the period and the Fourier series
representation of x(t)?

Problem 2.10. Consider a signal and a linear system as depicted in Figure 2.12
where

x(t) = A+ cos(2π f 1t)

and

h(t) =

⎧⎪⎨
⎪⎩

1√
Tp

0 ≤ t ≤ Tp

0 elsewhere
(2.90)

Compute the output y(t).

Problem 2.11. For the signal

x(t) = 23
sin(2π147t)

2π147t
(2.91)

x t( ) y t( )h t( ) Figure 2.12 The system for
Problem 2.10.
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(a) Compute X (f ).

(b) Compute Ex.

(c) Compute y(t) = d x(t)
dt .

(d) Compute Y (f ).

Hint: Some of the computations have an easy way and a hard way so think
before turning the crank!

Problem 2.12. The three signals seen in Figure 2.13 are going to be used to exer-
cise your signals and systems theory. If no functional form is given for the pulse,
assume ideal rectangular transitions to simplify the computations. Compute for
each signal
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0.5
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0 0.25 0.5
Normalized Time, t/Tp

Normalized Time, t/Tp

0.75 1

u 2
(t

)
u 3

(t
)

u t t
Tp

3 2( ) = sin

Figure 2.13 Pulse shapes considered for Problem 2.12.
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(a) The Fourier transform, Ui(f ), i = 1, 2, 3.

(b) The energy spectral density, Gui (f ).

(c) The correlation function, Vui (τ ). What is the energy, Eui ?

Hint: Some of the computations have an easy way and a hard way so think
before turning the crank!

Problem 2.13. This problem looks at several simplifying approximations for com-
plex numbers that will be useful in analyzing the characteristics of analog
modulations and demodulators. Assume z is a complex number of the form

z = 1 + ε1 + j ε2 (2.92)

where εi is a real number with εi � 1 for i = 1, 2.

(a) Show a logical argument to justify the approximation |z| ≈ 1 + ε1.

(b) Assume ε1 = ε2 and find the values of ε1, where this approximation results
in a error of less than 1%.

(c) Show a logical argument to justify the approximation arg{z} ≈ ε2.

(d) Assume ε1 = ε2 and find the values of ε1, where this approximation results
in a error of less than 1%.

Problem 2.14. Pulse shapes will be important in digital communication systems.
A Gaussian pulse shape arises in several applications and is given as

x(t) = 1√
2πσ 2

exp
[
− t2

2σ 2

]
(2.93)

(a) Plot x(t) for σ = 0.25, 1, 4.

(b) Calculate X (f ). Hint:

1√
2π

∫ ∞

−∞
exp
[
−x2

2
+ ax
]

d x = exp
[

a2

2

]
(2.94)

(c) Plot GX (f ) for σ = 0.25, 1, 4 using a dB scale on the y-axis.

Problem 2.15. A common signal has a Fourier series representation of

x(t) = 4
π

∞∑
k=0

(−1)k

2k + 1
cos(10π(2k + 1)t) (2.95)
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G fx( )

−200 200 f

0.01

Figure 2.14 An example energy spectrum.

(a) Plot x(t) for one period of the signal.

(b) Find Px.

(c) What is the 98% power bandwidth, B98, of x(t)?

Problem 2.16. Show that

F−1{X ∗(f )} = x∗(−t) (2.96)

Problem 2.17. For the energy spectrum shown in Figure 2.14 find

(a) Ex.

(b) The 3dB bandwidth, B3.

(c) The 40dB bandwidth, B40.

(d) The 98% energy bandwidth, B98.

Problem 2.18. A signal has a series expansion given as

m(t) = 8
π2

∞∑
n=1

1
(2n − 1)2 cos

(
2π(2n − 1)t

T

)
(2.97)

(a) Characterize the Fourier series.

(b) Find the 3-dB bandwidth, B3.

(c) Find the 40-dB bandwidth, B40.

(d) Find the 98% power bandwidth, B98.

(e) Find the 99% power bandwidth, B99.

Problem 2.19. Prove that B90 < B98.
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Problem 2.20. An energy spectrum has a peak value of 0.02. Find the value the
energy spectrum must go below to be

(a) 40-dB below the peak.

(b) 3-dB below the peak.

Problem 2.21. A concept that sometimes finds utility in engineering practice is
the concept of RMS bandwidth. The RMS bandwidth is defined as

WR =
√∫ ∞

−∞
f 2Gx(f )df (2.98)

For the energy spectrum in Figure 2.14 find the RMS bandwidth.

Problem 2.22. A concept that often finds utility in engineering practice is the
concept of group delay. For a linear system with a transfer function denoted

H (f ) = HA(f ) exp[ j Hp(f )] (2.99)

the group delay of this linear system is defined as

τg(f ) = − 1
2π

d
df

Hp(f ) (2.100)

Group delay is often viewed as the delay experienced by a signal at frequency
f when passing through the linear system H (f ).

(a) An ideal delay element has an impulse response given as h(t) = δ(t − τd ),
where τd > 0 is the amount of delay. Find the group delay of an ideal delay
element.

(b) An example low pass filter has

H (f ) = 1
j 2π f + a

(2.101)

Plot the group delay of this filter for 0 ≤ f ≤ 5a.

(c) Give a nontrivial H (f ) that has τg(f ) = 0. In your example is the filter
causal or anticausal?

Problem 2.23. (RW) An interesting characteristic of the Fourier transform is lin-
earity and linearity can be used to compute the Fourier transform of complicated
functions by decomposing these function into sums of simple functions.

(a) Prove if y(t) = x1(t) + x2(t), then Y (f ) = X1(f ) + X2(f ).

(b) Find the Fourier transform of the signal given in Figure 2.15.
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Figure 2.15 The rocket signal.

2.6 Example Solutions

Problem 2.24. Recall that the Fourier series is given as

x(t) =
∞∑

n=−∞
xn exp

[
j 2π

n
T

t
]

Each of these waveforms in this chapter can be put in a Fourier Series rep-
resentation by the use of Euler’s formula or

cos(θ ) = 1
2

[e j θ + e− j θ ] (2.102)

sin(θ ) = 1
2 j

[e j θ − e− j θ ] (2.103)

(a)

x(t) = 2 cos(200πt) + 5 sin(400πt)

= exp[ j 2π(100)t] + exp[ j 2π(−100)t] + 5
j 2 exp[ j 2π(200)t]

− 5
j 2 exp[ j 2π(−200)t]

The waveform is plotted in Figure 2.16.

1
T = 100 x1 = 1 x−1 = 1

T = 0.01 x2 = 5
j 2 x−2 = −5

j 2

xn = 0 otherwise
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Figure 2.16 Plots of the time waveforms for Problem 2.2.

(b) x(t) = 2 cos(200πt) + 5 sin(300πt). The waveform is plotted in Figure 2.16.

1
T = 50 x2 = 1 x−2 = 1

T = 0.02 x3 = 5
j 2 x−3 = −5

j 2

xn = 0 otherwise

(c) x(t) = 2 cos(150πt) + 5 sin(250πt). The waveform is plotted in Figure 2.16.

1
T = 25 x3 = 1 x−3 = 1

T = 0.04 x5 = 5
j 2 x−5 = −5

j 2

xn = 0 otherwise

Problem 2.25. The output of the quadratic nonlinearity is modeled as

y(t) = ax(t) + bx2(t) (2.104)
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It is useful to recall that multiplication in the time domain results in convo-
lution in the frequency domain, i.e.,

z(t) = x(t) × x(t) Z(f ) = X (f ) ∗ X (f ) (2.105)

(a) x(t) = Acos(2π fmt), which results in

y(t) = aAcos(2π fmt) + bA2 cos2(2π fmt)

= aAcos(2π fmt) + bA2
(

1
2

+ 1
2

cos(4π fmt)
)

= aA
2

exp[ j 2π fmt] + aA
2

exp[− j 2π fmt] + bA2

2

+bA2

4
exp[ j 4π fmt] + bA2

4
exp[− j 4π fmt] (2.106)

The frequency domain representation for the output signal is given as

Y (f ) = aA
2

δ( f − fm) + aA
2

δ( f + fm) + bA2

2
δ(f ) + bA2

4
δ( f − 2 fm)

+ bA2

4
δ( f + 2 fm) (2.107)

The first two terms in Eq. (2.107) are due to the linear term in Eq. (2.104)
while the last three terms are due to the square law term. It is interesting
to note that these last three terms can be viewed as being obtained by
convolving the two “delta” function frequency domain representation of a
cosine wave, i.e., 2 cos(2π fmt) = exp[ j 2π fmt] + exp[− j 2π fmt], with itself.

(b) The input signal is

X (f ) =
{

A || f | − fc| ≤ fm

0 elsewhere
(2.108)

Taking the inverse Fourier transform gives

x(t) = 4Afm
sin(π fmt)

π fmt
cos(2π fct) (2.109)

The output time signal of this quadratic nonlinearity is

y(t) = 4aAfm
sin(π fmt)

π fmt
cos(2π fct) + b

(
4Afm

sin(π fmt)
π fmt

cos(2π fct)
)2

= 4aAfm
sin(π fmt)

π fmt
cos(2π fct) + b

(
4Afm

sin(π fmt)
π fmt

)2

×
(

1
2

+ 1
2

cos(4π fct)
)

(2.110)
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f

Y f( )

4

2AfmbAa

fc
2 fm−2 fm 2 2−fc fc fmfm+ 2 fc

Afmb

Figure 2.17 Output spectrum of the quadratic nonlinearity for part (b).

The frequency domain representation of y(t) can be computed by taking the
Fourier transform or by using Y (f ) = aX (f )+b(X (f )∗ X (f )). The resulting
Fourier transform is plotted in Figure 2.17.

(c) Looking at part (a) one can see that a tone in will produce a tone out if all
frequencies except those at 2 fm are eliminated. Consequently a quadratic
nonlinearity followed by a BPF will produce a frequency doubler. The block
diagram for this frequency doubler is shown in Figure 2.18.

2.7 Miniprojects

Goal: To give exposure

1. To a small scope engineering design problem in communications

2. To the dynamics of working with a team

3. To the importance of engineering communication skills (in this case oral
presentations)

Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). Each team
member should be prepared to make the presentation on the due date.

cos(2π fct) C cos(4π fct)Quadratic
Nonlinearity

BPF
@2fc

Figure 2.18 A frequency doubler.
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2.7.1 Project 1

Project Goals: In designing a communication system, bandwidth efficiency
is often a top priority. In analog communications one way to get bandwidth
efficiency is to limit the bandwidth of the message signal. The big engineering
trade-off is how narrow to make the bandwidth of the message signal. If the
bandwidth is made too narrow, the message will be distorted. If the bandwidth
is made too wide, spectrum will be wasted. This project examines this trade-off
for a realistic signal.

Get the Matlab file sigsex2.m from the class web page along with the com-
puter generated voice signal. Use this file to make an estimate how small the
bandwidth of a voice signal can be and still enable high-fidelity communications.
There is no single or right answer to the problem but engineering judgment
must be used. How would your answer be different if you were only concerned
with word recognition or if you wanted to maintain speaker recognition as well.
Please detail your reasons for your solution. Relate your results to the different
notions of bandwidth that were discussed in the text.

2.7.2 Project 2

Project Goals: The computation of a percent energy bandwith, BP , requires
a numerical integration to be performed for most signals that are used in com-
munications. This project will assign you to do this integration for a realistic
signal.

Get the computer-generated voice signal from the class web page. Write a
program to estimate the the 90% bandwidth of this signal.
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Chapter

3
Review of Probability and

Random Variables

This chapter is intended to review introductory material on random variables,
typically covered in an undergraduate curriculum. The most important use of
this chapter will be the introduction of the notation used in this text. More proofs
will be provided in this chapter than the last chapter because typically this
subject matter is not as synthesized at the start of a senior level communications
course. Texts that give a more detailed treatment of the subject of probability
and random variables are [DR87, LG89, Hel91, CM86, Dev00, Sti99, YG98].

3.1 Axiomatic Definitions of Probability

Characterization of random events or experiments is critical for communication
system design and analysis. A majority of the analyses of random events or
experiments are extensions of the simple axioms or definitions presented in this
section. A random experiment is characterized by a probability space consisting
of a sample space �, a field F , and a probability measure P (•). This probability
space will be denoted (�, F , P ).

EXAMPLE 3.1
Consider the random experiment of rolling a fair dice

� = {1, 2, 3, 4, 5, 6} (3.1)

The field, F , is the set of all possible combinations of outputs, i.e., consider the fol-
lowing outcomes A1 = {the die shows a 1}, A2 = {the die shows an even number}, A3 =
{the die shows a number less than 4}, and A4 = {the die shows an odd number}, which
implies

A1, A2, A3, A4 ∈ F (3.2)

3.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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Definition 3.1 Events A and B are mutually exclusive if A∩ B = ∅
Axioms of Probability. A probability measure, P , for a probability space
(�, F , P ) with events A, B ∈ F must satisfy the following axioms

■ For any event A, P (A) ≥ 0
■ P (�) = 1
■ If A and B are mutually exclusive events then P ( A∪ B ) = P ( A) + P (B ).

These three axioms are the building blocks for probability theory and an
understanding of random events that characterize communication system
performance.

EXAMPLE 3.2
Example 3.1(cont.). The rolling of a fair die

A1 = {1} A2 = {2, 4, 6} A3 = {1, 2, 3} A4 = {1, 3, 5}

P [{1}] = P [{2}] = · · · = P [{6}] (3.3)

P [A1] = 1
6

P [A2] = 1
2

P [A3] = 1
2

P [A4] = 1
2

Definition 3.2 (Complement) The complement of a set A, denoted AC , is the set of all
elements of � that are not elements of A.

Theorem 3.1 Poincare For N events A1, A2, .....AN

P [A1 ∪ A2 ∪ .... ∪ AN ] = S1 − S2 + · · · · +(−1)N −1SN

where

Sk =
∑

i1<i2<....<ik

P [Ai1 ∩ Ai2 ∩ .... ∩ Aik ] i1 ≥ 1, ik ≤ N

Proof: The results are given for N = 2 and the proof for other cases is similar
(if not more tedious). Note that events A and B ∩ AC are mutually exclusive
events. Consequently we have

P [A∪ B ] = P [(A∩ BC ) ∪ B ] = P [A∩ BC ] + P [B ] (3.4)

P [A∪ B ] = P [(B ∩ AC ) ∪ A] = P [B ∩ AC ] + P [A] (3.5)

P [A∪ B ] = P [(A∩ BC ) ∪ ( A∩ B ) ∪ (B ∩ AC )]

= P [A∩ BC ] + P [A∩ B ] + P [B ∩ AC ] (3.6)

Using Eq. (3.4) + Eq. (3.5) − Eq. (3.6) gives the desired result. �
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EXAMPLE 3.3

P [A∪ B ] = P [A] + P [B ] − P [A∩ B ]

P [A∪ B ∪ C] = P [A] + P [B ] + P [C] − P [A∩ B ]

− P [B ∩ C] − P [A∩ C] + P [A∩ B ∩ C] (3.7)

EXAMPLE 3.4
Example 3.1(cont.).

P [A2 ∪ A3] = P [A2] + P [A3] − P [A2 ∩ A3] (3.8)

A2 ∩ A3 = 2 P [A2 ∩ A3] = 1
6

(3.9)

P [A2 ∪ A3] = P [1, 2, 3, 4, 6] = 1
2

+ 1
2

− 1
6

= 5
6

(3.10)

Definition 3.3 (Conditional Probability) Let (�, F , P ) be a probability space with sets
A, B ∈ F and P [B ] �= 0. The conditional or a posteriori probability of event A given an
event B , denoted P [A|B ], is defined as

P [A|B ] = P [A∩ B ]
P [B ]

P [A|B ] is interpreted as event A’s probability after the experiment has been
performed and event B is observed.

Definition 3.4 (Independence) Two events A, B ∈ F are independent if and only if

P [A∩ B ] = P [A]P [B ]

Independence is equivalent to

P [A|B ] = P [A] (3.11)

For independent events A and B , the a posteriori or conditional probability
P [A|B ] is equal to the a prioir probability P [A]. Consequently, if A and B are
independent, then observing B reveals nothing about the relative probability
of the occurrence of event A.
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EXAMPLE 3.5
Example 3.1(cont.). If the die is rolled and you are told the outcome is even, A2, how
does that change the probability of event A3?

P [A3|A2] = P (A2 ∩ A3)
P (A2)

=
1
6
1
2

= 1
3

Since P [A3|A2] �= P [A3], event A3 is not independent of event A2.

Definition 3.5 A collectively exhaustive set of events is one for which

A1 ∪ A2 ∪ . . . . ∪ AN = �

Theorem 3.2 Total Probability For N mutually exclusive, collectively exhaustive
events ( A1, A2, . . . . . AN ) and B ∈ �, then

P [B ] =
N∑

i=1

P [B |Ai]P [Ai]

Proof: The probability of event B can be written as

P [B ] = P [B ∩ �] = P

[
B ∩

N⋃
i=1

Ai

]
= P

[
N⋃

i=1

B ∩ Ai

]

The events B ∩ Ai are mutually exclusive, so

P [B ] = P

[
N⋃

i=1

B ∩ Ai

]
=

N∑
i=1

P [B ∩ Ai] =
N∑

i=1

P [B |Ai]P [Ai] �

EXAMPLE 3.6
Example 3.1(cont.). Note A2 and A4 are a set of mutually exclusive collectively exhaust-
ive events with

P [A3|A4] = P [A3 ∩ A4]
P [A4]

= P [{1, 3}]
P [A4]

=
2
6
1
2

= 2
3

This produces

P [A3] = P [A3|A2]P ( A2) + P [A3|A4]P (A4) = 1
3

[
1
2

]
+
[

2
3

][
1
2

]
= 3

6
= 1

2

Theorem 3.3 (Bayes) For N mutually exclusive, collectively exhaustive events
{A1, A2, . . . AN } and B ∈ �, then the conditional probability of the event Aj given that
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event B is observed is

P [Aj |B ] = P [B |Aj ]P [Aj ]
P [B ]

= P [B |Aj ]P [Aj ]∑N
i=1 P [B ∩ Ai]

Proof: The definition of conditional probability gives

P [Aj ∩ B ] = P [Aj |B ]P [B ] = P [B |Aj ]P [Aj ]

Rearrangement and total probability complete the proof. �

EXAMPLE 3.7
(Binary symmetric channel) A facsimile machine divides a document up into small
regions (i.e., pixels) and decides whether each pixel is black or white. Reasonable a
priori statistics for facsimile transmission is

P [A pixel is white] = P [W ] = 0.8 P [A pixel is black] = P [B ] = 0.2

This pixel value is transmitted across a telephone line and the receiving fax machine
makes a decision about whether a black or white pixel was sent. Figure 3.1 is a sim-
plified representation of this operation in an extremely noisy situation. If a black pixel
is decoded (B D) what is the probability a white pixel was sent, P (W |B D)? Bayes rule
gives a straightforward solution to this problem, i.e.,

P (W |B D) = P [B D|W ]P [W ]
P [B D]

(3.12)

= P [B D|W ]P [W ]
P [B D|W ]P [W ] + P [B D|B ]P [B ]

= (0.1)0.8
(0.1)(0.8) + (0.9)(0.2)

= 0.3077 (3.13)

White
Pixel
Sent

Black
Pixel
Sent

White
Pixel
Decoded

Black
Pixel
DecodedP BD B[ ] = 0 9.

P BDW[ ] = 0 1.

P WDW[ ] = 0 9.

P WD B[ ] = 0 1.

Figure 3.1 The binary symmetric channel.
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3.2 Random Variables

In communications, the information transmission is often corrupted by random
noise. This random noise manifests itself as a random voltage (a real number)
at the output of the electrical circuits in the receiver. The concept of a random
variable (RV) links the axiomatic definition of probability with these observed
real random numbers. A random variable has an underlying random exper-
iment. The set of all experimental outcomes are denoted � and a particular
outcome of the random experiment is denoted with ω.

Definition 3.6 Let (�, F , P ) be a probability space. A real random variable X (ω) is a
single-valued function or mapping from � to the real line (R).

There are three types of random variables: discrete, continuous, and mixed.
A discrete random variable has a finite (or countably infinite) number of possible
values. A continuous random variable takes values in some interval of the real
line of nonzero length. A mixed random variable is a convex combination of a
discrete and a continuous random variable. To simplify the notation when no
ambiguity exists, X represents the random variable X (ω) (the experimental
outcome index is dropped) and x = X (ω) represents a particular realization of
this random variable.

Definition 3.7 An observed real number resulting from the random experiment is
denoted a sample from the random variable.

EXAMPLE 3.8
Matlab has a built-in random number generator. In essence this function when executed
performs an experiment and produces a real number output (a sample of the random
variable). Each time this function is run, a different real value is returned. Go to Matlab
and type rand(1) and see what happens. Each time you run this function, it returns a
number that is unable to be predicted. The output can be characterized in many ways,
but the outputs are not completely predictable.

Random variables are completely characterized by either of two related func-
tions: the cumulative distribution function (CDF) or the probability density
function (PDF)1. These functions are the subject of the next two sections.

3.2.1 Cumulative Distribution Function

Definition 3.8 For a random variable X (ω), the CDF is a function FX (x) defined as

FX (x) = P ({ω : X (ω) ≤ x}) ∀ x ∈ R

1Continuous RVs have PDFs but discrete random variables have probability mass functions
(PMF).
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x

Fx(x) Fx(x)

Fx(x)

Figure 3.2 Example CDF for (a) discrete RV, (b) continuous RV, and (c) mixed RV.

Again to simplify the notation when no ambiguity exists, the CDF of the
random variable X will be written as FX (x) = P (X ≤ x). Figure 3.2 shows
example plots of the CDF for discrete, continuous and mixed random variables.
The discrete random variable has a CDF with a stairstep form, the steps occur
at the points of the possible values of the random variable. The continuous
random variable has a CDF, that is a continuous function and the mixed random
variable has a CDF containing both intervals where the function is continuous
with non-zero derivative and points where the function makes a jumps.

Properties of a CDF
■ FX (x) is a monotonically increasing function2, i.e.,

x1 < x2 ⇒ FX (x1) ≤ FX (x2)

■ 0 ≤ FX (x) ≤ 1
■ FX (−∞) = P (X ≤ −∞) = 0 and FX (∞) = P (X ≤ ∞) = 1
■ A CDF is right continuous, i.e., limh→0 FX (x + |h|) = FX (x)
■ P (X > x) = 1 − FX (x) and P (x1 < X ≤ x2) = FX (x2) − FX (x1)
■ The probability of the random variable taking a particular value, a, is given as

P (X = a) = FX (a) − lim
h→0

FX (x − |h|)

Continuous random variables take any value with zero probability since the
CDF is continuous, while discrete and mixed random variables take values with

2This is sometimes termed a nondecreasing function.
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nonzero probabilities since the CDF has jumps. The discrete random variable
has a CDF with the form

FX (x) =
N∑

k=1

P (X = ak)U (x − ak) (3.14)

where U () is the unit step function, N is the number of jumps in the CDF, and
ak are the locations of the jumps.

3.2.2 Probability Density Function

Definition 3.9 For a continuous random variable X (ω), the PDF is a function f X (x)
defined as

f X (x) = d P (X (ω) ≤ x)
dx

= dFX (x)
dx

∀ x ∈ R (3.15)

Since the derivative in Eq. (3.15) can be rearranged to give

lim
�→0

f X (x)� = lim
�→0

P
(

x − �

2
< X (ω) ≤ x + �

2

)
,

the PDF can be thought of as the probability “density” in a very small interval
around X = x. Discrete random variables do not have a probability “density”
spread over an interval but do have probability mass concentrated at points. So
the idea of a density function for a discrete random variable is not consistent.
The analogous quantity to a PDF for a continuous RV in the case of a discrete
RV is the probability mass function (PMF)

pX (x) = P (X = x)

The idea of the probability density function can be extended to discrete and
mixed random variables by utilizing the notion of the Dirac delta function
[CM86].

Properties of a PDF
■ FX (x) = ∫ x

−∞ f X (β)dβ

■ f X (x) ≥ 0
■ FX (∞) = 1 = ∫∞

−∞ f X (β)dβ

■ P (x1 < X ≤ x2) = ∫ x2

x1
f X (β)dβ

Again, if there is no ambiguity in the expression, the PDF of the random
variable X is written as f (x) and if there is no ambiguity about whether a
RV is continuous or discrete, the PDF is written p(x). Knowing the PDF (or
equivalently the CDF) allows you to completely describe any random event
associated with a random variable.
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EXAMPLE 3.9
The rand(•) function in Matlab produces a sample from what is commonly termed a
uniformly distributed random variable. The PDF for a uniformly distributed random
variable is given as

f X (x) =

⎧⎨
⎩

1
b − a

a ≤ x ≤ b

0 elsewhere
(3.16)

The function in Matlab has a = 0 and b = 1. Likewise the CDF is

FX (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x ≤ a
x − a
b − a

a ≤ x ≤ b

1 x ≥ b

(3.17)

Experimenting in Matlab will give you some insight.

3.2.3 Moments and Statistical Averages

A communications engineer often calculates the statistical average of a function
of a random variable. The average value or expected value of a function g(X )
with respect to a random variable X is

E(g(X )) =
∫ ∞

−∞
g(x) pX (x)dx

Average or expected values are numbers, that provide some partial informa-
tion about the random variable. Average values are one number characteriza-
tions of random variables but are not a complete description in themselves like
a PDF or CDF. A good example of a statistical average often used to characterize
RVs is given by the mean value. The mean value is defined as

E(X ) = mX =
∫ ∞

−∞
xpX (x)dx

The mean is the average value of the random variable. The nth moment of a
random variable is a generalization of the mean and is defined as

E(X n) = mX ,n =
∫ ∞

−∞
xn pX (x)dx

The mean square value, E(X 2), is frequently used in the analysis of a commu-
nication system (e.g., average power). Another function of interest is a central
moment (a moment around the mean value) of a random variable. The nth
central moment is defined as

E((X − mX )n) = σX ,n =
∫ ∞

−∞
(x − mX )n pX (x)dx
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The most commonly used second central moment is the variance, σX ,2, which
provides a measure of the spread of a random variable around the mean. The
variance has the shorthand notation σX ,2 = σ 2

X = var(X ). The relation between
the variance and the mean square value is given by

E(X 2) = m2
X + σ 2

X

The expectation operator is linear, i.e.,

E(g1(x) + g2(x)) = E(g1(x)) + E(g2(x))

EXAMPLE 3.10
Consider again the rand(•) function in Matlab as an example of a random variable.
Since

f X (x) =

⎧⎨
⎩

1
b − a

a ≤ x ≤ b

0 elsewhere
(3.18)

the mean is given as

E[X ] = 1
b − a

∫ b

a
xdx = b2 − a2

2(b − a)
= b + a

2
(3.19)

and the variance is

var(X ) = (b − a)2

12
(3.20)

3.2.4 The Gaussian Random Variable

The most common RV encountered in communications system analysis is the
Gaussian random variable. This RV is a very good approximation to many
of the physical phenomena that occur in electronic communications (e.g., the
noise voltage generated by thermal motion of electrons in conductors). The
reason for the common usage of the Gaussian RV is the Central Limit Theorem
(see Section 3.3.5) and that analysis with Gaussian RVs is often tractable. This
section will review the characteristics of the Gaussian RV. A Gaussian or normal
RV, X , of mean mX and variance σ 2

X is denoted N (mX , σ 2
X ). The Gaussian RV is a

continuous random variable taking values over the whole real line and a PDF of

f X (x) = 1√
2πσ 2

X

exp
[
− (x − mX )2

2σ 2
X

]

The Gaussian RV is characterized completely by its mean and variance. The
Gaussian PDF is often referred to as the bell-shaped curve. The mean shifts the
centroid of the bell-shaped curve as shown in Figure 3.3(a). The variance is a
measure of the spread in the values the random variable realizes. A large vari-
ance implies that the random variable is likely to take values far from the mean,
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Figure 3.3 Plots of the PDF of a Gaussian random variable.

whereas a small variance implies that a large majority of the values a random
variable takes is near the mean. As an example, Figure 3.3(b) plots the density
functions for three zero mean Gaussian RVs with variances of 0.25, 1, and 4.

A closed form expression for the CDF of the Gaussian RV does not exist. The
CDF is expressed as

FX (x) =
∫ x

−∞

1√
2πσ 2

X

exp
[
− (α − mX )2

2σ 2
X

]
dα

The CDF can be expressed in terms of the erf function [Ae72], which is given as

erf(z) = 2√
π

∫ z

0
e−t2

dt

The CDF of a Gaussian RV is then given as

FX (x) = 1
2

+ 1
2

erf
(

x − mX√
2σX

)

While the CDF of the Gaussian random variable is defined using different
functions by various authors, this function is used in this text because it is
commonly used in math software packages (e.g., Matlab). Three properties of
the erf function important for finding probabilities associated with Gaussian
random variables are given as

erf(∞) = 1

erfc(z) = 1 − erf(z)

erf(−z) = −erf(z)
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EXAMPLE 3.11
The randn(•) function in Matlab produces a sample from a Gaussian distributed ran-
dom variable with mX = 0 and σX = 1.

3.2.5 A Transformation of a Random Variable

In the analysis of communication system performance it is often necessary to
characterize a random variable, which is a transformation of another random
variable. This transformation is expressed as

Y = g(X )

This section is concerned with finding the PDF or the CDF of the random
variable, Y . The general technique is a two step process.

Step 1: Find the CDF of Y as a sum of integrals over the random variable X
such that g(X ) < y. This is expressed mathematically as

FY (y) =
∑

i

∫
R i (y)

pX (β)dβ

where the R i(y) are intervals on the real line where X is such that g(X ) < y.

Step 2: Find the PDF by differentiating the CDF found in Step 1 using Leibniz
rule from calculus.

pY (y) = dFY (y)
dy

=
∑

i

d
dy

∫
R i (y)

pX (β)dβ

Liebnitz Rule:

d
dt

∫ b(t)

a(t)
f (x, t)dx = f (b(t), t)

db(t)
dt

− f (a(t), t)
da(t)

dt
+
∫ b(t)

a(t)

∂ f (x, t)
∂t

dx

To illustrate this technique, three examples are given, which are common to
communication engineering.

EXAMPLE 3.12
Y = aX (the output of a linear amplifier with gain a having an input random voltage X ).

Step 1:

FY (y) =

⎧⎪⎪⎨
⎪⎪⎩
∫ y

a
−∞ pX (β)dβ i f a > 0

U (y) i f a = 0∫∞
y
a

pX (β)dβ i f a < 0
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where U (X ) is the unit step function. Note for a > 0 that only one interval of the real
line exists, where g(x) ≤ y and that is x ∈ [−∞, y/a).

Step 2:

pY (y) =

⎧⎪⎨
⎪⎩

1
a pX ( y

a ) i f a > 0

δ(y) i f a = 0

− 1
a pX ( y

a ) i f a < 0.

EXAMPLE 3.13
Y = X 2 (the output of a square law or power detector with an input random voltage X ).

Step 1:

FY (y) =

⎧⎨
⎩
∫ √

y
−√

y pX (β)dβ i f , y ≥ 0

0 i f y < 0

Step 2:

pY (y) =

⎧⎨
⎩

1
2
√

y pX (
√

y) + 1
2
√

y pX (−√
y) i f y ≥ 0

0 i f y < 0

EXAMPLE 3.14
Y = XU (X ). This example corresponds to the output of an ideal diode with an input
random voltage X .

Step 1:

FY (y) =
{∫ y

−∞ pX (β)dβ i f y ≥ 0

0 i f y < 0

= U (y)
∫ y

−∞
pX (β)dβ

= U (y)FX (y) (3.21)

Step 2:

pY (y) = U (y) pX (y) + δ(y)FX (0)
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3.3 Multiple Random Variables

In communication engineering, performance is often determined by more than
one random variable. To analytically characterize the performance, a joint
description of the random variables is necessary. All of the descriptions of a
single random variable (PDF, CDF, moments, etc.) can be extended to the sets
of random variables. This section highlights these extensions.

3.3.1 Joint Density and Distribution Functions

Again the random variables are completely characterized by either the joint
CDF or the joint PDF. Note, similar simplifications in notation will be used
with joint CDFs and PDFs, as was introduced in Section 3.2, when no ambiguity
existed.

Definition 3.10 The joint CDF of two random variables is

FXY (x, y) = P ({X ≤ x} ∩ {Y ≤ y}) = P (X ≤ x, Y ≤ y)

Properties of the Joint CDF
■ FXY (x, y) is a monotonically nondecreasing function, i.e.,

x1 < x2 and y1 < y2 ⇒ FXY (x1, y1) ≤ FXY (x2, y2)

■ 0 ≤ FXY (x, y) ≤ 1
■ FXY (−∞, −∞) = P (X ≤ −∞, Y ≤ −∞) = 0 and FXY (∞, ∞) = P (X ≤

∞, Y ≤ ∞) = 1
■ FXY (x, −∞) = 0 and FXY (−∞, y) = 0
■ FX (x) = FXY (x, ∞) and FY (y) = FXY (∞, y)
■ P (x1 < X ≤ x2, y1 < Y ≤ y2) = FXY (x2, y2) − FXY (x1, y2) − FXY (x2, y1) +

FXY (x1, y1)

Definition 3.11 For two continuous random variables X and Y , the joint PDF,
f XY (x, y), is

f XY (x, y) = ∂2 P (X ≤ x, Y ≤ y)
∂x∂y

= ∂2 FXY (x, y)
∂x∂y

∀ x, y ∈ R

Note, jointly distributed discrete random variables have a joint PMF,
pXY (x, y), and as the joint PMF and PDF have similar characteristics this
text often uses pXY (x, y) for both functions.

Properties of the Joint PDF or PMF
■ FXY (x, y) = ∫ y

−∞
∫ x

−∞ pXY (α, β)dαdβ

■ pXY (x, y) ≥ 0
■ pX (x) = ∫∞

−∞ pXY (x, y)dy and pY (y) = ∫∞
−∞ pXY (x, y)dx

■ P (x1 < X ≤ x2, y1 < Y ≤ y2) = ∫ x2

x1

∫ y2

y1
pXY (α, β)dαdβ
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Definition 3.12 Let X and Y be random variables defined on the probability space
(�, F , P ). The conditional or a posteriori PDF of Y given X = x, is

pY |X (y|X = x) = pXY (x, y)
pX (x)

(3.22)

The conditional PDF, pY |X (y|X = x), is the PDF of the random variable Y after
the random variable X is observed to take the value x.

Definition 3.13 Two random variables x and y are independent if and only if

pXY (x, y) = pX (x) pY (y)

Independence is equivalent to

pY |X (y|X = x) = pY (y)

i.e., Y is independent of X if no information is in the RV X about Y in the sense
that the conditional PDF is not different than the unconditional PDF.

EXAMPLE 3.15
In Matlab each time rand(•) or randn(•) is executed it returns an ostensibly inde-
pendent sample from the corresponding uniform or Gaussian distribution.

Theorem 3.4 Total Probability For two random variables X and Y the marginal density
of Y is given by

pY (y) =
∫ ∞

−∞
pY |X (y|X = x) pX (x)dx

Proof: The marginal density is given as (Property 3 of PDFs)

pY (y) =
∫ ∞

−∞
pXY (x, y)dx

Rearranging Eq. (3.22) and substituting completes the proof. �

Theorem 3.5 Bayes For two random variables X and Y the conditional density is
given by

pY |X (y|X = x) = pX |Y (x|Y = y) pY (y)
pX (x)

= pX |Y (x|Y = y) pY (y)∫∞
−∞ pXY (x, y)dy

Proof: The definition of conditional probability gives

pXY (x, y) = pY |X (y|X = x) pX (x) = pY |X (x|Y = y) pY (y)

Rearrangement and total probability completes the proof. �
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A majority of the results presented in this section correspond to two random
variables. The extension of these concepts to three or more random variables
is straightforward.

3.3.2 Joint Moments and Statistical Averages

Joint moments and statistical averages are also of interest in communication
system engineering. The general statistical average of a function g(X , Y ) of two
random variables X and Y is given as

E[g(X , Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y) pXY (x, y)dxdy

A commonly used joint moment or statistical average is the correlation be-
tween two random variables X and Y, defined as

E[XY ] = corr(X , Y ) =
∫ ∞

−∞

∫ ∞

−∞
xypXY (x, y)dxdy

A frequently used joint central moment is the covariance between two random
variables x and y, defined as

E[(X − mX )(Y − mY )] = cov(X , Y ) =
∫ ∞

−∞

∫ ∞

−∞
(x − mX )(y − mY ) pXY (x, y)dxdy

Definition 3.14 The correlation coefficient is

ρXY = cov(X , Y )√
var(X )var(Y )

= E[(X − mX )(Y − mY )]
σX σY

The correlation coefficient is a measure of the statistical similarity of two
random variables. If |ρXY | = 1 for random variables X and Y , then X is a
scalar multiple of Y . If ρXY = 0 then the random variables are uncorrelated.
Values of |ρXY | between these two extremes provide a measure of the similarity
of the two random variables (larger |ρXY | being more similar).

3.3.3 Two Gaussian Random Variables

Two jointly Gaussian random variables, X and Y , have a joint density
function of

f XY (x, y) = 1

2πσX σY

√
1 − ρ2

XY

× exp
[
− 1

2(1 − ρ2
XY )

(
(x − mX )2

σ 2
X

− 2ρXY (x − mX )(y − mY )
σX σY

+ (y − mY )2

σ 2
Y

)]

where mX = E(X ), mY = E(Y ), σ 2
X = var(X ), σ 2

Y = var(Y ), and ρXY is the
correlation coefficient between the two random variables X and Y . This density
function results in a three-dimensional bell-shaped curve which is stretched and
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Figure 3.4 Plots of the joint PDF of two zero mean, unit variance, uncorrelated
Gaussian random variables.

shaped by the means, variances, and the correlation coefficient. As an example,
Figure 3.4 is a plot of the joint density function of two zero mean, unit variance,
uncorrelated (ρXY = 0) Gaussian random variables. The uncorrelatedness of the
two random variables is what gives this density function its circular symmetry.
In fact, for Gaussian random variables uncorrelatedness implies that the two
random variables are independent, i.e.,

f XY (x, y) = f X (x) f Y (y)

Changing the mean in the bivariate Gaussian density function again simply
changes the center of the bell-shaped curve. Figure 3.5(a) is a plot of a bivariate
Gaussian density function with mX = 1, mY = 1, σX = 1, σY = 1, and ρXY =
0. The only difference between Figure 3.5(a) and Figure 3.4 (other than the
perspective) is a translation of the bell shape to the new mean value (1,1).
Changing the variances of joint Gaussian random variables changes the relative
shape of the joint density function much like that shown in Figure 3.3(b).

The effect of the correlation coefficient on the shape of the bivariate Gaus-
sian density function is a more interesting concept. Recall that the correlation
coefficient is

ρXY = cov(X , Y )√
var(X )var(Y )

= E[(X − mX )(Y − mY )]
σX σY

If two random variables have a correlation coefficient greater than zero then
these two random variables tend probabilistically to take values that are on the
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(a) Nonzero means. mX = 1, mY = 1, σX = 1,
σY = 1, ρXY = 0.
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(b) Nonzero correlation coefficient. mX = 0,
mY = 0, σX = 1, σY = 1, ρXY = 0.9.
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Figure 3.5 Plots of the joint PDF of two unit variance Gaussian random variables.

same side of their mean value (if the random variables were zero mean then they
would tend to have the same sign). Also if these two random variables have a
correlation coefficient close to unity then they probabilistically behave in a very
similar fashion. A good example of this characteristic is seen in Figure 3.5(b),
which shows a plot of a bivariate Gaussian with mX = 0, mY = 0, σX = 1,
σY = 1, and ρXY = 0.9.

While it is easy to see that the marginal densities, i.e.,

f X (x) =
∫ ∞

−∞
f XY (x, y)dy

from Figure 3.5(b) would be the same as the those obtained in Figure 3.4, the
conditional densities would be much different, e.g.,

f X |Y (x|y) = 1

σX

√
2π
(
1 − ρ2

XY

)
× exp

[
− 1

2σ 2
X

(
1 − ρ2

XY

) (x − mX − ρXY σX

σY
(y − mY )

)2
]

(3.23)

It should be noted that Eq. (3.23) says that for a pair of jointly Gaussian
random variables, the distribution of one of the Gaussian random variables
conditioned on the other Gaussian random variable is also a Gaussian distri-
bution with

E[X |Y = y] = mX + ρXY σX

σY
(y − mY ) var(X |Y = y) = σ 2

X

(
1 − ρ2

XY

)
(3.24)

Since the random variables whose PDF is shown in Figure 3.5(b) are highly
correlated, the resulting values the random variables take are very similar.



Review of Probability and Random Variables 3.19

This is reflected in the knife edge characteristic that the density function takes
along the line Y = X .

3.3.4 Transformations of Random Variables

In general, the problem of finding a probabilistic description (joint CDF or
PDF) of a joint transformation of random variables is very difficult. To simplify
the presentation, two of the most common and practical transformations will
be considered: the single function of n random variables and the one-to-one
transformation.

Single Function of n Random Variables

A single function transformation of n random variables is expressed as

Y = g(X1, X2, . . . , Xn)

where X1, . . . , Xn are the n original random variables. This section is concerned
with finding the PDF or the CDF of the random variable Y . The general tech-
nique is the identical two step process used for a single random variable (the
regions of integration now become volumes instead of intervals).

Step 1: Find the CDF of Y as a sum of integrals over the random variables
X1 . . . Xn. This is expressed mathematically as

FY (y) =
∑

i

∫
· · ·
R i(y)

∫
pX1···Xn(x1, x2 · · · xn)dx1 · · · dxn

where the R i(y) are n dimensional volumes where X1 . . . Xn are such that
g(X1, . . . , Xn) < y.

Step 2: Find the PDF by differentiating the CDF found in Step 1 using Leibniz
rule, i.e.,

pY (y) = dFY (y)
dy

=
∑

i

d
dy

∫
· · ·
R i(y)

∫
pX1···Xn(x1, x2, . . . , xn)dx1 · · · dxn

EXAMPLE 3.16
A transformation which is very important for analyzing the performance of the standard

demodulator used with amplitude modulation (AM) is Y =
√

X2
1 + X2

2.

Step 1:

FY (y) = P
(√

X2
1 + X2

2 ≤ y
)

= U (y)
∫ y

−y
dx1

∫ √y2−x2
1

−
√

y2−x2
1

pX1 X2 (x1, x2)dx2
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Step 2:

pY (y) = U (y)
∫ y

−y

y√
y2 − x2

1

[
pX1 X2

(
x1,
√

y2 − x2
1

)
+ pX1 X2

(
x1, −
√

y2 − x2
1

)]
dx1

If in this example X1 and X2 are independent (ρ = 0) and zero mean Gaussian random
variables with equal variances, the joint density is given as

f X1 X2 (x1, x2) = 1

2πσ 2
X

exp

(
− x2

1 + x2
2

2σ 2
X

)

and f Y (y) reduces to

f Y (y) = y

σ 2
X

exp

(
− y2

2σ 2
X

)
U (y) (3.25)

This PDF is known as the Rayleigh density and appears quite frequently in commu-
nication system analysis.

One-to-One Transformations

Consider a one-to-one transformation of the form

Y1 = g1(X1, X2, · · · , Xn)

Y2 = g2(X1, X2, · · · , Xn)
...

Yn = gn(X1, X2, · · · , Xn) (3.26)

Since the transformation is one-to-one, the inverse functions exist and are
given as

X1 = h1(Y1, Y2, ..., Yn)

X2 = h2(Y1, Y2, ..., Yn)
...

Xn = hn(Y1, Y2, ..., Yn) (3.27)

Since the probability mass in infinitesimal volumes in both the original X coor-
dinate system and the Y coordinate system must be identical, the PDF of the
Y ’s is given as

pY (y1, y2, . . . yn) = |J |pX (h1(y1, y2, . . . yn), . . . , hn(y1, y2, . . . yn))
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where |J | is the Jacobian defined as

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x2
∂y1

. . . ∂xn
∂y1

∂x1
∂y2

∂x2
∂y2

. . . ∂xn
∂y2

...
. . .

∂x1
∂yn

∂x2
∂yn

. . . ∂xn
∂yn

∣∣∣∣∣∣∣∣∣∣∣∣
EXAMPLE 3.17
A one-to-one transformation which is very important in communications is

Y1 =
√

X2
1 + X2

2 X1 = Y1 sin(Y2)

Y2 = tan−1
( X1

X2

)
X2 = Y1 cos(Y2)

The Jacobian of the transformation is given by |J | = Y1 which results in the joint
density of the transformed random variables being expressed as

pY1Y2 (y1, y2) = y1 pX1 X2 (y1 sin(y2), y1 cos(y2))

3.3.5 Central Limit Theorem

Theorem 3.6 If Xk is a sequence of independent, identically distributed (i.i.d.) random
variables with mean mx and variance σ 2 and Yn is a random variable defined as

Yn = 1√
nσ 2

n∑
k=1

(Xk − mx)

then

lim
n→∞ pYn(y) = 1√

2π
exp

[
− y2

2

]
= N (0, 1)

Proof: The proof uses the characteristic function, a power series expansion, and
the uniqueness property of the characteristic function. Details are available in
most introductory texts on probability [DR87, LG89, Hel91]. �

The central limit theorem (CLT) implies that the sum of arbitrarily dis-
tributed random variables tends to a Gaussian random variable as the number
of terms in the sum gets large. Because many physical phenomena in communi-
cations systems are due to interactions of large numbers of events (e.g., random
electron motion in conductors or large numbers of scatters in wireless propa-
gation), this theorem is one of the major reasons why the Gaussian random
variable is so prevalent in communication system analysis.
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3.3.6 Multiple Dimensional Gaussian Random Variables

The most common situation encountered in communication system design and
analysis is for the corrupting noise samples to be Gaussian random variables.
Analytically this is very fortunate since a simple closed-form expression for the
joint PDF of L Gaussian random variables is

f �N (�n) = 1√
(2π )L det(CN )

exp
[

− 1
2

(�n − �mN )T C−1
N (�n − �mN )

]
(3.28)

where �N is an L × 1 vector defined as

�N = [N1, . . . , NL]T

�mN is the mean vector of �N , and CN is the L × L covariance matrix of the
vector �N . The Gaussian assumption is rather powerful. It accurately models
noise in most communication systems and the joint PDF, which is a complete
probabilistic description of the random process, is given in terms of only the
first and second moments.

Definition 3.15 A cross-covariance matrix between two real random vectors is

CXY = E
[
( �X − �mx)( �Y − �my)T ] (3.29)

Definition 3.16 If �X and �Y are both Gaussian random vectors then �X conditioned on
�Y = �y is a Gaussian random vector with

E( �X | �Y = �y) = �mx + CXY C−1
Y ( �y − �my)

and

CX |Y = E[( �X − E( �X | �Y = �y))( �X − E( �X | �Y = �y))T ] = CX − CXY C−1
Y CT

XY

Proof: Setting �X to be a vector of size L and

�Z =
[ �X

�Y

]
�mZ =
[

�mX

�mY

]
CZ =

[
CX CXY

CT
XY CY

]

and using the definition of a conditional density function gives

f �X | �Y ( �x| �y) = f �X �Y ( �x, �y)
f �Y ( �y)

= f �Z( �z)
f �Y ( �y)

= 1
(2π )L/2

det[CY ]
det[CZ]

exp
[− 1

2 ( �z − �mZ)T C−1
Z ( �z − �mZ)

]
exp
[− 1

2 ( �y − �mY )T C−1
Y ( �y − �mY )

] (3.30)
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Equation (3.30) can be simplified using the following two well-known linear
algebra identities:

1.

det
[

A B
C D

]
= det[A − BD−1C]det[D] (3.31)

2. [
A B
C D

]−1

=
[

A−1 0
0 0

]
+
[−A−1B

I

]
[D − CA−1B]−1 [−CA−1 I

]

=
[

0 0
0 D−1

]
+
[

I
−D−1C

] [
A − BD−1C]−1[ I −BD−1

]
(3.32)

where A, B, C, and D are arbitrary matrices. Using Eq. (3.31) the ratio of the
determinants in Eq. (3.30) is given as

det[CZ]
det[CY ]

= det
[
CX − CXY C−1

Y CY X
] = det[CX |Y ] (3.33)

Using Eq. (3.32) to reformulate CZ in Eq. (3.30) gives

exp
[
−1

2
[ �z − �mZ]T C−1

Z [ �z − �mZ]
]

= exp
[

− 1
2

[ �y − �mY ]T C−1
Y [ �y − �mY ]

]

× exp
[
−1

2
FT G−1F

]
(3.34)

where

F = �x − �mX − CXY C−1
Y [ �y − �mY ] = �x − E[ �X | �Y = �y ]

and

G = CX − CXY C−1
Y CT

XY = CX |Y

Using Eq. (3.33) and Eq. (3.34) in Eq. (3.30) and cancelling the common terms
gives the desired result. �

3.4 Homework Problems

Problem 3.1. This problem exercises axiomatic definitions of probability. A com-
munications system used in a home health care system needs to communicate
four patient services, two digital and two analog. The two digital services are
a 911 request and a doctor appointment request. The two analog services are
the transmission of an electrocardiogram (EKG) and the transmission of audio
output from a stethoscope. The patient chooses each of the services randomly
depending on the doctor’s prior advice and the patient’s current symptoms.
Assume only one service can be requested at a time.
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(a) For design purposes it is typical to model a patient’s requested service as a
random experiment. Define a sample space for the requested services.

A market survey has shown that the probability that a patient will request
an EKG is 0.4 and the probability that a patient will request 911 is 0.001. The
probability that a digital service will be requested is 0.1.

(b) Compute the probability of requesting a doctor’s appointment.

(c) Compute the probability of requesting an audio transmission from a
stethoscope.

Problem 3.2. This problem exercises the idea of conditional probability. In the
Problem 3.1 if you know the requested service is a digital service what is the
probability that a 911 request is initiated?

Problem 3.3. A simple problem to exercise the axioms of probability. Two events
A and B are defined by the same random experiment. P ( A) = 0.5, P (B ) = 0.4,
and P (A∩ B ) = 0.2

(a) Compute P (A∪ B ).

(b) Are events A and B independent?

Problem 3.4. Your roommate challenges you to a game of chance. He proposes
the following game. A coin is flipped two times, if heads comes up twice she/he
gets a dollar from you and if tails comes up twice you get a dollar from him/her.
You know your roommate is a schemer so you know that there is some chance
that this game is rigged. To this end you assign the following mathematical
framework.

■ P (F ) = probability that the game is fair = 5
6

■ P (H |F ) = probability that a head results if the game is fair = 0.5
■ P (H |U F ) = probability that a head results if the game is unfair = 0.75

Assume conditioned on the fairness of the game that each flip of the coin is
independent.

(a) What is the probability that the game is unfair, P (U F )?

(b) What is the probability that two heads appear given the game is unfair?

(c) What is the probability that two heads appear?

(d) If two heads appear on the first trial of the game, what is the probability
that you are playing an unfair game?

Problem 3.5. Certain digital communication schemes use redundancy in the form
of an error control code to improve the reliability of communication. The com-
pact disc recording media is one such example. Assume a code can correct two
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or fewer errors in a block of N coded bits. If each bit detection is independent
with a probability of error of P (E) = 10−3

1. Plot the probability of correct block detection as a function of N (Note, it is
most useful to have log scaling on the y-axis).

2. How small must N be so that the probability the block is detected incorrectly
is less than 10−6?

Problem 3.6. The probability of accessing a campus computer system is charac-
terized on a weekday with the following events

1. A ={dialing is between 7:00PM–1:00AM}
2. B = {dialing is between 1:00AM–7:00PM}
3. C = {a connection is made}
4. D = {a connection failed}
The system is characterized with

P (Connecting given dialing is between 7:00PM–1:00AM) = P (C|A) = 0.1

P (Connecting given dialing is between 1:00AM–7:00PM) = P (C|B ) = 0.75

(a) If a person randomly dials with uniform probability during the day what is
P (A)?

(b) If a person randomly dials with uniform probability during the day what
is P (C)?

(c) If a person randomly dials with uniform probability during the day what is
the P ( A and C)?

(d) Compute P (A|C).

Problem 3.7. In a particular magnetic disk drive bits are written and read indi-
vidually. The probability of a bit error is P (E) = 10−8. Bit errors are indepen-
dent from bit to bit. In a computer application the bits are grouped into 16-bit
words. What is the probability that an application word will be in error (at least
one of the 16 bits is in error) when the bits are read from this magnetic disk
drive.

Problem 3.8. A simple yet practical problem to exercise the idea of Bayes rule
and total probability. Air traffic control radars (ATCR) are used to direct traffic
in and around airports. If a plane is detected where it is not suppose to be then
the controllers must initiate some evasive actions. Consequently, for the users
of a radar system the two most important parameters of a radar system are

■ P (TA|DT ) = probability of target being absent when a target is detected.
■ P (TP|ND) = probability of target being present when no detection is

obtained.
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Radar designers on the other hand like to quote performance in the following
two parameters (because they can easily be measured)

■ P (DT |TA) = probability of detecting a target when a target is absent.
■ P (DT |TP) = probability of detecting a target when a target is present.

Imagine that you are a high-priced consultant for the Federal Aviation Ad-
ministration (FAA) and that the FAA has the following requirements for its
next generation ATCR

■ P (TA|DT ) = 0.01
■ P (TP|ND) = 0.0001

A detailed study shows that planes are present only 1% of the time, P (TP) =
0.01. A contractor, Huge Aircrash Co., has offered a radar system to the gov-
ernment with the following specifications

■ P (DT |TA) = 0.00005
■ P (DT |TP) = 0.9

Would you recommend the government purchase this system and why?

Problem 3.9. The following are some random events

1. The sum of the roll of two dice.

2. The hexadecimal representation of an arbitrary 4 bits in an electronic
memory.

3. The top card in a randomly shuffled deck.

4. The voltage at the output of a diode in a radio receiver.

Determine which events are well modeled with a random variable. For each
random variable determine if the random variable is continuous, discrete, or
mixed. Characterized the sample space and the mapping from the sample space
if possible.

Problem 3.10. A random variable has a density function given as

f X (x) = 0 x < 0
= K1 0 ≤ x < 1
= K2 1 ≤ x < 2
= 0 x ≥ 2

(a) If the mean is 1.2, find K1 and K2.

(b) Find the variance using the value of K1 and K2 computed in (a).

(c) Find the probability that X ≤ 1.5 using the value of K1 and K2 computed
in (a).
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Problem 3.11. In communications the phase shift induced by propagation be-
tween transmitter and receiver, �p, is often modeled as a random variable. A
common model is to have

f �p (φ) = 1
2π

− π ≤ φ ≤ π

= 0 elsewhere

This is commonly referred to as a uniformly distributed random variable.

(a) Find the CDF, F�p (φ).

(b) Find the mean and variance of this random phase shift.

(c) It turns out that a communication system will work reasonably well if the
coherent phase reference at the receiver, �̂p, is within 30◦ of the true value
of �p. If you implement a receiver with �̂p = 0, what is the probability the
communication system will work.

(d) Assuming you can physically move your system and change the propagation
delay to obtain an independent phase shift. What is the probability that your
system will work at least one out of two times?

(e) How many independent locations would you have to try to ensure a 90%
chance of getting your system to work?

Problem 3.12. You have just started work at Yeskia, which is a company that man-
ufactures FM transmitters for use in commercial broadcast. An FCC rule states
that the carrier frequency of each station must be within 1 part per million of the
assigned center frequency (i.e., if the station is assigned a 100 MHz frequency
then the oscillators deployed must be | fc − 100 MHz| < 100 Hz). The oscillator
designers within Yeskia have told you that the output frequency of their oscilla-
tors is well modeled as a Gaussian random variable with a mean of the desired
channel frequency and a variance of σ 2

f . Assume the lowest assigned center
frequency is 88.1 MHz and the highest assigned center frequency is 107.9 MHz.

(a) Which assigned center frequency has the tightest absolute set accuracy
constraint?

(b) For the frequency obtained in (a) with σf = 40Hz, what is the probability
that a randomly chosen oscillator will meet the FCC specification?

(c) What value of σf should you force the designers to achieve to guarantee
that the probability that a randomly chosen oscillator does not meet FCC
rules is less than 10−7.

Problem 3.13. X is a Gaussian random variable with a mean of 2 and a variance
of 4.

(a) Plot f X (x).

(b) Plot FX (x).

(c) Plot the function g(x) = P (|X − 2| < x).
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Problem 3.14. For two independent random variables X1 and X2 are transformed
into a third random variable Y = X1 + X2. Show

(a) mY = mX1 + mX2 .

(b) σ 2
Y = σ 2

X1
+ σ 2

X2
.

Problem 3.15. Consider two random samples, X1 at the input to a communication
system, and X2, at the output of a communication system and model them
as jointly Gaussian random variables. Plot the conditional probability density
function, f X1|X2 (x1|x2) for

(a) m1 = m2 = 0, σ1 = σ2 = 1, and ρ = 0

(b) m1 = m2 = 0, σ1 = 2 σ2 = 1, and ρ = 0

(c) m1 = m2 = 0, σ1 = σ2 = 1, and ρ = 0.8

(d) m1 = 1 m2 = 2, σ1 = σ2 = 1, and ρ = 0

(e) m1 = 1 m2 = 2, σ1 = 2 σ2 = 1, and ρ = 0.8

(f) Rank order the five cases in terms of how much information is available in
the output, X2, about the input X1.

Problem 3.16. Consider a uniform random variable with the PDF given in Eq.
(3.16) with a = 0 and b = 1.

(a) Compute mY .

(b) Compute σX .

(c) Compute P (X ≤ 0.4).

(d) Use rand in Matlab and produce 100 independent samples of a uniform
random variable. How many of these 100 samples are less than or equal to
0.4? Does this coincide with the results you obtained in (c)?.

Problem 3.17. The received signal strength in a wireless radio environment is of-
ten well modeled as Rayleigh random variable (see Eq. (3.25)). For this problem
assume the received signal strength at a particular location for a mobile phone
is a random variable, X , with a Rayleigh distribution. A cellular phone using
frequency modulation needs to have a signal level of at least X = 20mV to op-
erate in an acceptable fashion. Field tests on campus have shown the average
signal power is 1mW (in a 1 � system).

(a) Using Eq. (3.25) compute the average signal power, E[X 2], as a function of
σX .

(b) Compute the probability that a cellular phone will work at a randomly
chosen location on campus.

(c) Assume you physically move and obtain an independent received signal
strength. What is the probability that your cellular phone will work at least
one out of two times?
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(d) How many independent locations would you have to try to ensure a 90%
chance of getting your cellular phone to work?

Problem 3.18. The function randn in Matlab produces realizations of a zero
mean–unit variance Gaussian random variable each time it is called. This
problem leads you to ways to use this function in more general ways. Assume
X is a Gaussian random variable with zero mean and unit variance.

(a) Define a random variable Y = X + b, find f Y (y).

(b) Define a random variable Y = aX , where a > 0, find f Y (y) (use
Example 3.11).

(c) How can you transform X , Y = g(X ), so that Y is a Gaussian random
variable with mY = b and σY = a?

(d) Test out your answer by invoking randn 1000 times and transforming these
1000 samples as you propose in c) with my = 6 and σy = 2. Plot a histogram
of the transformed output.

Problem 3.19. This problem gives both a nice insight into the idea of a corre-
lation coefficient and shows how to generate correlated random variables in
simulation. X and W are two zero mean independent random variables where
E[X 2] = 1 and E[W 2] = σ 2

W . A third random variable is defined as Y = ρX +W ,
where ρ is a deterministic constant such that −1 ≤ ρ ≤ 1.

(a) Prove E[X W ] = 0. In other words prove that independence implies uncor-
relatedness.

(b) Choose σ 2
W such that σ 2

Y = 1.

(c) Find ρXY when σ 2
W is chosen as in part (b).

Problem 3.20. You are designing a phase-locked loop as an FM demodulator. The
requirement for your design is that the loop bandwidth must be greater than
5 kHz and less than 7 kHz. You have computed the loop bandwidth and it is
given as

BL = 4R3 + 2000

where R is a resistor in the circuit. It is obvious that choosing R = 10 will solve
your problem. Unfortunately, resistors are random valued.

(a) If the resistors used in manufacturing your FM demodulator are uniformly
distributed between 9 and 11�, what is the probability that the design will
meet the requirements?

(b) If the resistors used in manufacturing your FM demodulator are Gaussian
random variables with a mean of 10 � and a standard deviation of 0.5 �,
what is the probability that the design will meet the requirements?
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Problem 3.21. In general, uncorrelatedness is a weaker condition than indepen-
dence and this problem will demonstrate this characteristic.

(a) If X and Y are zero mean independent random variables, prove E[XY ] = 0.

(b) Consider the joint discrete random variable X and Y with a joint PMF of

pXY (2, 0) = 1
3

pXY (−1, −1) = 1
3

pXY (−1, 1) = 1
3

pXY (x, y) = 0 elsewhere (3.35)

What are the marginal PMFs, pX (x), and pY (y)? Are X and Y independent
random variables? Are X and Y uncorrelated?

(c) Show that two jointly Gaussian random variables which are uncorrelated
(i.e., ρXY = 0) are also independent. This makes the Gaussian random
variable an exception to the general rule.

Problem 3.22. The probability of having a cellular phone call dropped in the mid-
dle of a call while driving on the freeway in the big city is characterized by
following events

1. A = {call is during rush hour}
2. B = {call is not during rush hour}
3. C = {the call is dropped}
4. D = {the call is normal}
Rush hour is defined to be 7–9:00 AM and 4–6:00 PM. The system is character-
ized with

P (Drop during rush hour) = P (C|A) = 0.3

P (Drop during nonrush hour) = P (C|B ) = 0.1.

(a) A person’s time to make a call, T , might be modeled as a random variable
with

fT (t) = 1
24

0 ≤ t ≤ 24

= 0 otherwise (3.36)

where time is measured using a 24-hour clock (i.e., 4:00 PM = 16). Find
P ( A).
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(b) What is P (C)?

(c) What is the P (A and C) = P ( A∩ C)?

(d) Compute P ( A|C).

Problem 3.23. This problem examines the sum of two random variables and works
through the computation of the resulting PDF. Formally Y = X1 + X2.

(a) Use rand in Matlab and produce two vectors, �X1 and �X2 of 1000 indepen-
dent samples of a uniform random variable. The rand function produce
random variable uniformly distributed on [0, 1]. Add these two vectors to-
gether and plot a histogram of the resulting vector.

(b) Find the CDF of Y in the form

FY (y) =
∑

i

∫
· · ·
R i(y)

∫
pX1,X2 (x1, x2)dx1dx2 (3.37)

as given in Section 3.3.4. Identify all regions in the x1x2 plane, R i(y), where
x1 + x2 < y where y is a constant.

(c) Find the PDF by taking the derivative of the CDF in (b) and simplify as
much as possible.

(d) Show that if X1 and X2 are independent random variables then the resul-
tant PDF of Y is given as the convolution of the PDF of X1 and the PDF X2.

(e) Compute the PDF of Y if X1 and X2 are independent random variable
uniformly distributed on [0, 1]. Looking back at the histogram produced
in (a), does the resulting answer make sense? Verify the result further by
considering 10,000 length vectors and repeating (a).

Problem 3.24. A commonly used expected value in communication system analysis
is the characteristic function given as

φX (t) = E[exp( j Xt)] =
∫ ∞

−∞
exp( j xt) pX (x)dx (3.38)

(a) Show that

E[X ] = − j
dφX (t)

dt

∣∣∣∣
t=0

(3.39)

(b) Show that

E[X n] = (− j )n d nφX (t)
dtn

∣∣∣∣
t=0

(3.40)

The results in parts (a) and (b) are known as the moment generating prop-
erty of the characteristic function.
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(c) Show that if X is a Gaussian random variable with mean, mX , and variance,
σ 2

X , that φX (t) = exp( j tmX − t2σ 2
X /2).

Hint: For any b ∫ ∞

−∞

1√
2πσ 2

X

exp
(

− (x − b)2

2σ 2
X

)
dx = 1. (3.41)

(d) Show that if X1 and X2 are independent random variables then the char-
acteristic function of Y = X1 + X2 is φY (t) = φX1 (t)φX2 (t).

(e) Since the characteristic function is unique, deduce from the results in part
(d) that the sum of two Gaussian random variable is another Gaussian
random variable. Identify mY and σY .

Problem 3.25. The probability of having a cellular phone call dropped in the mid-
dle of a call while driving on the freeway in a “big” city is characterized by
following events

1. A = {call is during rush hour}
2. B = {call is not during rush hour}
3. C = {the call is dropped}
4. D = {the call is normal}
Rush hour is defined to be 7–9:00 AM and 4–6:00 PM. The system is character-
ized with

P (Drop during rush hour) = P (C|A) = 0.3

P (Drop during nonrush hour) = P (C|B ) = 0.1

Since a call is three time more likely to occur in the daytime than at night, a
person’s time to make a call, T , might be modeled as a random variable with

fT (t) = K 0 ≤ t ≤ 7

= 3K 7 ≤ t ≤ 21

= K 21 ≤ t ≤ 24

= 0 otherwise

(3.42)

where time is measured using a 24-hour clock (i.e., 4:00PM = 16).

(a) Find K .

(b) Find P ( A).

(c) What is P (C)?

(d) What is the P ( A and C) = P ( A∩ C)?
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3.5 Example Solutions

Problem 3.26. Using 24 hour time keeping to produce a mapping from time to a
real number results in a uniform dialing model for the placement of calls having
a PDF given as

fT (t) = 1
24

0 ≤ t ≤ 24

= 0 elsewhere (3.43)

(a) P (A) = P (0 ≤ t ≤ 1 ∪ 19 ≤ t ≤ 24) = ∫ 1
0 fT (t)dt + ∫ 24

19 fT (t)dt = 1/24 +
5/24 = 1/4.

(b) Here we use total probability over events A and B .

P (C) = P (C|A)P ( A) + P (C|B )P (B ) = 0.1 × 0.25 + 0.75 × 0.75 = 0.5875.

(3.44)
Note here use was made of P (B ) = 1 − P ( A) = 0.75.

(c) Using the definition of conditional probability gives P ( A∩ C) = P ( A, C) =
P (C|A)

P (A) = 0.25 × 0.1 = 0.025.

(d) Here we use the definition of conditional probability.

P (A|C) = P ( A, C)
P (C)

= 0.025
0.5875

= 0.04255 (3.45)

Note, if we had not completed parts (b) and (c), then we could have used
Bayes rule

P (A|C) = P (C|A)P ( A)
P (C)

= P (C|A)P ( A)
P (C|A)P ( A) + P (C|B )P (B )

(3.46)

Problem 3.27.

(a) F�p (φ) = P (�p ≤ φ) = ∫ φ

−∞ f �p (x)dx. Given that

f �p (x) = 1
2π

− π ≤ x ≤ π

= 0 elsewhere (3.47)

gives

F�p (φ) = 0 φ ≤ −π

= φ + π

2π
− π ≤ φ ≤ π

= 1 φ ≥ π (3.48)
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(b)

E[�p] =
∫ π

−π

x f �(x)dx = 0 (3.49)

Since �p is a zero mean random variable

var(�p) =
∫ π

−π

x2 f �(x)dx = 1
2π

∫ π

−π

x2dx = 2
3

π3

2π
= π2

3
(3.50)

(c)

P (Work) = P (−30◦ ≤ �p ≤ 30◦) = F�p (30◦) − F�p (−30◦) = 1
6

(3.51)

(d) Poincaire’s theorem gives

P (Work1 or Work2) = P
(
W1 ∪ W2) = P (W1) + P (W2) − P (W1 ∩ W2) (3.52)

Because of independence of the two trials

P (W1 ∩ W2) = P (W1)P (W2) (3.53)

consequently

P (W1 ∪ W2) = P (W1) + P (W2) − P (W1)P (W2) = 1
6

+ 1
6

− 1
36

= 11
36

(3.54)

(e) Getting your receiver to work once in N trials is the complement to the
event not getting your receiver to work any of N trials, i.e.,

P
( N⋃

i=1

Wi

)
= 1 − P

( N⋂
i=1

W C
i

)
(3.55)

Again by independence

P
( N⋂

i=1

W C
i ) =

N∏
i=1

P (W C
i

)
= (1 − P (Wi))N (3.56)

so that

P
( N⋃

i=1

Wi

)
= 1 − (1 − P (Wi))N (3.57)

A little exploring in Matlab shows that N ≥ 13 will give better than a 90%
probability of working.
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Problem 3.28.

(a) If X and Y are independent, we can compute E[XY ] as

E[XY ] =
∫ ∞

−∞

∫ ∞

−∞
xyf XY (x, y)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
xwf X (x) f Y (y)dxdy

=
∫ ∞

−∞
x f X (x)dx

∫ ∞

−∞
yf Y (y)dy

= E[X ]E[Y ]

In general cov(X , Y ) = E[XY ] − E[X ]E[Y ] = 0, so if X and Y are
independent, then X and Y are uncorrelated.

(b) X ∈ {−1, 2} Y ∈ {−1, 0, 1}
First, let’s compute the marginal PMFs

PX (−1) =
∑
y∈�y

PXY (−1, y) = 1
3

+ 1
3

= 2
3

PX (2) =
∑
y∈�y

PXY (2, y) = 1
3

PY (−1) = 1
3

PY (0) = 1
3

PY (1) = 1
3

X and Y are independent if and only if PX (x) · PY (y) = PXY (x, y) ∀x, y
If x = 2 and y = 0,

PX (2) · PY (0) �= PXY (x, y)

1
3

· 1
3

= 1
9

�= 1
3

(3.58)

X and Y are not independent.

E[XY ] =
∑
x,y

x · y · PXY (x, y)

= 2 · 0 · 1
3

+ (−1) · (−1) · 1
3

+ (−1) · 1 · 1
3

= 0 + 1
3

− 1
3

= 0

E[X ] =
∑

x

x · PX (x) = 2 · 1
3

− 1 · 2
3

= 0

E[Y ] =
∑

y

y · PY (y) = 0 · 1
3

− 1 · 1
3

+ 1 · 1
3

= 0

cov(X , Y ) = 0 − 0 · 0 = 0
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X and Y are uncorrelated random variables. So, here we have shown that
if X and Y are uncorrelated random variables this does not imply X and Y
are independent.

(c) The joint PDF of two Gaussian r.v’s X and Y can be written as

f XY (x, y) = 1

2πσX σY

√
1 − ρ2

XY

exp

[
− 1

2(1 − ρ2
XY )

((
x − mX

σX

)2

− 2ρXY
(x − mX )(y − mY )

σX σY
+
(

y − mY

σY

)2)]

If X and Y are uncorrelated, then cov(X , Y ) = 0 �⇒ ρXY = 0

f XY (x, y) = 1√
2πσX

1√
2πσY

exp
[

− 1
2

((
x − mX

σX

)2

+
(

y − mY

σY

)2)]

= 1√
2πσX

exp
[
− 1

2

(
x − mX

σX

)2]
· 1√

2πσY
exp
[
− 1

2

(
y − mY

σY

)2]
= f X (x) · f Y (y)

This implies that X and Y are independent.

3.6 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral

presentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). Each team
member should be prepared to make the presentation on the due date.

3.6.1 Project 1

Project Goals: This problem works you through the generation of realizations
of random variables by computer.

Consider real random continuous variables.

(a) Note that if a continuous random variable has a distribution function,
FX (x), defined on the real line which is one-to-one and onto the interval
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[0, 1] then an inverse function exists, i.e., x = F −1
X (u) for u ∈ [0, 1]. If U is a

uniform random variable in [0, 1] then find the distribution of the random
variable X = F −1

X (u).

(b) Consider a transformation of random variables, X = − ln(U )/λ. Find the
output PDF, when U is a random variable uniformly distributed on [0, 1].

(c) Use the result in (a) and the rand function in Matlab to generate a real-
izations of an exponential random variable, i.e., ones that have a density
function

f X (x) =
{

λ exp[−xλ] x ≥ 0
0 elsewhere

(3.59)

Hint: If U is uniform in the interval [0, 1] then 1 − U has the same distri-
bution. Generate 1000 realizations with λ = 1 and plot a histogram of the
resulting numbers.
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Chapter

4
Complex Baseband

Representation of Bandpass
Signals

4.1 Introduction

A majority of communication systems operate by modulating an information
bearing waveform onto a sinusoidal carrier. As examples, Table 4.1 lists the
carrier frequencies of various methods of electronic communication.

One can see by examining Table 4.1 that the carrier frequency of the trans-
mitted signal is not the component which contains the information. Instead it
is the signal modulated on the carrier which contains the information. Hence
a method of characterizing a communication signal, which is independent of
the carrier frequency, is desired. This has led communication system engineers
to use a complex baseband representation of communication signals to
simplify their job. All of the communication systems mentioned in Table 4.1
can be and typically are analyzed with this complex baseband representation.
This chapter develops the complex baseband representation for determinis-
tic signals. Other references that develop these topics well are [Pro89, PS94,
Hay83, BB99]. One advantage of the complex baseband representation is sim-
plicity. When communication system engineers use the complex baseband
notation, all signals are lowpass signals and the fundamental ideas behind
modulation and communication signal processing are easily developed. Also
digital processing based receivers use the complex baseband representation in
describing the baseband processing algorithms. In fact, complex baseband rep-
resentation is so prevalent in engineering systems that the most widely used
tool, Matlab, has been configured by default to process all variables in a pro-
gram as complex signals. Hopefully by the time you are done with this course
the utility of this view will be apparent.

4.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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TABLE 4.1 Carrier frequency assignments for different methods
of information transmission

Type of Transmission Center Frequency of Transmission

Telephone Modems 1600–1800 Hz
AM radio 530–1600 kHz
CB radio 27 MHz
FM radio 88–108 MHz
VHF TV 178–216 MHz
Cellular radio 850 MHz, 1.8 GHz
Indoor Wireless Networks 2.4 GHz
Commercial Satellite Downlink 3.7–4.2 GHz
Commercial Satellite Uplink 5.9–6.4 GHz
Fiber Optics 2 × 1014 Hz

4.2 Baseband Representation of Bandpass Signals

The first step in the development of a complex baseband representation is to
define a bandpass signal.

Definition 4.1 A bandpass signal, xc(t), is a signal whose one-sided energy spectrum is
both: (1) centered at a nonzero frequency, f C , and (2) does not extend in frequency to
zero (DC).

The two-sided transmission bandwidth of a signal is typically denoted by
BT Hertz so that the one-sided spectrum of the bandpass signal is zero ex-
cept in [ fC − BT /2, fC + BT /2]. This implies that a bandpass signal satis-
fies the following constraint: BT /2 < fC . Figure 4.1 illustrates a conformant
bandpass energy spectrum. Since a bandpass signal, xc(t), is a physically re-
alizable signal it is real valued and consequently the energy spectrum will
always be even symmetric around f = 0. The relative sizes of BT and fC
are not important, only that the spectrum takes negligible values around DC.
In telephone modem communications this region of negligible spectral values
is only about 300 Hz wide, while in satellite communications it can be many
gigahertz.

BT

Gxc
(f )

f
−fC fC

Figure 4.1 Energy spectrum of a bandpass signal.
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A bandpass signal has a representation of

xc(t) = xI (t)
√

2 cos(2π fct) − xQ(t)
√

2 sin(2π fct) (4.1)

= xA(t)
√

2 cos(2π fct + xP (t)) (4.2)

where fc is denoted the carrier frequency with fC − BT /2 ≤ fc ≤ fC + BT /2.
The signal xI (t) in Eq. (4.1) is normally referred to as the in-phase (I) compo-
nent of the signal and the signal xQ(t) is normally referred to as the quadrature
(Q) component of the bandpass signal. xI (t) and xQ(t) are real valued lowpass
signals with a one-sided non–negligible energy spectrum no larger than BT Hz.
Two items should be noted

■ The center frequency of the bandpass signal, fC , (see Figure 4.1) and the
carrier frequency, fc are not always the same. While fc can theoretically take
a continuum of values in Eq. (4.1), in most applications an obvious value of
fc will give the simplest representation1.

■ The
√

2 term is included in the definition of the bandpass signal to ensure that
the bandpass signal and the baseband signal have the same power/energy.
This will become apparent in Section 4.4.

The carrier signal is normally thought of as the cosine term, hence the I
component is in-phase with the carrier. Likewise the sine term is 90◦ out-of-
phase (in quadrature) with the cosine or carrier term, hence the Q component
is quadrature to the carrier. Equation (4.1) is known as the canonical form of a
bandpass signal. Equation (4.2) is the amplitude and phase form of the band-
pass signal, where xA(t) is the amplitude of the signal and xP (t) is the phase
of the signal. A bandpass signal has two degrees of freedom. A communication
engineer can use either the I/Q representation or the amplitude and phase rep-
resentation to denote a bandpass signal. The transformations between the two
representations are given by

xA(t) =
√

xI (t)2 + xQ(t)2 xP (t) = tan−1[xQ(t), xI (t)] (4.3)

and

xI (t) = xA(t) cos(xP (t)) xQ(t) = xA(t) sin(xP (t)) (4.4)

Note that the inverse tangent function in Eq. (4.3) has a range of [−π, π ] (i.e.,
both the sign of xI (t) and xQ(t) and the ratio of xI (t) and xQ(t) are needed
to evaluate the function). This inverse tangent function is different than the
single argument function that is on most calculators. The particulars of the
communication design analysis determine which form for the bandpass signal
is most applicable.

1This idea will become more obvious in Chapter 6.
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A complex valued signal, denoted the complex envelope, is defined as

xz(t) = xI (t) + j xQ(t) = xA(t) exp[ j xP (t)]

The original bandpass signal can be obtained from the complex envelope by

xc(t) =
√

2
[xz(t) exp[ j 2π fct]]. (4.5)

Since the complex exponential only determines the carrier frequency, the
complex signal xz(t) contains all the information in xc(t). Using this complex
baseband representation of bandpass signals greatly simplifies the notation for
communication system analysis. As you progress through the text hopefully
the additional simplicity provided by the complex envelope representation will
become evident.

EXAMPLE 4.1
Consider the bandpass signal

xc(t) = 2 cos(2π fmt)
√

2 cos(2π fct) − sin(2π fmt)
√

2 sin(2π fct)

where fm < fc. A plot of this bandpass signal is seen in Figure 4.2 with fc = 10 fm.
Obviously we have

xI (t) = 2 cos(2π fmt) xQ(t) = sin(2π fmt)

and

xz(t) = 2 cos(2π fmt) + j sin(2π fmt)

The amplitude and phase can be computed as

xA(t) =
√

1 + 3 cos2(2π fmt) xP (t) = tan−1[sin(2π fmt), 2 cos(2π fmt)].

A plot of the amplitude and phase of this signal is seen in Figure 4.3.

As an interesting historical note, the communications field did not always uti-
lize the complex baseband notation. Originally, communication theorist adopted
the “analytical signal” denoted

xan(t) = xz(t) exp[ j 2π fct] (4.6)

as a way to understand communication signals. This complex analytical signal
was viewed as useful since it was more mathematically tractable and yet cap-
ture all the characteristics of communications signals. Slowly over time the field
came to realize that the important characteristics of a communication wave-
form are captured by the complex envelope, xz(t). An early tutorial paper on
the complex analytical signal is given in [Bed62]. Hence the complex envelope
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Figure 4.2 Plot of the bandpass signal for Example 4.1.
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Figure 4.3 Plot of the amplitude and phase for Example 4.1.
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LPF

LPF

Σ
+

Complex Baseband to
Bandpass Conversion

Bandpass to Complex
Baseband Conversion

π 2 π 2

2 2cos πf tc( )

xI(t)

−

−xQ(t)

x1(t)

x2(t)

xI(t)

xQ(t)

xc(t)
2 2cos πf tc( )

Figure 4.4 Schemes for converting between complex baseband and bandpass representations. Note
that the LPF simply removes the double frequency term associated with the down conversion.

representation of bandpass signals is an excellent example of the evolution of an
engineering tool where no one person can really be ascribed to the “invention.”

The next item to consider is methods to translate between a bandpass sig-
nal and a complex envelope signal. Figure 4.4 shows the block diagram of the
translation between a complex envelope and a bandpass signal and vice versa.
Basically a bandpass signal is generated from its I and Q components in a
straightforward fashion corresponding to Eq. (4.1). Likewise a complex enve-
lope signal is generated from the bandpass signal with a similar architecture.
Bandpass to baseband downconversion can be understood by using trigonomet-
ric identities to give

x1(t) = xc(t)
√

2 cos(2π fct) = xI (t) + xI (t) cos(4π fct) − xQ(t) sin(4π fct)
(4.7)

x2(t) = xc(t)
√

2 sin(2π fct) = −xQ(t) + xQ(t) cos(4π fct) + xI (t) sin(4π fct)

In Figure 4.4 the lowpass filters remove the 2 fc terms in Eq. (4.7). Note in
Figure 4.4 the boxes with π/2 are phase shifters (i.e., cos(θ − π/2) = sin(θ ))
typically implemented with delay elements. The structure in Figure 4.4 is fun-
damental to the study of all carrier modulation techniques.

4.3 Visualization of Complex Envelopes

The complex envelope is a signal that is a complex function of time. Conse-
quently, the complex envelope needs to be characterized in three dimensions
(time, in-phase, and quadrature). For example, the complex envelope given as

xz(t) = exp[ j 2π fmt] = cos(2π fmt) + j sin(2π fmt) (4.8)

can be represented as a three dimensional plot as shown in Figure 4.5(a). It is
often difficult to comprehend all that is going on in a three-dimensional plot
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Figure 4.5 Plots of a complex exponential.

when the complex envelope is a typical communication signal hence communi-
cation engineers often project these signals into two dimensions. Examples of
this two-dimensional projection are shown in Figure 4.5(b) (xI (t) versus xQ(t)),
Figure 4.6(a) (t versus xI (t)), and Figure 4.6(b) (t versus xQ(t)). All of these
methods of viewing and visualizing a complex envelope signal are used in en-
gineering practice.

The vector diagram is the two-dimensional projection, where xI (t) is plotted
versus xQ(t). The vector diagram represents the time trajectory of the complex
envelope, xz(t), in the complex plane. This vector diagram often gives signifi-
cant insight into the performance or characteristics of a communication system
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Figure 4.6 Plots of the two time functions.
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and it will be used often in future sections of this text. The vector diagram first
gained utility in the days when the standard tool for examining the time domain
characteristics of a communication signal was the dual channel analog oscillo-
scope. To produce a vector diagram with a dual channel oscilloscope, xI (t) is put
into one channel and xQ(t) is put into the second channel and the scope is con-
figured to plot channel 1 versus channel 2. Since early test instruments could
simply generate this visualization, the vector diagram has traditionally found
utility in engineering practice. In fact, modern communication test equipment
like the Agilent 89600 vector signal analyzer are based around the characteri-
zation of the complex envelope and have the ability to measure vector diagrams
of bandpass signals.

EXAMPLE 4.2
The vector diagram for the bandpass signal given in Example 4.1 is shown in Figure 4.7.
It should be noted that the point xz(t) = (2, 0) corresponds to time t = n/ fm where n is an

t
n

f fm m

= +
3

4

t
n

fm

=

−1

−1.5
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−0.5

0

0.5

1

1.5

2

x Q
(t

)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

xI(t)

Figure 4.7 The vector diagram for the bandpass signal in Example 4.1.
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integer, e.g., 2 cos(2πn) = 2 and sin(2πn) = 0. Likewise t = n/ fm + 1/(4 fm) corresponds
to the point xz(t) = (0, 1).

4.4 Spectral Characteristics of the Complex Envelope

4.4.1 Basics

It is of interest to derive the spectral representation of the complex baseband
signal, xz(t), and compare it to the spectral representation of the bandpass
signal, xc(t). Assuming xz(t) is an energy signal, the Fourier transform of xz(t)
is given by

Xz(f ) = X I (f ) + j X Q(f ) (4.9)

where X I (f ) and X Q(f ) are the Fourier transform of xI (t) and xQ(t), respec-
tively, and the energy spectrum is given by

Gxz(f ) = |Xz(f )|2 = GxI (f ) + GxQ (f ) + 2�[X I (f )X ∗
Q(f )] (4.10)

where GxI (f ) and GxQ (f ) are the energy spectrum of xI (t) and xQ(t), respectively.
The signals xI (t) and xQ(t) are lowpass signals with a one-sided bandwidth of
less than BT /2 so consequently Xz(f ) and Gxz(f ) can only take nonzero values
for | f | < BT /2.

EXAMPLE 4.3
Consider the case when xI (t) is set to be the message signal from Example 2.3 (com-
puter generated voice saying “bingo”) and xQ(t) = cos(2000πt). X I (f ) will be a lowpass
spectrum with a bandwidth of 2500 Hz while X Q(f ) will have two impulses located
at ±1000 Hz. Figure 4.8 shows the measured complex envelope energy spectrum for
these lowpass signals. The complex envelope energy spectrum has a relation to the
voice spectrum and the sinusoidal spectrum exactly as predicted in Eq. (4.10). Note
here BT = 5000 Hz.

Equation (4.9) gives a simple way to transform between the lowpass signal
spectrums to the complex envelope spectrum. A similar simple formula exists
for the opposite transformation. Note that xI (t) and xQ(t) are both real signals
so that X I (f ) and X Q(f ) are Hermitian symmetric functions of frequency. It is
straightforward to show

Xz(− f ) = X ∗
I (f ) + j X ∗

Q(f )
(4.11)

X ∗
z (− f ) = X I (f ) − j X Q(f )
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Figure 4.8 The energy spectrum resulting from xI (t) being a computer generated voice signal
and xQ(t) being a sinusoid.

This leads directly to

X I (f ) = Xz(f ) + X ∗
z (− f )

2
(4.12)

X Q(f ) = Xz(f ) − X ∗
z (− f )

j 2

Since xz(t) is a complex signal, in general, the energy spectrum, Gxz(f ), has
none of the usual properties of real signal spectra. Real signals have a spectral
magnitude that is an even function of f and a spectral phase that is an odd
function of f . Complex envelopes spectra are not so restricted.

An analogous derivation produces the spectral characteristics of the bandpass
signal. Examining Eq. (4.1) and using the Frequency Translation Theorem of
the Fourier transform, the Fourier transform of the bandpass signal, xc(t), is
expressed as

Xc(f ) =
[

1√
2

X I (f − fc) + 1√
2

X I (f + fc)
]

−
[

1√
2 j

X Q(f − fc) − 1√
2 j

X Q(f + fc)
]
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This can be rearranged to give

Xc(f ) =
[

X I (f − fc) + j X Q(f − fc)√
2

]
+
[

X I (f + fc) − j X Q(f + fc)√
2

]
(4.13)

Using Eq. (4.11) in Eq. (4.13) gives

Xc(f ) = 1√
2

Xz(f − fc) + 1√
2

X ∗
z (− f − fc) (4.14)

This is a very fundamental result. Equation (4.14) states that the Fourier
transform of a bandpass signal is simply derived from the spectrum of the
complex envelope. For positive values of f , Xc(f ) is obtained by translating
Xz(f ) to fc and scaling the amplitude by 1/

√
2. For negative values of f , Xc(f )

is obtained by flipping Xz(f ) around the origin, taking the complex conjugate,
translating the result to − fc, and scaling the amplitude by 1/

√
2 . This also

demonstrates that if Xc(f ) only takes values when the absolute value of f is in
[ fc − BT /2, fc + BT /2], then Xz(f ) only takes values in [−BT /2, BT /2]. The
energy spectrum of xc(t) can also be expressed in terms of the energy spectrum
of xz(t) as

Gxc (f ) = 1
2

Gxz(f − fc) + 1
2

Gxz(− f − fc) (4.15)

Since Exc = ∫∞
−∞ Gxc (f ) df = ∫∞

−∞ Gxz(f ) df, Eq. (4.15) guarantees that the en-
ergy of the complex envelope is identical to the energy of the bandpass signal.
Additionally, Eq. (4.15) guarantees that the energy spectrum of the bandpass
signal is an even function of frequency as it should be for a real signal. Consid-
ering these results, the spectrum of the complex envelope of the signal shown in
Figure 4.1 will have a form shown in Figure 4.9 when fc = fC . Other values of
fc would produce a different but equivalent complex envelope representation.
This discussion of the spectral characteristics of xc(t) and xz(t) should reinforce
the idea that the complex envelope contains all the information in a bandpass
waveform.

Gxz
( f )

f

BT

Figure 4.9 The complex envelope
energy spectrum of the bandpass
signal in Figure 4.1 with fc = fC .
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EXAMPLE 4.4
(Example 4.1 cont.)

xI (t) = 2 cos(2π fmt) xQ(t) = sin(2π fmt)

X I (f ) = δ(f − fm) + δ(f + fm) X Q(f ) = 1
2 j

δ(f − fm) − 1
2 j

δ(f + fm)

Xz(f ) = X I (f ) + j X Q(f ) = 1.5δ(f − fm) + 0.5δ(f + fm)

and using Eq. (4.14) gives the bandpass signal spectrum as

Xc(f ) = 1.5√
2

δ(f − fc − fm) + 1

2
√

2
δ(f − fc + fm) + 1.5√

2
δ(f + fc + fm) + 1

2
√

2
δ(f + fc − fm)

Note in this example BT = 2 fm

EXAMPLE 4.5
For the complex envelope derived in Example 4.3 the measured bandpass energy spec-
trum for fc = 7000 Hz is shown in Figure 4.10. Again the measured output is exactly
predicted by Eq. (4.15). In this example we have BT = 5000 Hz.
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Figure 4.10 The bandpass spectrum corresponding to Figure 4.8. BT = 5000 Hz.
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4.4.2 Bandwidth of Bandpass Signals

The ideas of bandwidth of a signal extend in an obvious way to bandpass signals.
Recall engineers define bandwidth as being the amount of positive spectrum
that a signal occupies. For bandpass energy signals we have the following two
definitions that are analogous to the bandwidth definitions in Chapter 2.

Definition 4.2 If a signal xc(t) has an energy spectrum Gxc (f ) then BX is determined as

10 log
(

max
f

Gxc (f )
) = X + 10 log(Gxc (f 1)) (4.16)

where Gxc (f 1) > Gxc (f ) for 0 < f < f 1 and

10 log
(

max
f

Gxc (f )
) = X + 10 log(Gxc (f 2)) (4.17)

where Gxc (f 2) > Gxc (f ) for f > f 2 where f 2 − f 1 = BX .

Definition 4.3 If a signal xc(t) has an energy spectrum Gxc (f ) then BP = min(f 2 − f 1)
such that

P =
2
∫ f 2

f 1
Gxc (f ) df

Exc

(4.18)

where f 2 > f 1.

Note the reason for the factor of 2 in Eq. (4.21) is that half of the energy of the
bandpass signal is associated with positive frequencies and half of the energy
is associated with negative frequencies.

Again, for bandpass power signals similar ideas hold with Gxc (f ) being re-
placed with Sxc (f , T ).

Definition 4.4 If a signal xc(t) has a sampled power spectral density Sxc (f , T m) (see
Eq. (2.56)) then BX is determined as

10 log
(

max
f

Sxc (f , T m)
) = X + 10 log(Sxc (f 1, T m)) (4.19)

where Sxc (f 1, T m) > Sxc (f , T m) for 0 < f < f 1 and

10 log
(

max
f

Sxc (f , T m)
) = X + 10 log(Sxc (f 2, T m)) (4.20)

where Sxc (f 2, T m) > Sxc (f , T m) for f > f 2 where f 2 − f 1 = BX .

Definition 4.5 If a signal xc(t) has an power spectrum Sxc (f , T m) then BP = min(f 2−f 1)
such that

P =
2
∫ f 2

f 1
Sxc (f , T m) df

Pxc (T m)
(4.21)

where f 2 > f 1 and Pxc (T m) is defined in Eq. (2.57).
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4.5 Power of Carrier Modulated Signals

The output power of a carrier modulated signal is often important in evaluating
the trade-offs between analog communication options. For generality of the
exposition in this text, power will be computed as a time average power. The
time average power is defined as

Pxc = lim
T m→∞

1
T m

∫ T m/2

−T m/2
x2

c (t)dt (4.22)

Using the Rayleigh energy theorem and Eq. (2.56) the time average power of a
bandpass modulated signal is

Pxc = lim
T m→∞

∫ ∞

−∞
SXc (f , T m) df (4.23)

Using the power spectrum analog to Eq. (4.15) gives

Pxc = lim
T m→∞

1
T m

∫ T m/2

−T m/2
|xz(t)|2dt = Pxz (4.24)

Hence we have shown that the power contained in a carrier modulated signal
is exactly the power in the complex envelope. This result is the main reason
why the notation used in this text uses the

√
2 term in the carrier terms.

4.6 Linear Systems and Bandpass Signals

This section discusses methods for calculating the output of a linear, time-
invariant (LTI) filter with a bandpass input signal using complex envelopes.
Linear system outputs are characterized by the convolution integral given as

yc(t) =
∫ ∞

−∞
xc(τ )h(t − τ )dτ (4.25)

where h(t) is the impulse response of the filter. Since the input signal is band-
pass, the effects of an arbitrary filter, h(t), in Eq. (4.25) can be modeled with an
equivalent bandpass filter, hc(t), with no loss in generality. The bandpass filter,
Hc(f ), only needs to equal the true filter, H (f ) over the frequency support of the
bandpass signal and the two filters need not be equal otherwise. Because of this
characterization the bandpass filter is often simpler to model (and to simulate).

EXAMPLE 4.6
For example consider the lowpass filter given in Figure 4.11(a). Since the bandpass
signal only has a nonzero spectrum in a bandwidth of BT around the carrier frequency,
fc, the bandpass filter shown in Figure 4.11(b) would be input–output equivalent to the
filter in Figure 4.11(a).

This bandpass LTI system also has a canonical representation given as

hc(t) = 2hI (t) cos(2π fct) − 2hQ(t) sin(2π fct) (4.26)
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H( f )

A

(a) A low pass filter. (b) An input/output equivalent bandpass filter.

fc−fc
f

BT

Hc( f )

fc−fc
f

A

Figure 4.11 An example of a filter and its bandpass equivalent filter.

The complex envelope for this bandpass impulse response and transfer function
associated with this complex envelope are given by

hz(t) = hI (t) + j hQ(t) Hz(f ) = HI (f ) + j HQ(f )

where the bandpass system impulse response is

hc(t) = 2
[hz(t) exp[ j 2π fct]]

The representation of the bandpass system in Eq. (4.26) has a constant factor
of

√
2 difference from the bandpass signal representation of Eq. (4.1). This

factor results because the system response at baseband and at bandpass should
be identical. This notational convenience permits a simpler expression for the
system output (as is shown shortly). Using similar techniques as in Section 4.4,
the transfer function is expressed as

Hc(f ) = Hz(f − fc) + H ∗
z (− f − fc) (4.27)

EXAMPLE 4.7
Consider the signal

xc(t) = (cos(2π fmt) + cos(6π fmt))
√

2 cos(2π fct) − (sin(2π fmt)

+ sin(6π fmt))
√

2 sin(2π fct) (4.28)

that is input into a bandpass filter with a transfer function of

Hc(f ) =
{

2 fc − 2 fm ≤ | f | ≤ fc + 2 fm

0 elsewhere
(4.29)

Since the frequency domain representation of xc(t) is

Xc(f ) = 1√
2

[δ(f − (fc + fm)) + δ(f − (fc + 3 fm) + δ(f + (fc + fm)

+ δ(f + (fc + 3 fm)] (4.30)
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the output bandpass signal will have the frequency domain representation of

Yc(f ) = 2√
2

[δ(f − (fc + fm) + δ(f + (fc + fm)] (4.31)

The complex envelopes of the input and output signals are

xz(t) = exp[ j 2π fmt] + exp[ j 6π fmt] yz(t) = 2 exp[ j 2π fmt] (4.32)

consequently it makes sense to have

Hz(f ) =
{

2 | f | ≤ 2 fm

0 elsewhere
(4.33)

and Hc(f ) = Hz(f − fc) + H∗
z (− f − fc).

Equations (4.27) and (4.14) combined with the convolution theorem of the
Fourier transform produce an expression for the Fourier transform of yc(t)
given as

Yc(f ) = Xc(f )Hc(f ) = 1√
2

[Xz(f − fc) + X ∗
z (− f − fc)][Hz(f − fc)

+ H ∗
z (− f − fc)]

Since both Xz(f ) and Hz(f ) only take nonzero values in [−BT /2, BT /2], the
cross terms in this expression will be zero and Yc(f ) is given by

Yc(f ) = 1√
2

[Xz(f − fc)Hz(f − fc) + X ∗
z (− f − fc)H ∗

z (− f − fc)] (4.34)

Since yc(t) will also be a bandpass signal, it will also have a complex baseband
representation. A comparison of Eq. (4.34) with Eq. (4.14) demonstrates the
Fourier transform of the complex envelope of yc(t), yz(t), is given as

Yz(f ) = Xz(f )Hz(f )

Linear system theory produces the desired form

yz(t) =
∫ ∞

−∞
xz(τ )hz(t − τ )d τ = xz(t) ∗ hz(t) (4.35)

EXAMPLE 4.8
(Example 4.1 cont.) The input signal and Fourier transform are

xz(t) = 2 cos(2π fmt) + j sin(2π fmt) Xz(f ) = 1.5δ(f − fm) + 0.5δ(f + fm)

Assume a bandpass filter with

HI (f ) =
{

2 −2 fm ≤ f ≤ 2 fm

0 elsewhere
HQ(f ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j f
fm

−fm ≤ f ≤ fm

j fm ≤ f ≤ 2 fm

− j −2 fm ≤ f ≤ −fm

0 elsewhere

(4.36)
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This produces

Hz(f ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 − f
fm

−fm ≤ f ≤ fm

1 fm ≤ f ≤ 2 fm

3 −2 fm ≤ f ≤ −fm

0 elsewhere

(4.37)

and now the Fourier transform of the complex envelope of the filter output is

Yz(f ) = Hz(f )Xz(f ) = 1.5δ(f − fm) + 1.5δ(f + fm) (4.38)

The complex envelope and bandpass signal are given as

yz(t) = 3 cos(2π fmt) yc(t) = 3 cos(2π fmt)
√

2 cos(2π fct) (4.39)

In other words, convolving the complex envelope of the input signal with the
complex envelope of the filter response produces the complex envelope of the
output signal. The different scale factor was introduced in Eq. (4.26) so that
Eq. (4.35) would have a familiar form. This result is significant since yc(t) can
be derived by computing a convolution of baseband (complex) signals, which is
generally much simpler than computing the bandpass convolution. Since xz(t)
and hz(t) are complex, yz(t) is given in terms of the I/Q components as

yz(t) = yI (t) + j yQ(t) = [xI (t) ∗ hI (t) − xQ(t) ∗ hQ(t)]

+ j [xI (t) ∗ hQ(t) + xQ(t) ∗ hI (t)]

Figure 4.12 shows the lowpass equivalent model of a bandpass system. The
two biggest advantages of using the complex baseband representation are that
it simplifies the analysis of communication systems and permits accurate dig-
ital computer simulation of filters and the effects on communication systems
performance.

+

−

+

+

Σ

Σ yQ(t )

hQ(t )

hQ(t )

xQ(t )

hI(t )

hI(t )xI(t )

yI (t )

Figure 4.12 Block diagram illustrating the relation between the input and
output complex envelope of bandpass signals for a linear time invariant
system.
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Figure 4.13 A comparison between (a) the actual communication system model and (b) the complex
baseband equivalent model.

4.7 Conclusions

The complex baseband representation of bandpass signals permits accurate
characterization and analysis of communication signals independent of the
carrier frequency. This greatly simplifies the job of the communication sys-
tems engineer. A linear system is often an accurate model for a communica-
tion system, even with the associated transmitter filtering, channel distortion,
and receiver filtering. As demonstrated in Figure 4.13, the complex baseband
methodology truly simplifies the models for a communication system perfor-
mance analysis.

4.8 Homework Problems

Problem 4.1. Many integrated circuit implementations of the quadrature upcon-
verters produce a bandpass signal having a form

xc(t) = xI (t)
√

2 cos(2π fct) + xQ(t)
√

2 sin(2π fct) (4.40)

from the lowpass signals xI (t) and xQ(t) as opposed to Eq. (4.1). How does this
sign difference affect the transmitted spectrum? Specifically for the complex
envelope energy spectrum given in Figure 4.9 plot the transmitted bandpass
energy spectrum.
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Problem 4.2. Find the form of xI (t) and xQ(t) for the following xc(t)

(a) xc(t) = sin(2π(fc − fm)t)

(b) xc(t) = cos(2π(fc + fm)t)

(c) xc(t) = cos(2π fct + φp)

Problem 4.3. If the lowpass components for a bandpass signal are of the form

xI (t) = 12 cos(6πt) + 3 cos(10πt)

and

xQ(t) = 2 sin(6πt) + 3 sin(10πt)

(a) Calculate the Fourier series of xI (t) and xQ(t).

(b) Calculate the Fourier series of xz(t).

(c) Assuming fc = 40 Hz calculate the Fourier series of xc(t).

(d) Calculate and plot xA(t). Computer might be useful.

(e) Calculate and plot xP (t). Computer might be useful.

Problem 4.4. A bandpass filter has the following complex envelope representation
for the impulse response

hz(t) =
⎧⎨
⎩

2
(

1
2 exp
[

− t
2

])
+ j 2
(

1
4 exp
[

− t
4

])
t ≥ 0

0 elsewhere
(4.41)

(a) Calculate Hz(f ).

Hint: The transforms you need are in a table somewhere.

(b) With xz(t) from Problem 4.3 as the input, calculate the Fourier series for
the filter output, yz(t).

(c) Plot the output amplitude, yA(t), and phase, yP (t).

(d) Plot the resulting bandpass signal, yc(t) using fc = 40 Hz.

Problem 4.5. The picture of a color television set proposed by the National Tele-
vision System Committee (NTSC) is composed by scanning in a grid pattern
across the screen. The scan is made up of three independent beams (red, green,
and blue). These independent beams can be combined to make any color at a
particular position. In order to make the original color transmission compati-
ble with black and white televisions the three color signals (xr (t), xg(t), xb(t))
are transformed into a luminance signal (black and white level), xL(t), and two
independent chrominance signals, xI (t) and xQ(t). These chrominance signals
are modulated onto a carrier of 3.58 MHz to produce a bandpass signal for
transmission. A commonly used tool for video engineers to understand these
coloring patterns is the vectorscope representation shown in Figure 4.14.
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x tI ( )

x tQ( )

• Red

• Yellow

• Green

• Cyan

• Blue

• Magenta

0 64 13 7°. exp .j[ ]

0 45 77°. exp j[ ]

0 59 151°. exp j[ ]

0 64 193°. exp j[ ]

0 45 257°. exp j[ ]

0 59 331°. exp j[ ]

Figure 4.14 Vector scope representation of the complex envelope
of the 3.58 MHz chrominance carrier.

(a) If the video picture is making a smooth transition from a blue color (at t =
0) to green color (at t = 1), make a plot of the waveforms xI (t) and xQ(t).

(b) Plot xI (t) and xQ(t) that would represent a scan across a red and green
striped area. For consistency in the answers assume the red starts at t = 0
and extends to t = 1, the green starts at t = 1+ and extends to t = 2, · · ·.

Problem 4.6. Consider two lowpass spectra, X I (f ) and X Q(f ) in Figure 4.15 and
sketch the energy spectrum of the complex envelope, Gxz(f ).

Im X fI( )[ ] = 0

f1f1

− f1

A A

−A

Re X fQ ( )[ ] = 0

−f1

Im X fQ( )[ ]Re X fI( )[ ]

Figure 4.15 Two lowpass Fourier transforms.
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2 cos 2πfct( )

2 cos − π 2) = 2 sinπ 2 2πfct( )2πfc t(

2 cos 2πfct( )

Figure 4.16 Sine and cosine generator.

Problem 4.7. (Design Problem) A key component in the quadrature up/down
converter is the generator of the sine and cosine functions. This processing is
represented in Figure 4.16 as a shift in the phase by 90◦ of a carrier signal.
This function is done in digital processing in a trivial way but if the carrier
is generated by an analog source the implementation is more tricky. Show
that this phase shift can be generated with a time delay as in Figure 4.17.
If the carrier frequency is 100 MHz, find the value of the delay to achieve the
90◦ shift.

Problem 4.8. The lowpass signals, xI (t) and xQ(t), which comprise a bandpass
signal are given in Figure 4.18.

(a) Give the form of xc(t), the bandpass signal with a carrier frequency fc, using
xI (t) and xQ(t).

(b) Find the amplitude, xA(t), and the phase, xP (t), of the bandpass signal.

(c) Give the simplest form for the bandpass signal over [2T , 3T ].

Problem 4.9. The amplitude and phase of a bandpass signal is plotted in
Figure 4.19. Plot the in-phase and quadrature signals of this baseband
representation of a bandpass signal.

Problem 4.10. The block diagram in Figure 4.20 shows a cascade of a quadra-
ture upconverter and a quadrature downconverter where the phases of the two
(transmit and receive) carriers are not the same. Show that yz(t) = yI (t) +
j yQ(t) = xz(t) exp[− j θ (t)]. Specifically consider the case when the frequencies
of the two carriers are not the same and compute the resulting output energy
spectrum GYz(f ).

2 cos 2πfct( )

2 cos − τ)τ )2π fc t( (

2 cos 2πfct( )

Figure 4.17 Sine and cosine generator implementation for analog signals.
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Figure 4.18 xI (t) and xQ(t).
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Figure 4.19 The amplitude and phase of a bandpass signal.
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Figure 4.20 A downconverter with a phase offset.
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Problem 4.11. A periodic real signal of bandwidth W and period T is xI (t) and
xQ(t) = 0 for a bandpass signal of carrier frequency fc > W .

(a) Can the resulting bandpass signal, xc(t), be periodic with a period of Tc < T ?
If yes, give an example.

(b) Can the resulting bandpass signal, xc(t), be periodic with a period of Tc > T ?
If yes, give an example.

(c) Can the resulting bandpass signal, xc(t), be periodic with a period of Tc = T ?
If yes, give an example.

(d) Can the resulting bandpass signal, xc(t), be aperiodic? If yes, give an
example.

Problem 4.12. In communication systems bandpass signals are often processed
in digital processors. To accomplish the processing, the bandpass signal must
first be converted from an analog signal to a digital signal. For this problem
assume this is done by ideal sampling. Assume the sampling frequency, f s, is
set at four times the carrier frequency.

(a) Under what conditions on the complex envelope will this sampling rate be
greater than the Nyquist sampling rate (see Section 2.4.1) for the bandpass
signal?

(b) Give the values for the bandpass signal samples for xc(0), xc( 1
4 fc

), xc( 2
4 fc

),
xc( 3

4 fc
), and xc( 4

4 fc
).

(c) By examining the results in (b) can you postulate a simple way to down-
convert the analog signal when f s = 4 fc and produce xI (t) and xQ(t)? This
simple idea is frequently used in engineering practice and is known as f s/4
downconversion.

Problem 4.13. A common implementation problem that occurs in an I/Q upcon-
verter is that the sine carrier is not exactly 90◦ out of phase with the cosine
carrier. This situation is depicted in Figure 4.21.

∑
+

cos 2πfct( )

xI t( )

xc t( )

xQ t( )

−
π/2 + θ

~

~

2

Figure 4.21 The block diagram for Problem 4.13.
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Figure 4.22 An airborne air traffic control radar example.

(a) What is the actual complex envelope, xz(t), produced by this implementation
as a function of x̃I (t), x̃Q(t), and θ?

(b) Often in communication systems it is possible to correct this implementation
error by preprocessing the baseband signals. If the desired output complex
envelope was xz(t) = xI (t) + j xQ(t), what should x̃I (t) and x̃Q(t) be set to
as a function of xI (t), xQ(t), and θ to achieve the desired complex envelope
with this implementation?

Problem 4.14. A commercial airliner is flying 15,000 feet above the ground and
pointing its radar down to aid traffic control. A second plane is just leaving the
runway as shown in Figure 4.22. The transmitted waveform is just a carrier
tone, xz(t) = 1 or xc(t) = √

2 cos(2π fct).
The received signal return at the radar receiver input has the form

yc(t) = AP

√
2 cos(2π(fc + f P )t + θP ) + AG

√
2 cos(2π(fc + f G)t + θG) (4.42)

where the P subscript refers to the signal returns from the plane taking off and
the G subscript refers to the signal returns from the ground. The frequency shift
is due to the Doppler effect you learned about in your physics classes.

(a) Why does the radar signal bouncing off the ground (obviously stationary)
produce a Doppler frequency shift?

(b) Give the complex baseband form of this received signal.

(c) Assume the radar receiver has a complex baseband impulse response of

hz(t) = δ(t) + βδ(t − T ) (4.43)

where β is a possibly complex constant, find the value of β which eliminates
the returns from the ground at the output of the receiver. This system was a
common feature in early radar systems and has the common name Moving
Target Indicator (MTI) as stationary target responses will be canceled in
the filter given in Eq. (4.43).

Modern air traffic control radars are more sophisticated than this problem
suggests. An important point of this problem is that radar and communication
systems are similar in many ways and use the same analytical techniques for
design.
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hz t( )

τd exp j2πf0 t−τd( )[ ]

yz t( )exp j2πf0t[ ]

Figure 4.23 The block diagram for Problem 4.15.

Problem 4.15. A baseband signal (a complex exponential) and two linear systems
are shown in Figure 4.23. The top linear system in Figure 4.23 has an impulse
response of

hz(t) =

⎧⎪⎨
⎪⎩

1√
Tp

0 ≤ t ≤ Tp

0 elsewhere
(4.44)

The bottom linear system in Figure 4.23 is an ideal delay element (i.e., yz(t) =
xz(t − τd )).

(a) Give the bandpass frequency response Hc(f ).

(b) What is the input power? Compute yz(t).

(c) Select a delay, τd , in the bottom system in Figure 4.23 such that arg[yz(t)] =
2π f 0(t − τd ) for all f 0.

(d) What is the output power as a function of f 0, Pyz(f 0)?

(e) How large can f 0 be before the output power, Pyz(f 0), is reduced by 10 dB
compared to the output power when f 0 = 0, Pyz(0)?

Problem 4.16. The following bandpass filter has been implemented in a commu-
nication system that you have been tasked to simulate

Hc(f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 fc + 7500 ≤ | f | ≤ fc + 10000

2 fc + 2500 ≤ | f | < fc + 7500
4
3

fc ≤ | f | < fc + 2500

3
4

fc − 2500 ≤ | f | < fc

0 elsewhere

(4.45)

You know because of your great engineering education that it will be much
easier to simulate the system using complex envelope representation.

(a) Find Hz(f ).

(b) Find HI (f ) and HQ(f ).
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(c) If xz(t) = exp( j 2π fmt) find xc(t).

(d) If xz(t) = exp( j 2π fmt) compute yz(t) for 2000 ≤ fm < 9000.

Problem 4.17. Consider two bandpass filters

hz1(t) =

⎧⎪⎨
⎪⎩

1√
0.2

0 ≤ t ≤ 0.2

0 elsewhere
(4.46)

hz2(t) = sin(10πt)
10πt

(4.47)

Consider the filters and an input signal having a complex envelope of xz(t) =
exp( j 2π fmt).

(a) Find xc(t).

(b) Find Hz(f ).

(c) Find Hc(f ).

(d) For fm = 0, 7, 14 Hz find yz(t).

Problem 4.18. Find the amplitude signal, xA(t), and phase signal, xP (t) for

(a) xz(t) = z(t) exp( j φ) where z(t) is a complex valued signal.

(b) xz(t) = m(t) exp( j φ) where m(t) is a real valued signal.

Problem 4.19. A bandpass signal has a complex envelope given as

xz(t) = j exp[− j 2π fmt] + 3 exp[ j 2π fmt] (4.48)

where fm > 0.

(a) Find xI (t) and xQ(t).

(b) Plot the frequency domain representation of this periodic baseband signal
using impulse functions.

(c) Plot the frequency domain representation of the bandpass signal using
impulse functions.

(d) What is the bandpass bandwidth of this signal, BT ?

Problem 4.20. The amplitude and phase of a bandpass signal is plotted in
Figure 4.24. Plot the in-phase and quadrature signals of this baseband rep-
resentation of a bandpass signal.

Problem 4.21. A bandpass signal has a complex envelope given as

xz(t) = j exp[− j 2π fmt] + 3 exp[ j 2π fmt] (4.49)



Complex Baseband Representation of Bandpass Signals 4.27

1

T 2T 3T 4T

4T3T2TT

π/2

−π/2

−π

xA t( )

xP t( )

t

t

Figure 4.24 The amplitude and phase of a bandpass signal.

where fm > 0. This signal is put into a bandpass filter which has a complex
envelope characterized with

HQ(f ) =
⎧⎨
⎩

1 | f | ≤ 4000

0 elsewhere
HI (f ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− j −4000 ≤ f ≤ 0

j 0 ≤ f ≤ 4000

0 elsewhere

(4.50)

The output of the filter at bandpass is denoted yc(t) and at baseband is denoted
yz(t).

(a) What is Hz(f ).

(b) Find yz(t) as a function of fm.

(c) Plot the frequency domain representation of the output bandpass signal
using impulse functions for the case fm = 2000 Hz.

Problem 4.22. (PD) In Figure 4.25 are drawings of the f ≥ 0 portions of the
Fourier transforms of two bandpass signals. For each transform plot the mag-
nitude and phase for the entire f axis (i.e., filling in the missing f < 0 part).
Also for each transform plot the magnitude and phase for the entire f axis for
X I (f ) and X Q(f ).



4.28 Chapter Four
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Figure 4.25 Amplitude and phase of a bandpass signal.

Problem 4.23. If F{xz(t)} = Xz(f ) what is F{x∗
z (t)}?

Problem 4.24. An often used pulse in radar systems has a complex envelope of

xz(t) =
⎧⎨
⎩

Ac exp[ j 2πg0t2] 0 ≤ t ≤ Tp

0 elsewhere
(4.51)

(a) What are xA(t) and xP (t).

(b) Plot the bandpass signal, xc(t) for fc = 10 Hz and g0 = 100 Hz/s, Ac = 1,
and Tp = 1.

(c) What is the Exz?

(d) Plot Gxz(f ) and estimate B98 when g0 = 100 Hz/s and Tp = 1.

Problem 4.25. A complex baseband signal is given as xz(t) = xI (t)+ j xQ(t), where
xI (t) and xQ(t) are real lowpass signals. Find
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HT f( )xc t( )
x̃c t( )

yc t( )

2 cos 2πf2t( )
Figure 4.26 A heterodyne upconverter.

(a) The bandpass signal, xc(t), represented by xz(t)

(b) Xz(f ) and X ∗
z (f ) in terms of X I (f ) and X Q(f )

(c) X Q(f ) in terms of Xz(f )

(d) Xc(f ) in terms of X I (f ) and X Q(f )

(e) Show that |Xc(f )| is an even function of frequency.

Problem 4.26. Consider a bandpass signal, xc(t) with fc = 10.7 MHz and a com-
plex envelope given as

xz(t) = 0.5 exp[ j 2000πt] + 1.5 exp[− j 2000πt] (4.52)

in a system with a block diagram given in Figure 4.26 where f 2 = 110.7 MHz.
This block diagram is often described as a heterodyne upconverter and is fre-
quently used in practice. Further assume that the bandpass filter, HT (f ) is
characterized as

HT (f ) =
⎧⎨
⎩

a| f | + b 99 MHz ≤ | f | ≤ 101 MHz

0 elsewhere
(4.53)

where a = 0.3 × 10−6 and b = −29.

(a) Plot the spectrum of the bandpass signal, Xc(f ).

(b) The output of the multiplier (mixer) is denoted as x̃c(t). Plot the spectrum
X̃c(f ).

(c) Plot the transfer function of the bandpass filter, HT (f ).

(d) Plot the bandpass output spectrum Yc(f ).

(e) Give the complex envelope of the output signal, yz(t).

Problem 4.27. A common implementation issue that arises in circuits that imple-
ment the I/Q up and down converters is an amplitude imbalance between the
I channel and the Q channel. For example, if the complex envelope is given as
xz(t) = xI (t)+ j xQ(t) then the complex envelope of the signal that is transmitted
or received after imperfect conversion needs to be modeled as

x̃z(t) = AxI (t) + j BxQ(t) (4.54)
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The amplitude imbalance is denoted γ = (B/A)2 in practice.

(a) Assume that PxI = PxQ = Pxz/2 and find the values of A and B that achieve
a specified γ and Pxz = Px̃z .

(b) For the transformation detailed in (a) find the output complex envelope,
x̃z(t), when xz(t) = exp[ j 2π fmt]. Plot the signal spectrum before and after
the amplitude imbalance.

Problem 4.28. (PD) Let xc(t) be a bandpass signal with

Xc(f ) =
{

X0 || f | − fa| ≤ W
0 0 elsewhere

(4.55)

(a) Find Exc .

(b) Plot Xz(f ) for fc = fa. Is xz(t) a real valued signal?

(c) Plot Xz(f ) for fc = fa + W . Is xz(t) a real valued signal?

4.9 Example Solutions

Problem 4.2.

(a) Using sin(a − b) = sin(a) cos(b) − cos(a) sin(b) gives

xc(t) = sin(2π fct) cos(2π fmt) − cos(2π fct) sin(2π fmt) (4.56)

By inspection we have

xI (t) = −1√
2

sin(2π fmt) xQ(t) = −1√
2

cos(2π fmt) (4.57)

(b) Recall xc(t) = xA(t)
√

2 cos(2π fct + xP (t)) so by inspection we have

xz(t) = 1√
2

exp( j 2π fmt) xI (t) = 1√
2

cos(2π fmt)

xQ(t) = 1√
2

sin(2π fmt) (4.58)

(c) Recall xc(t) = xA(t)
√

2 cos(2π fct + xP (t)) so by inspection we have

xz(t) = 1√
2

exp( j φp) xI (t) = 1√
2

cos(φp) xQ(t) = 1√
2

sin(φp) (4.59)

Problem 4.6. We can write

X I (f ) = Arect
(

f
2 f 1

)
and X Q(f ) = j

Af
f 1

rect
(

f
2 f 1

)
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Then

GX I (f ) = |X I (f )|2 = A2rect
(

f
2 f 1

)

GX Q (f ) = |X Q(f )|2 = A2 f 2

f 2
1

rect
(

f
2 f 1

)

X I (f )X ∗
Q(f ) = − j A2 f

f 1
rect
(

f
2 f 1

)

�{X I (f )X ∗
Q(f )
} = − A2 f

f 1
rect
(

f
2 f 1

)

Hence

GXz(f ) = GX I (f ) + GX Q (f ) + 2�X I (f )X ∗
Q(f )

= A2

[
rect
(

f
2 f 1

)
+
(

f
f 1

)2

rect
(

f
2 f 1

)
− 2

f
f 1

rect
(

f
2 f 1

)]

GXz(f ) =
(

f − f
f 1

)2

rect
(

f
2 f 1

)

Problem 4.11. xI (t) is periodic with period T . Because of this xI (t) can be repre-
sented in a Fourier series expansion

xI (t) =
∞∑

k=−∞
xk exp

[
j 2πkt

T

]
(4.60)

If the bandwidth of the signal is less than WHz then the Fourier series will be
truncated to a finite summation. Define km to be the largest integer such that
km/T ≤ W then

xI (t) =
km∑

k=−km

xk exp
[

j 2πkt
T

]
(4.61)

The bandpass signal will have the form

xc(t) = xI (t)
√

2 cos(2π f ct)

= xI (t)
[

1√
2

exp( j 2π f ct) + 1√
2

exp(− j 2π f ct)
]

(4.62)

=
km∑

k=−km

1√
2

xk

(
exp
[

j 2π

(
k
T

+ f c

)
t
]

+ exp
[

j 2π

(
k
T

− f c

)
t
])

Since the bandpass signal has a representation as a sum of weighted
sinusoids there is a possibility that the bandpass signal will be periodic.
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This bandpass signal will only be period if all the frequencies are an integer
multiple of a fundamental frequency, 1/Tc.

(a) The bandpass signal can be periodic with Tc < T . For example, choose xI (t)
to be a 2 Hz sinusoid, i.e., xI (t) = cos(2π(2)t) and the carrier frequency to
be fc = 6 Hz. Clearly here T = 1/2 seconds. The bandpass signal in this
case is

xc(t) = xI (t)
√

2 cos(2π(6)t) =
√

2
4

(exp[ j 2π(−8)t]

+ exp[ j 2π(−4)t] + exp[ j 2π(4)t] + exp[ j 2π(8)t]) (4.63)

The bandpass signal is a sum of four sinusoids that have frequencies of
f 1 = −8, f 2 = −4, f 3 = 4, f 4 = 8. Clearly the fundamental frequency
bandpass signal is 4 Hz and Tc = 0.25 < 0.5.

(b) The bandpass signal can be periodic with Tc < T . For example, choose xI (t)
to be a 3 Hz sinusoid, i.e., xI (t) = cos(2π(3)t) and the carrier frequency to
be fc = 5 Hz. Here, T = 1/3 seconds. The bandpass signal in this case is

xc(t) = xI (t)
√

2 cos(2π(5)t) =
√

2
4

(exp[ j 2π(−8)t]

+ exp[ j 2π(−2)t] + exp[ j 2π(2)t] + exp[ j 2π(8)t]) (4.64)

The bandpass signal is a sum of four sinusoids that have frequencies of
f 1 = −8, f 2 = −2, f 3 = 2, f 4 = 8. The fundamental frequency of the
bandpass signal is 2 Hz and Tc = 0.5 > 1/3.

(c) The bandpass signal can be periodic with Tc = T . For example, choose xI (t)
to be a 2 Hz sinusoid, i.e., xI (t) = cos(2π(2)t) and the carrier frequency to
be fc = 4 Hz. Here, T = 0.5 seconds. The bandpass signal in this case is

xc(t) = xI (t)
√

2 cos(2π(4)t) =
√

2
4

(exp[ j 2π(−6)t]

+ exp[ j 2π(−2)t] + exp[ j 2π(2)t] + exp[ j 2π(6)t]) (4.65)

The bandpass signal is a sum of four sinusoids that have frequencies of
f 1 = −6, f 2 = −2, f 3 = 2, f 4 = 6. The fundamental frequency of the
bandpass signal is 2 Hz and Tc = 0.5.

(d) The bandpass signal can be aperiodic. For example, again choose xI (t) to
be a 2 Hz sinusoid, i.e., xI (t) = cos(2π(2)t). Here, T = 0.5 seconds. The
bandpass signal in this case is

xc(t) = xI (t)
√

2 cos(2π(fc)t) (4.66)

=
√

2
4

(exp[ j 2π(−2 − fc)t] + exp[ j 2π(−fc + 2)t]

+ exp[ j 2π(fc − 2)t] + exp[ j 2π(fc + 2)t])
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The bandpass signal will be aperiodic if the two frequency are not integer
multiples of a common frequency. That implies that the two bandpass fre-
quencies must be irrational numbers. Choosing fc = √

2 will produce an
aperiodic signal.

4.10 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral

presentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). All team
members should be prepared to give the presentation.

4.10.1 Project 1

Project Goals: In engineering often in the course of system design or test
anomalous performance characteristics often arise. Your job as an engineer is to
use your knowledge of the theory to identify the causes of these characteristics
and correct them. Here is an example of such a case.

Get the Matlab file bpex1.m from the class web page. In this file the carrier
frequency was chosen as 7 kHz. If the carrier frequency is chosen as 8 kHz an
anomalous output is evident from the quadrature downconverter. This is most
easily seen in the output energy spectrum, Gyz(f ). Postulate a reason why this
behavior occurs.

Hint: It happens at 8 kHz but not at 7 kHz and Matlab is a sampled data
system. What problems might one have in sampled data system? Assume that
this upconverter and downconverter were products you were designing how
would you specify the performance characteristics such that a customer would
never see this anomalous behavior?

4.10.2 Project 2

Project Goals: Use the knowledge of the theory of bandpass signals to identify
unknown parameters of a bandpass signal.

A signal has a form

xc(t) = xI (t)
√

2 cos(2π fct + θ ) − xQ(t)
√

2 sin(2π fct + θ ) (4.67)
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It is known that

xI (t) = cos(200πt) xQ(t) = cos(400πt) (4.68)

The values of θ and fc are unknown. The signal has been recorded with a sample
frequency of 22050 Hz (assume Nyquist criterion was satisfied) and is available
in the file CompenvPrjt2.mat on the class web page. Using this file make an
estimate of θ and fc. Detail the logic that led to the estimates.
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Chapter

5
Analog Communications

Basics

Analog communication involves transferring an analog waveform containing
information (no digitization at any point) between two users. Typical examples
where analog information is transmitted in this fashion are

■ Music — broadcast radio
■ Voice — citizen band radio, amateur radio, walkie-talkies, cellular radio
■ Video — broadcast television

These message signals all have unique characteristics that engineers need to
understand to be able to build communication systems that can implement this
communication with high fidelity and low cost. The characterization of these
message signals build upon the foundation of an undergraduate signals and
systems education as reviewed in Chapter 2. Signals are typically characterized
in both the time and frequency domain and that is the approach that will be
taken in this chapter.

5.1 Message Signal Characterization

Characterizing the message to be transmitted will be important in understand-
ing analog communications. The information bearing analog waveform is de-
noted m(t) and it is assumed to be an energy signal with a Fourier transform
of M(f ) and energy spectral density of Gm(f ), respectively. The message signal
is assumed to be a real valued signal. Figures 5.1 and 5.2 show an example
of a short time record of a message signal and an energy spectral density of a
message signal. This text will use these examples, time signal and spectrum,
to demonstrate modulation concepts. Often a DC value is not an important
component in an analog message signal so we will often use the fact that the

5.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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Figure 5.1 An example message signal, m(t).

energy spectrum of the message signal goes to zero for small frequencies and
that the message signal will pass through a DC block unchanged. In analog
modulations it is often important to discuss the signal bandwidth and this will
be denoted W . Note that this W could correspond to either relative or integral
bandwidth and will not be specified unless necessary for clarity.

Several parameters will occur frequently to characterize analog communica-
tions. The most important characteristic of an analog signal to the communica-
tion engineer is the bandwidth of the signal. The bandwidth of analog baseband

−0.2

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

G
m

(f
)

Frequency, f, Hz

W

Figure 5.2 An example of a message energy spectral density.



Analog Communications Basics 5.3

signals have been characterized in Chapter 2 and these results will be used
through the remainder of the text. The time average signal power will be an
important characteristic of a message signal.

Definition 5.1 The time average message power, Pm, is

Pm = lim
T m→∞

Pm(T m) (5.1)

where Pm(T m) is defined in (2.54).

Other characteristics of the message signal that are important include

■ The largest value of the message signal, max m(t)
■ The smallest value of the message signal, min m(t)
■ The maximum rate of change of the message signal, max | d

dt m(t)|
A characteristic often used to characterize communication signals is the peak

to average power ratio (PAPR).

Definition 5.2 The peak power to average power ratio of m(t) is

PAPRm = (max |m(t)|)2

Pm
(5.2)

The remainder of this book will consistently relate performance of communica-
tion systems back to these parameters that describe the message signal.

EXAMPLE 5.1
Recall the example from Chapter 2 of a filtered computer generated voice saying the
word “Bingo” whose time waveform is shown in Figure 2.1 and whose energy spectrum
is shown in Figure 2.8. This is pretty typical of a spoken word signal that would be
communicated in an analog communication system. A spoken word signal typically has
the characteristic that there is little DC value for the signal and this is reflected in the
notch in the energy spectrum of this signal at 0 Hz. This characteristic implies that
a spoken word signal will pass through a DC block with little distortion. Examining
this signal both the 40 dB bandwidth and 98% energy bandwidth are about 2.5 kHz so
when this signal is used in future examples it will be assumed that W = 2.5 kHz. In
general, spoken word signals have been characterized as having a bandwidth of about
W = 3.5–4 kHz and many commonly employed communication systems are built on this
premise (e.g., the public telephone system).

EXAMPLE 5.2
High quality audio signals have different characteristics than spoken word signals.
Figure 5.3(a) shows the time signal of a short excerpt from a song by Andrea Bocelli
sampled at 44100 Hz. Figure 5.3(b) shows the measured power spectrum from this same
song. This is pretty typical of a high fidelity audio signal that would be communicated
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Figure 5.3 A high fidelity audio signal.

in an analog communication system. A high fidelity audio signal typically has the char-
acteristic that there is little DC value for the signal and this is reflected in the notch
in the power spectrum of this signal at 0 Hz. This characteristic implies that a high
fidelity audio signal will pass through a DC block with little distortion. Examining this
signal the 40 dB bandwidth is about B40 = 15.5 kHz. In general, high fidelity audio
signals have been characterized as having a bandwidth of about W = 15–20 kHz and
many commonly employed communication systems are built on this premise (e.g., audio
broadcasting).

EXAMPLE 5.3
Video signals have different characteristics than audio signals. Figure 5.4(a) shows the
time signal of a short excerpt from an NTSC video signal. NTSC stands for National
Television System Committee, which devised the NTSC television (TV) broadcast system
in 1953. All analog television broadcasts in the United States must have a message
signal that meet this standard. This message signal format was chosen so that the
transformation to a raster scan on a TV tube is a fairly simple circuit. Figure 5.4(b)
shows the measured power spectrum from an NTSC video signal. This is pretty typical
of an NTSC video signal that would be communicated in an analog communication
system. An NTSC video signal typically has the characteristic that the DC value for
the signal is important and this is reflected in the fact that there is no notch in the
power spectrum of this signal at 0 Hz. DC blocks cannot be used in the processing of an
NTSC video signals. Examining this signal the 40 dB bandwidth is about 4.5 MHz. In
general, NTSC video signals have been characterized as having a bandwidth of about
W = 4.5 MHz and many commonly employed communication systems are built on this
premise (e.g., TV broadcasting). More details about NTSC video signals can be found in
[WB00].
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(a) Measured time waveform (b) Measured power spectrum

Figure 5.4 An NTSC video signal.

5.2 Analog Transmission

The conventional communication system has a modulator producing a signal
that is transmitted over a channel (a cable or radio propagation) and a demod-
ulator which takes this signal and constructs an estimate of the transmitted
message signal. Figure 5.5 is a block diagram of this system where rc(t) is
the output of the channel, Yc(t) is the waveform observed with the receiver1,
and m̂(t) is the estimate of the transmitted message signal. The noise added
by a radio receiver is usually a combination of signal distortion and additive
interfering noise. It is this noise that makes the job of a communication en-
gineer challenging as this noise makes it impossible to perfectly reconstruct
the transmitted signal. Noise in communication systems will be character-
ized later (see Chapter 11). The job of communication system engineers is
to design and optimize the modulators and demodulators in communication
systems.

m(t) Modulator Channel Demodulator

Noise

m̂ (t)
xc(t) rc(t) Yc(t)∑

Figure 5.5 An analog communication system block diagram.

1For clarity this text will try to consistently represent estimates with a caret, random quantities
with capital letters and the deterministic quantities with lower case letters.
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Baseband to
Bandpass
Converter

Γm •( )m(t) xc(t)
xz(t)

Figure 5.6 The analog modulation process. Note the base-
band to bandpass converter is given in Figure 4.4.

5.2.1 Analog Modulation

Definition 5.3 Analog modulation is a transformation of m(t) into a complex envelope,
xz(t).

This transformation is equivalent to transforming m(t) into a bandpass sig-
nal, xc(t). There are conceivably an infinite number of ways to transform a
message signal into a complex envelope but only a handful have found util-
ity in practice. The ubiquitous AM (amplitude modulation) and FM (frequency
modulation) actually refer to specific transformations of message signals into
bandpass signals. Later chapters will discuss the specific characteristics of
these two modulations and some other less well-known analog modulations.
The analog modulation process, xz(t) = �m(m(t)) is represented in Figure 5.62.
This transformation mapping can be given as

xI (t) = gI (m(t)) xQ(t) = gQ(m(t)) (5.3)

Historically, analog modulations were invented long before the invention of
the transistor (hence large scale integration) so many of the commonly used ana-
log modulations evolved because of the simplicity of the implementation. While
the importance of analog modulation is decreasing in an ever increasingly dig-
ital world, analog modulation is still used in many important applications and
serves as a good introduction to the idea of the modulation process. Hopefully,
these comments will become more clear in the remainder of this book.

5.2.2 Analog Demodulation

Definition 5.4 Analog demodulation is a transformation of the received complex enve-
lope, Yz(t) into an estimate of the message signal, m̂(t).

The system on the receiver side essentially takes the received signal, Yc(t),
downconverts to produce Yz(t) and then demodulation produces an estimate of
the transmitted message signal, m(t). Since this is an introductory treatment
of analog communications, the channel output in this book is always assumed
to be

rc(t) = Lpxc(t − τp)

2In figures single lines will denote real signals and double lines will denote complex analytical
signals.
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Bandpass to
Baseband
Converter

Γd •( ) m̂ (t)Yc(t)
Yz(t) = rz(t) + noise

Figure 5.7 The analog demodulation process. Note the bandpass to base-
band converter is given in Figure 4.4.

where Lp is the propagation loss and τp is the propagation time delay. The
propagation loss is due to the inability to perfectly couple the transmitted power
to the receiver input and the propagation delay is due to the limited speed
that electronic signals can achieve in transmission. This channel with only a
propagation loss and delay is an idealized channel but one that captures many
of the important challenges in analog communications. Define φp = −2π f cτp
so that the channel output is given as

rc(t) =
√

2LpxA(t − τp) cos(2π f c(t − τp) + xP (t − τp))

= 
[
√

2Lpxz(t − τp) exp[ j φp] exp[ j 2π f ct]]. (5.4)

It is obvious from Eqs. (5.4) and (4.5) that the received complex envelope is
rz(t) = Lpxz(t−τp) exp[ j φp]. It is important to note that a time delay in a carrier
modulated signal will produce a phase offset. Consequently the demodulation
process conceptually is a down conversion to baseband and a reconstruction
of the transmitted signal from Yz(t). The block diagram for the demodulation
process is seen in Figure 5.7.

EXAMPLE 5.4
Radio broadcast. For a carrier frequency of 100 MHz and a receiver 30 kilometers from
the transmitter we have

τp = distance
c

= 3 × 104

3 × 108
= 100 µs φp = −2π(108)(10−4) = −2π × 104 radians.

(5.5)

For the example of radio broadcast a typical channel produces a relatively short (perhaps
imperceivable) delay but a very large phase shift.

EXAMPLE 5.5
An example that will be used in the sequel has a carrier frequency of 7 kHz and a
propagation delay of τp = 45.3 µs gives

φp = −2π(7000)(0.0000453) = −1.995 radians = −114◦. (5.6)
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Baseband
Noise

exp j pφ[ ]

∑xz(t)
rz(t)

Yz(t)

Figure 5.8 The equivalent com-
plex baseband channel model.

The following further simplifications will be made when discussing analog
demodulation

■ A time delay in the output is unimportant. This is typically true in analog
modulation especially since τp � 1 second.

■ An amplitude gain in the output is unimportant. Output amplitude control
is a function of the receiver circuitry and will not be discussed in detail.

Consequently, for this book it will be assumed that rz(t) = xz(t) exp[ j φp],
where φp is an unknown constant, is the channel output for the remainder of
the discussion of analog modulation and demodulation. Figure 5.8 is a diagram
of the equivalent complex baseband channel model.

Given this formulation, demodulation can be thought of as the process of pro-
ducing an m̂(t) from Yz(t) via a function �d (Yz(t)). Some demodulation struc-
tures that will be considered will need to have both the received signal, Yz(t),
and the phase shift induced by the channel, φp. These demodulators will be
known as coherent demodulators and are generically specified with

m̂(t) = gc(Y I (t), Y Q(t), φp) (5.7)

Other demodulation structures can produce a message estimate without
knowning the phase shift induced by the channel. These demodulators will
be known as noncoherent demodulators and are given as

m̂(t) = gn(Y I (t), Y Q(t)) (5.8)

The remainder of the discussion on analog modulations in this text will focus
on identifying �m(m(t)) (modulators) and �d (Yz(t)) (demodulators) and assess-
ing the performance of these modulators and demodulators in the presence of
noise.

5.3 Performance Metrics for Analog Communication

Engineering design is all about defining performance metrics and building
systems that optimize some trade-off between these metrics. To evaluate the
efficacy of various communication system designs presented in this book, the
performance metrics commonly applied in engineering design must be defined.
The most commonly used metrics for analog communications are
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■ Complexity – This metric almost always translates directly into cost.
■ Fidelity – This metric typically measures how accurate the received message

estimate is given the amount of transmitted power.
■ Spectral Efficiency – This metric measures how much bandwidth a modula-

tion uses to implement the communication.

Complexity is a quantity that requires engineering judgment to estimate.
Often the cost of a certain level of complexity changes over time. What were seen
as good design choices in terms of complexity in the 1930s when vacuum tubes
were prevalent seem somewhat silly today with the prevalance of integrated
circuits and complex electronic devices.

The fidelity of the communication system is typically a measure of how well
the message is reconstructed at the demodulator output. The message at the
output of the demodulator can always be classified as

m̂(t) = Am(t) + NL(t) = me(t) + NL(t) (5.9)

where A is an amplitude gain on the signal, me(t) is the effective message
estimate, and NL(t) is a combination of the noise and distortion produced in
demodulation. Engineers in practice have many ways to characterize the fidelity
of the message estimate. In this introductory course we will concentrate on the
idea of signal power-to-noise power ratio (SNR). The demodulator output SNR
is defined as

SNR = A2 Pm

PN
= Pme

PN
(5.10)

where Pm is defined in Eq. (5.1) and the noise or distortion power will require
the tools in Chapter 9 to define. The SNR is typically a function of the received
signal power, the noise power, and the demodulator processing. It should be
noted in this text that since the channel model that is being adopted is rz(t) =
xz(t)e j φp this implies that the received power is equal to the transmitted power
(Prz = Pxz). This is obviously not the case in a real communication system but
is true in the idealized models assumed in this book.

Communications engineers usually like to compare performance to an ideal-
ized standard to get a metric for fidelity produced by a communication system.
The idealized metric for performance used in this text is the system where the
message is transmitted directly across a baseband channel. The block diagram
of this system is shown in Figure 5.9. The resulting output SNR from this system
will be denoted SNRb. The figure of merit in assessing system performance is
the ratio of the output SNR to the reference SNR for a common received signal
power, Prz . We denote this quantity as the transmission efficiency, i.e.,

ET = SNR
SNRb

(5.11)
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Figure 5.9 The baseline standard for comparison in analog modulation.

This transmission efficiency is a measure of how effectively the modulation and
demodulation algorithms process the message signal and the corrupting noise
in comparison to the case where no modulation is used.

The spectral efficiency of a communication system is typically a measure of
how well the system is using the bandwidth resource. Bandwidth costs money
to acquire. Examples are licenses to broadcast radio signals or the installation
of copper wires to connect two points. Hence spectral efficiency is very impor-
tant for people who try to make money selling communication resources. For
instance, if one communication system has a spectral efficiency that is twice
the spectral efficiency of a second system then the first system can support
twice the users on the same bandwidth. Twice the users implies twice the rev-
enue. The measure of spectral efficiency that we will use in this class is called
bandwidth efficiency and is defined as

EB = W
BT

where W is the message bandwidth and BT is the transmission bandwidth.
Bandwidth efficiency is a measure of how effectively the modulation uses band-
width in comparison to the case where no modulation is used in sending the
message (as in Figure 5.9).

EXAMPLE 5.6
The most common example of voice transmission in the United States is AM broadcast-
ing. AM broadcasting in the United States usually refers to transmissions confined to
a band from 535 kHz to 1,700 kHz. The channels are set up to have center frequencies
spaced at 10 kHz spacings and the US Federal Communications Comission (FCC) allows
each station to use about 8 kHz of bandwidth (BT = 8 kHz). Since each voice band signal
has a bandwidth of around W = 4 kHz, AM broadcast in the United States achieves a
bandwidth efficiency of

EB = 4
8

= 50% (5.12)

EXAMPLE 5.7
The most common example of high fidelity audio transmission in the United States is
FM broadcasting. FM broadcasting in the United States usually refers to transmissions
confined to a band from 88 MHz to 108 MHz. The channels are set up to have center
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frequencies spaced at 200 kHz spacings and the US Federal Communications Comission
(FCC) allows each station to use about 180 kHz of bandwidth (BT = 180 kHz). Since
a high fidelity audio has a bandwidth of around W = 15 kHz, FM broadcast in the
United States achieves a bandwidth efficiency of

EB = 15
180

= 8.3% (5.13)

EXAMPLE 5.8
The most common example of video transmission in the United States is TV broadcast-
ing. TV broadcasting in the United States has many noncontiguous bands for transmis-
sion (e.g., 54–88 MHz for channels 2–6 and 174–220 MHz for channels 7–13). The US
Federal Communications Comission (FCC) allows each station to use about 6 MHz of
bandwidth (BT = 6 MHz). Since video has a bandwidth of around W = 4.5 MHz, TV
broadcast in the United States achieves a bandwidth efficiency of

EB = 4.5
6

= 75% (5.14)

It is clear from the preceding examples that communication engineers have
made different choices for system designs for different applications. From the
development in Chapter 4 it is clear that the center frequency of the trans-
mission has little impact on system design so the marked differences seen in
system designs must be due to the differences in the signal characteristics, the
desired fidelity of the communication, and the time varying nature of engineer-
ing trade-offs. The time variations in communication system design trade-offs
are mostly due to the advances in technology to implement communication sys-
tems and the increasing scarcity of bandwidth that can be used to communicate.
As the different analog modulation techniques are discussed in this book, con-
stant comparisons will be made to the complexity, the fidelity of the message
reconstruction, and the spectral efficiency. This will help make the trade-offs
available in the communication system readily apparent.

5.4 Preview of Pedagogy

The next three chapters introduce specific techniques in analog modulation and
demodulation. This will be done assuming no noise is present in the waveform
observed at the receiver. While no communication system operates without
noise, experience has shown that students learn best by immediately starting
to discuss the modulation and demodulation process. Consequently, for the next
three chapters the observations, yc(t) or yz(t), will be represented with lower
case letters to represent the fact that they are not random but determinisitc.
These chapters will give an understanding of the trade-offs that various ana-
log modulations schemes offer for two of the important performance metrics,
complexity, and spectral efficiency.
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After introducing the modulation and demodulation process students will
be motivated to learn about the trade-offs that various analog modulations
schemes offer for the final of the important performance metrics, fidelity.
Fidelity essentially reflects how the noise affects the various demodulation
processing and distorts the message reconstruction. So at that point the text
will return to the characterization of noise in communication systems and
eventually the characterization of the noise on analog communication system
performance.

5.5 Homework Problems

Problem 5.1. Many characteristics of the message signal appear prominently in
the ways we characterize analog modulations. A message signal given as

m(t) = − cos(200πt) + sin(50πt)

is to be transmitted in an analog modulation. A plot of the signal is given in
Figure 5.10.

(a) This signal is periodic. What is the period?

(b) Give the Fourier series coefficients for m(t).

(c) Compute the power of m(t), Pm.

(d) Compute the min m(t).

(e) Compute the max |m(t)|.
(f) Compute the max | d

dt m(t)|.
Problem 5.2. A message signal of the form shown in Figure 5.11 has a series
expansion given as

m(t) = 8
π2

∞∑
n=1

1
(2n − 1)2 cos

(
2π(2n − 1)t

T

)
(5.15)
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Figure 5.10 An example message signal.
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Figure 5.11 A message signal.

(a) Select T such that the fundamental frequency of the Fourier series expan-
sion is 2 Hz.

(b) If mk represents the Fourier series coefficients of m(t), what is m0? What
is m1?

(c) Compute the power of m(t), Pm.

(d) For transmission in an analog communication system it is desired to limit
the bandwidth to 9 Hz. Using the T from part (a) compute how many terms
in the Fourier series will remain after this bandlimiting operation. Give
their frequencies and Fourier coefficients.

(e) Compute the resulting message power after bandlimiting.

(f) Plot the message signal after bandlimiting.

Problem 5.3. A message signal is to be transmitted using analog modulation. The
message signal Fourier transform has the form

M(f ) =
{

A| sin
(

π f
W

)| | f | ≤ W

0 elsewhere
(5.16)

(a) Compute the value of A such that Em is equal to 1 Joule in a 1 � system.

(b) Compute the min m(t).

(c) Compute the max |m(t)|.
(d) Compute the max | d

dt m(t)|.
Problem 5.4. Distortion of the message signal during the communication process
is often a major source of SNR degradation. This problem is a simple example
of how frequency selectivity can produce distortion and how a communication
engineer might characterize it. A message signal given as

m(t) = − cos(200πt) + sin(50πt)
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m t( ) H f( ) √m  t Am t N tL( ) = ( ) + ( )R

Figure 5.12 An example of filtering a message signal.

is input into the system shown in Figure 5.12 where

HR(f ) = 2π500
j 2π f + 2π500

(5.17)

(a) Find and plot the output signal.

(b) If m̂(t) = Am(t) + nL(t) for a chosen value of Afind the power of the distortion
nL(t).

(c) Find the value of A that minimizes the distortion power.

(d) Redesign HR(f ) to reduce the effective distortion power.

Problem 5.5. A message signal is of the form

m(t) = 2 cos(4πt) + cos(6πt)

A plot of the message signal is given in Figure 5.13.
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Figure 5.13 The message signal for Problem 5.5.
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(a) m(t) is periodic. Identify the period and the Fourier series coefficients.

(b) Sketch using impulse functions the Fourier transform of the periodic signal,
m(t).

(c) Calculate the message signal power, Pm.

(d) What is the message signal bandwidth, W ?

(e) Compute the min m(t).

(f) Compute the max |m(t)|.
(g) Compute the max | d

dt m(t)|.

5.6 Example Solutions

Problem 5.2.

(a) Consider the term

cos
(

2π(2n − 1)t
T

)
= 1

2
exp
(

j 2π(2n − 1)t
T

)
+ 1

2
exp
(− j 2π(2n − 1)t

T

)
(5.18)

For n = 1 the frequency of the sinusoid is f = 1/T . Likewise for an arbi-
trary n the frequency of the sinusoid is f = (2n − 1)/T . Consequently, the
smallest frequency is f = 1/T and all freqeuncies are integer multiples of
this smallest frequency. Consequently, f = 1/T will be the fundamental
frequency of the Fourier series of m(t). Choose T = 0.5s will produce a
fundamental frequency of 2 Hz.

(b)

m(t) =
∞∑

n=−∞
mn exp

(
j 2πnt

T

)
(5.19)

n = 0 has m0 = 0 consequently there is no DC term. This is expected by
examining the plot of the signal as the average value is zero. n = 1 has

m1 = 8
π2

1
(2 − 1)2

1
2

= 4
π2 (5.20)

(c)

Pm = 1
T

∫ T

0
|m(t)|2 dt = 1

T

[ ∫ T /2

0

(
1 − 4t

T

)2

dt +
∫ T

T /2

(
− 3 + 4t

T

)2

dt
]

(5.21)

= 2
T

[ ∫ T /2

0

(
1 − 8t

T
+ 16t2

T 2

)
dt
]

(5.22)

= 2
T

[
T
2

− 4T 2

T 22 + 16T 3

3T 223

]
= 2

T

[
T
6

]
= 1

3
(5.23)
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(d) n = 1 �⇒ f = 2 Hz
n = 2 �⇒ f = 6 Hz
n = 3 �⇒ f = 10 Hz

Since the bandwidth is limited to 9 Hz, only the first two terms of the
summation will be kept and there are 4 nonzero terms in the Fourier Series

m1 = 4
π2 · · · f = 2 Hz (5.24)

m−1 = 4
π2 · · · f = −2 Hz (5.25)

m3 = 4
9π2 · · · f = 6 Hz (5.26)

m−3 = 4
9π2 · · · f = −6 Hz (5.27)

mk = 0 otherwise (5.28)

The message signal is given as

m(t) = 8
π2 cos(2π(2)t) + 8

9π2 cos(2π(6)t) (5.29)
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Figure 5.14 The filtered message signal.
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(e) Parsevals theorem allows the power to be computed in the frequency domain
as

Pm =
∞∑

n=−∞
|mn|2 = 2

[(
4
π2

)2

+
(

4
9π2

)2]
= 0.3325 (5.30)

(f) The Matlab code

%
% M-file for EE501
% Problem 5.2
% Author: M. Fitz
% Last Revision: 01/29/01
%
time=linspace(-0.5,0.5,1000);
%
% e) Computing the power after filtering
%
m_1=4/pi^2;
m_3=4/9/pi^2;
p_m=2*(m_1^2+m_3^2)
%
% f) plotting the output message waveform
%
mess=2*m_1*cos(2*pi*2*time)+2*m_3*cos(2*pi*6*time);
% plotting
figure(1)
plot(time,mess)
xlabel('Time, t, seconds')
ylabel('m(t)')

produces the plot shown in Figure 5.14.
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Chapter

6
Amplitude Modulation

Amplitude modulation (AM) was historically the first modulation developed
and conceptually the easiest to understand. Consequently, AM is developed
first in this text.

6.1 Linear Modulation

The simplest analog modulation is to make �m(m(t)) = Acm(t), i.e., a linear
function of the message signal. The complex envelope and the spectrum of this
modulated signal are given as

xz(t) = Acm(t) Gxz(f ) = A2
c Gm(f )

This modulation has xI (t) = Acm(t) and xQ(t) = 0, so the imaginary portion
of the complex envelope is not used in a linear analog modulation. The resulting
bandpass signal and spectrum are given as

xc(t) = 
[√2xz(t) exp[ j 2π f ct]
] = Acm(t)

√
2 cos(2π f ct) (6.1)

Gxc (f ) = A2
c

2
Gm( f − f c) + A2

c

2
Gm(− f − f c) = A2

c

2
Gm( f − f c) + A2

c

2
Gm( f + f c)

(6.2)

where the fact that m(t) was real was used to simplify Eq. (6.2). Figure 6.1
shows the complex envelope and an example bandpass signal for the message
signal shown in Figure 5.1 with Ac = 1/

√
2. It is quite obvious from Figure 6.1

that the amplitude of the carrier signal is modulated directly proportional to the
absolute value of the message signal (hence the name amplitude modulation).
Figure 6.2 shows the resulting energy spectrum of the linearly modulated signal
for the message signal shown in Figure 5.2. A very important characteristic
of this modulation is that if the message signal has a bandwidth of W Hz
then the bandpass signal will have a transmission bandwidth of BT = 2W .

6.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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This implies EB = 50%. Because of this characteristic the modulation is often
known as double sideband-amplitude modulation (DSB-AM). An efficiency of
50% is wasteful of the precious spectral resources but obviously the simplicity
of the modulator is a positive attribute.

The power of a DSB-AM modulation is often of interest (e.g., to specify the
characteristics of amplifiers or to calculate the received signal-to-noise ratio).
To this end the power is given as

Pxc = Prc = lim
T m→∞

1
T m

∫ T m/2

−T m/2
x2

c (t)dt

= lim
T m→∞

1
T m

∫ T m/2

−T m/2
A2

c m2(t)2 cos2(2π f ct)dt = Pm A2
c = Pxz (6.3)

For a DSB-AM modulated waveform the output power is usually given as the
product of the power associated with the carrier amplitude (A2

c ) and the power
in the message signal (Pm).

EXAMPLE 6.1
Linear modulation with

m(t) = β sin(2π fmt) Gm(f ) = β2

4
δ( f − fm) + β2

4
δ( f + fm)

produces

xc(t) = Acβ sin(2π fmt)
√

2 cos(2π fct)

and

Gxc (f ) = A2
c β2

8
(δ( f − fm − fc) + δ( f + fm − fc) + δ( f − fm + fc) + δ( f + fm + fc))

The output power is

Pxc = A2
c β2

2

The mesage signal and the output modulated time domain signal are plotted in
Figure 6.3(a) for fc = 20 fm and Ac = 1/

√
2. Note that both the message signal and

the modulated signal are periodic with a period of T = 1/ fm. The plot of the energy
spectrum of the message and the modulated signals are plotted in Figure 6.3(b) for
fc = 20 fm, β = 1, and Ac = 1/

√
2. It should be noted that Pxz = Prz = 0.25.

EXAMPLE 6.2
The computer generated voice signal given in Chapter 2 (W = 2.5 kHz) is used to DSB-
AM modulate a 7-kHz carrier. A short time record of the message signal and the resulting
modulated output signal is shown in Figure 6.4(a). The energy spectrum of the signal is
shown in Figure 6.4(b). Note the bandwidth of the carrier modulated signal is 5 kHz.
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Historically, there is no one person that can be attributed to the invention of
DSB-AM. The early days of wireless electronic communications (around 1900)
were filled with a variety of people working on technological gadgets that al-
lowed voice to be transmitted. These gadgets allowed the “modulation” of a
voiceband signal on a high-frequency carrier and the recovery of the voiceband
signal from the received modulated high-frequency carrier. The mathematical
analysis of the signal processing was not as mature as the experimental cir-
cuits that were built hence a real understanding of the modulation process
was not available until much later. The first person to note that two sidebands
arose in modulation was Carl Englund in 1914 [Osw56, SS87]. The credit for
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Figure 6.4 Example of DSB-AM with the computer generated voice signal. fc = 7 kHz.
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Acm t( )

2 cos(2πfct)
Figure 6.5 A DSB-AM modulator.

formulating a mathematical basis for the modulation and demodulation process
is given to J.R. Carson [Car22, Car26].

6.1.1 Modulator and Demodulator

The modulator for a DSB-AM signal is simply the structure in Figure 4.4 except
with DSB-AM there is no imaginary part to the complex envelope. Figure 6.5
shows the simplicity of this modulator. Using the terminology of Chapter 5, the
modulator is denoted with

xI (t) = gI (m(t)) = Acm(t) xQ(t) = gQ(m(t)) = 0 (6.4)

Demodulation can be accomplished in a very simple configuration for DSB-
AM. Given the channel model in Figure 5.8 a straightforward demodulator is
seen in Figure 6.6. This demodulator simply derotates the received complex
envelope by the phase induced by the propagation delay and uses the real part
of this derotated signal after filtering by a low pass filter as the estimate of
the message signal. The low pass filter is added to give noise and interference
immunity and the effects of this filter will be discussed later. Note that the
output of the demodulator is given as

m̂(t) = Acm(t) + N I (t) = me(t) + N I (t)

Using the terminology of Chapter 5 where the low pass filter impulse response
is denoted hL(t), it can be noted that the DSB-AM demodulator is a coherent
demodulator with

m̂(t) = gc(yI (t), yQ(t), φp) = hL(t) ∗ (yI (t) cos(φp) + yQ(t) sin(φp)) (6.5)

LPF

exp −[ ]j pφ

y tz( ) Re •[ ] m(t)ˆ

Figure 6.6 The block diagram of a DSB-AM demodulator.
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The demodulator is quite simple once the phase induced in the propagation
from transmitter to receiver is identified.

6.1.2 Coherent Demodulation

An important function of a DSB-AM demodulator is producing the appropriate
value of φp for good message reconstruction. Demodulators that require an ac-
curate phase reference like DSB-AM requires are often called phase coherent
demodulators. Often in practice this phase reference is obtained manually with
a tunable phase shifter. This is unsatisfactory if one or both ends of the link are
moving (hence a drifting phase) or if automatic operation is desired.

Automatic phase tracking can be accomplished in a variety of ways. The tech-
niques available for automatic phase tracking are easily divided into two sets
of techniques: a phase reference derived from a transmitted reference and a
phase reference derived from the received modulated signal. Note, a transmit-
ted reference technique will reduce the efficiency of the transmission since part
of the transmitted power is used in the reference signal and is not available at
the output of the demodulator. Though a transmitted reference signal is waste-
ful of transmitted power it is often necessary for more complex modulation
schemes (e.g., see Section 6.3.3). For each of these above mentioned techniques
two methodologies are typically followed in deriving a coherent phase reference;
open loop estimation and closed loop or phase-locked estimation. Consequently,
four possible architectures are available for coherent demodulation in analog
communications.

An additional advantage of DSB-AM is that the coherent reference can easily
be derived from the received modulated signal. Consequently, in the remainder
of this section the focus of the discussion will be on architectures that enable
automatic phase tracking from the received modulated signal for DSB-AM. The
block diagram of a typical open loop phase estimator for DSB-AM is shown in
Figure 6.7. The essential idea in open loop phase estimation for DSB-AM is
that any channel induced phase rotation can easily be detected since DSB-AM
only uses the real part of the complex envelope. Note that the received DSB-AM
signal has the form

yz(t) = xz(t) exp[ j φp] = Acm(t) exp[ j φp] (6.6)

( )2
H fz( )

Y t x t j N tz z p z( ) = ( ) [ ] + ( )exp φ

V t A m t j N tz c p V( ) = ( ) [ ] + ( )2 2 2exp φ

arg •• { } ÷2

2 φ̂p

φ̂p

Figure 6.7 An open loop phase estimator for DSB-AM.
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The phase of yz(t) (in the absence of noise) will either take value of φp (when
m(t) > 0) or φp + π (when m(t) < 0). Squaring the signal gets rid of this
bi-modal phase characteristic as can be seen by examining the signal

vz(t) = (xz(t) exp[ j φp])2 = A2
c m2(t) exp[ j 2φp] (6.7)

because A2
c m2(t) > 0 so the arg(vz(t)) = 2φp. In Figure 6.7 the filtering, Hz(f ),

is used to smooth the phase estimate in the presence of noise.

EXAMPLE 6.3
Consider the DSB-AM with the computer generated voice signal given in Example 6.2
with a carrier frequency of 7 kHz and a propagation delay in the channel of 45.6 µs.
This results in a φp = −114◦ (see Example 5.5.) The vector diagram which is a plot of
xI (t) versus xQ(t) is a useful tool for understanding the operation of the carrier phase
recovery system. The vector diagram was first introduced in Chapter 4. The vector
diagram of the transmitted signal will be entirely on the x-axis, since xQ(t) = 0. The
plot of the vector diagram for the channel output (in the absence of noise) is shown in
Figure 6.8(a). The −114◦ phase shift is evident from this vector diagram. The output
vector diagram from the squaring device is shown in Figure 6.8(b). This signal now has
only one phase angle (2 × −114◦) and the coherent phase reference for demodulation
can now be easily obtained.

Other types of coherent demodulators are available for DSB-AM. The histori-
cally most famous DSB-AM demodulator uses a phase-locked loop (PLL) for
phase tracking and has a block diagram given in Figure 6.9. This structure
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Figure 6.8 The vector diagram for coherent DSB-AM demodulation. φp = −114◦.
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•( )2

m(t)exp j φp −φ̂ p( )[ ]
m(t) exp jφe[ ]

LPF

m̂(t)

Im •[ ]

Re •[ ]

m2(t)sin 2φe[ ]
exp − jφ̂ p[ ]

yz t( )

VCO

Figure 6.9 The block diagram of a Costas loop for synchronous DSB-AM demodu-
lation.

is known as a Costas loop DSB-AM demodulator [Cos56]. The Costas loop is
a feedback system that consists, as do all phase-locked loops, of three compo-
nents: a voltage controlled oscillator, a phase detector, and a loop filter. The
basic idea in a Costas loop demodulator is the phase detector measures the
phase difference between a locally generated phase reference and the incoming
received signal. The feedback system attempts to drive this phase difference to
zero and hence implement carrier phase tracking. A simple theory of operation
for the PLL will be explored in Chapter 8. The Costas loop has all the compo-
nents of a PLL and ideas behind a Costas loop synchronous AM demodulator
are explored in the homework (see Problem 6.3).

6.1.3 DSB-AM Conclusions

The advantage of DSB-AM is that DSB-AM is very simple to generate, e.g., see
Figure 6.5. The disadvantages of DSB-AM are that phase coherent demodula-
tion is required (relatively complex demodulator) and EB = 50% (wasteful of
bandwidth).

6.2 Affine Modulation

While now in the age of large-scale integrated circuits it may be hard to fathom,
when broadcast radio was being developed DSB-AM was determined to have
too complex a receiver to be commercially feasible. The coherent demodulator
discussed in Section 6.1.2 was too complex in the days of the vacuum tubes.
Early designers of radio broadcast systems noted that the message signal modu-
lates the envelope of the bandpass signal, xA(t) in a continuous fashion that is
proportional to the message amplitude but modulates the phase in a binary
fashion, i.e., if m(t) > 0 then xP (t) = 0 while if m(t) < 0 then xP (t) = π . In
fact, if the message signal never goes negative the envelope of the bandpass
signal and the message are identical up to a multiplicative constant. Since an
envelope detector is a simple device to build, these early designers formulated
a modulation scheme that did not modulate the phase and could use envelope
detectors to reconstruct the message signal at the receiver.
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Figure 6.10 An example energy spectrum for LC-AM.

This desired characteristic is obtained if a DC signal is added to the message
signal to guarantee that the resulting signal always is positive. This implies
the complex envelope is an affine1 function of the message signal, i.e.,

xz(t) = Ac(1 + am(t)) Gxz(f ) = A2
c

[
δ(f ) + a2Gm(f )

]
where a is a positive number. This modulation has xI (t) = Ac + Acam(t) and
xQ(t) = 0, so the imaginary portion of the complex envelope is not used again
in an affine analog modulation. The resulting bandpass signal and spectrum
are given as

xc(t) = 
[
√

2xz(t) exp[ j 2π f ct]] = ( Ac + Acam(t))
√

2 cos(2π f ct) (6.8)

Gxc (f ) = A2
c

2

(
δ( f − f c) + a2Gm( f − f c)

)
+ A2

c

2

(
δ( f + f c) + a2Gm( f + f c)

)
(6.9)

Because of the discrete carrier term in the bandpass signal (see Eq. (6.9)) this
modulation is often referred to as large carrier AM (LC-AM). Figure 6.10(a)
shows an example message energy spectrum with the DC term added (the
impulse at f = 0) and Figure 6.10(b) shows the resulting bandpass energy
spectrum.

LC-AM has many of the same characteristics as DSB-AM. LC-AM still modu-
lates the amplitude of the carrier and the bandwidth of bandpass signal is still
BT = 2 W (EB = 50%). The imaginary part of the complex envelope is also not
used in LC-AM. LC-AM differs from DSB-AM in that a DC term is added to the
complex envelope. This DC term is chosen such that xI (t) > 0 or equivalently

1Affine is a linear term plus a constant term.
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the envelope of the bandpass signal never passes through zero. This implies
that am(t) > −1 or equivalently

a <
−1

min m(t)
(6.10)

This constant a, here denoted the modulation coefficient, is important in obtain-
ing good performance in a LC-AM system. An example of a LC-AM waveform
is shown in Figure 6.11 where the message waveform is given in Figure 5.1
(Ac = 3/

√
8 and a = 2/3).

Average power is given by

Pxc = A2
c

(
lim

T m→∞
1

T m

∫ T m/2

−T m/2
(1 + am(t))2dt

)
(6.11)

Since typically the time average of m(t) is zero the average power simplifies to

Pxc = Prz = A2
c

(
1 + a2 Pm

)
Note that there are two parts to the transmitted/received power: (1) the power

associated with the added carrier transmission, A2
c , and (2) the power associ-

ated with the message signal transmission, A2
c a2 Pm. A designer usually wants

to maximize the power in the message signal transmission and a factor that
characterizes this split in power in LC-AM is denoted the message to carrier
power.

Definition 6.1 The message to carrier power ratio for LC-AM is

MCPR = A2
c a2 Pm

A2
c

= a2 Pm (6.12)
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Assuming that the negative peaks of the message signal are at about the same
level as the positive peaks and using Eq. (6.10) and the definition of PAPR given
in Chapter 5, the MCPR can be approximated with

MCPR ≈ 1
PAPRm

(6.13)

Consequently, the smaller the PAPR of the message signal the easier it is to
put a larger percentage of the transmitted power into the message signal. It
should be noted that most signals of interest in analog communications have a
PAPR > 10, so typically MCPR < 10%. Later after the impacts of noise are
evaluated on LC-AM demodulation it will be shown that the MCPR is directly
related to the achieved transmission efficiency of LC-AM.

EXAMPLE 6.4
Affine modulation with

m(t) = β sin(2π fmt) Gm(f ) = β2

4
δ( f − fm) + β2

4
δ( f + fm)

produces

xc(t) = Ac(1 + aβ sin(2π fmt))
√

2 cos(2π fct)

and

Gxc (f ) = A2
c a2β2

8
[δ( f − fm − fc) + δ( f + fm − fc) + δ( f − fm + fc)

+δ( f + fm + fc)] + A2
c

2
[δ( f − fc) + δ( f + fc)]

The transmitted power is

Pxc = A2
c

(
1 + a2β2

2

)

To maintain xI (t) > 0 implies that a < 1/β. The mesage signal and the output modulated
time domain signal are plotted in Figure 6.12(a) for fc = 20 fm, a = 1/β, and Ac = 1/

√
2.

Note that both the message signal and the modulated signal are periodic with a period
of T = 1/ fm. The plot of the energy spectrum of the message and the modulated signals
are plotted in Figure 6.12(b) for fc = 20 fm, a = 1/β, and Ac = 1/

√
2. It should be noted

that Pxz = Prz = 0.75 and MCPR = 50%.

EXAMPLE 6.5
The computer-generated voice signal given in Chapter 2 (W = 2.5 kHz) is used to LC-AM
modulate a 7-kHz carrier. A short time record of the scaled complex envelope and the
resulting output modulated signal is shown in Figure 6.13(a). Note, the minimum value
of the voice signal is -3.93 so the modulation coefficient was set to a = 0.25. Figure 6.13(a)
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Figure 6.12 LC-AM with m(t) = sin(2π fmt).

shows the modulated signal for large values m(t) and envelope comes close to zero. The
energy spectrum of the signal is shown in Figure 6.13(b). Note, the bandwidth of the
carrier modulated signal is 5 kHz and the large carrier is evident in the plot.

6.2.1 Modulator and Demodulator

The modulator for LC-AM is very simple. It is just one arm (the in-phase
one) of a quadrature modulator where a DC term has been added to the mes-
sage signal. Figure 6.14 shows a common implementation of this modulator.
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Figure 6.13 The resulting LC-AM signal for a computer generated voice signal. fc = 7 kHz.
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2 cos 2π fct( )

∑

Figure 6.14 The block diagram of a modulator for LC-AM.

Again the simplicity of the modulator is an obvious advantage for LC-AM.
Using the terminology of Chapter 5, the modulator is denoted with

xI (t) = gI (m(t)) = Ac(1 + am(t)) xQ(t) = gQ(m(t)) = 0 (6.14)

The demodulator for LC-AM is simply an envelope detector followed by a DC
block. Following the developed notation, the output of the envelope detector for
1 + am(t) > 0 in the absence of noise is

|yz(t)| = ∣∣Ac(1 + am(t))e j φp
∣∣ = Ac(1 + am(t))

The DC block will remove the DC term to give

m̂(t) = Acam(t) = me(t)

Figure 6.15 shows the block diagram of a LC-AM demodulator. Using the ter-
minology of Chapter 5 where the DC block impulse response is denoted hH (t),
it can be noted that the LC-AM demodulator is a noncoherent demodulator
with

m̂(t) = gn(yI (t), yQ(t)) = hH (t) ∗
(√

y2
I (t) + y2

Q(t)
)

= hH (t) ∗ yA(t) (6.15)

It is important to note that the demodulation performance is unaffected by the
random phase induced by the propagation delay in transmission, φp.

Figure 6.16 shows a circuit implementation of the bandpass version of the
demodulator. Note that no active devices are contained in this implementation,
which was a big advantage in the vacuum tube days. Currently, with large scale
integrated circuits so prevalent, the advantage is not so large. The reason that a
simple structure like the envelope detector can be used to recover the message
signal is that the phase of the transmitted signal is always zero so that the

Envelope
Detector

DC
Remover

y tz( )
y t A am tz c( ) = +( )1 ( )

m̂ t( ) = Acam(t)

Figure 6.15 The block diagram of a baseband LC-AM demodulator.
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Envelope Detector

DC Remover

yc t( ) A0m t( )

Figure 6.16 Circuit implementation of an LC-AM demodulator.

phase shift induced by the propagation delay in the channel is entirely limited
to shifting the phase of the bandpass signal and has no impact on the amplitude
of bandpass signal.

EXAMPLE 6.6
Consider again affine modulation with

m(t) = β sin(2π fmt)

with

xz(t) = Ac(1 + aβ sin(2π fmt))

The vector diagram of xz(t) is shown in Figure 6.17(a) and it is obvious from this plot
that only the real part of the complex envelope is used in producing a LC-AM signal and
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Figure 6.17 The signals for a sinusoidal message signal. φp = −49◦.
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the transmitted signal phase is always zero. The received signal has the form

yz(t) = Ac(1 + aβ sin(2π fm(t − τp))) exp[ j φp] (6.16)

The vector diagram for the noiseless received signal, yz(t), is plotted in Figure 6.17(a).
By examining this figure it is clear that the phase shift has rotated the complex en-
velope but not changed the amplitude of the signal. This is evident in the plots of the
transmitted and received amplitude and phase (measured in radians) signals shown in
Figure 6.17(b). The received amplitude signal and the transmitted amplitude signal are
different only by a time delay, τp . The received phase is exactly φp .

EXAMPLE 6.7
Consider the LC-AM computer-generated voice signal given in Example 6.6 with a
carrier frequency of 7 kHz and a propagation delay in the channel of 45.6 µs.
This results in a φp = −114◦ (see Example 6.4.) The plot of the envelope of the re-
ceived signal,

yA(t) =
√

y2
I (t) + y2

Q(t)

is shown in Figure 6.18(a) (Note the LPFs in the quadrature downconverter did not have
unity gain). yA(t) has a DC offset due to the large carrier component but the message
signal is clearly seen riding on top of this DC offset. The demodulated output after the
DC block is shown in Figure 6.18(b). Note, the impulse at the start of this plot is due to
the transient response of the filters and the DC block.

Again with LC-AM the working circuit implementation preceded the math-
ematical understanding of the modulation process. In fact, early on the mod-
ulation was thought to be a linear process (the carrier wave was ostensibly
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6.16 Chapter Six

summed with the voiceband signal). Unbeknownst to the inventors a circuit
nonlinearity in this “linear” modulation process was in fact producing LC-AM
signal. Envelope detection of the modulated waveforms was actually easy to
accomplish with a wide variety of nonlinear devices. In fact, an early LC-AM
detector used a crystal (the Dunwoody and Picard crystal detector) in a very
simple circuit to implement to the envelope detector. Many amatuer radio hob-
byists have used crystals to build radio demodulators without a single active
radio frequency device (only an audio amplifier). Again this pre-1910 work was
mostly pushed by technologists and the theory was not completely understood
until much later.

6.2.2 LC-AM Conclusions

The advantage of LC-AM is again it is easy to generate and it has a simple
cheap modulator and demodulator. The disadvantage is that EB = 50%. Later
we will learn that noncoherent detection suffers a greater degradation in the
presence of noise than coherent detection.

6.3 Quadrature Modulations

Both DSB-AM and LC-AM are very simple modulations to generate but they
have EB = 50% so bandwidth sensitive applications need to explore other mod-
ulation options. The spectral efficiency of analog modulations can be improved.
Note that both DSB-AM and LC-AM only use the real part of the complex
envelope. The imaginary component of the complex envelope can be used to
shape the spectral characteristics of the analog transmissions. As an exam-
ple, the bandwidth of analog video signals is approximately 4.5 MHz. DSB-
AM and LC-AM modulation would produce a bandpass bandwidth for video
signals of 9 MHz. Broadcast analog television (TV) signals have a bandwidth
of approximately 6 MHz and this is achieved with a quadrature modulation.
Engineers in 1915 first realized that there were two sidebands (positive fre-
quencies and negative frequencies) in amplitude modulation and theorized
and realized in experiments that only one of the sidebands was needed to re-
construct the message signal at the demodulator. This mathematical obser-
vation led to a great flurry of development in quadrature modulation. Since
only one sideband needs to be transmitted, this makes a transmission scheme
that has EB = 100% possible. This two times improvement in spectral effi-
ciency compared to DSB-AM and LC-AM is what led early telecommunications
engineering groups to adopt SSB-AM for efficient multiplexing of voiceband sig-
nals. This section tries to summarize the current state of the art in quadrature
modulations.

Vestigial sideband amplitude modulation (VSB-AM) is a modulation that
improves the spectral efficiency of analog transmission by specially designed
linear filters at the modulator or transmitter. The goal with VSB-AM is to
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Figure 6.19 A block diagram of a VSB-AM modulator.

achieve EB > 50% using the imaginary component of the modulation complex
envelope. A VSB-AM signal has a complex envelope of

xz(t) = Ac[m(t) + j (m(t) ∗ hQ(t))]

where hQ(t) is the impulse response of a real LTI system. Two interpretations
of VSB-AM are useful. The first interpretation is that xI (t) is generated exactly
the same as DSB-AM (linear function of the message) and xQ(t) is generated
as a filtered version of the message signal. A block diagram of a baseband
VSB-AM modulator using this interpretation is seen in Figure 6.19. Recalling
the results in Section 4.6, the second interpretation is that a bandpass VSB-AM
signal is generated by putting a bandpass DSB-AM signal through a bandpass
filter (asymmetric around f c) whose complex envelope impulse response and
transfer function are

hz(t) = δ(t) + j hQ(t) Hz(f ) = 1 + j HQ(f ) − W ≤ f ≤ W (6.17)

Note the transmitted power of a VSB-AM signal is going to be higher than a
similarly modulated DSB-AM signal since the imaginary portion of the complex
envelope is not zero. The actual resulting output power is a function of the filter
response, hz(t), and an example calculation will be pursued in the homework.

6.3.1 VSB Filter Design

The design of the filter, hQ(t), is critical to achieving improved spectral efficiency.
The Fourier transform of a VSB-AM signal (using Eq. (4.9)) is given as

Xz(f ) = X I (f ) + j X Q(f ) = Ac M(f )[1 + j HQ(f )] (6.18)

Additionally, note Xz(f ) = Ac Hz(f )M(f ) with Hz(f ) = [1 + j HQ(f )], which
is the Fourier transform of the impulse response given in Eq. (6.17). Since
the message signal spectrum is nonzero over −W ≤ f ≤ W , reduction of
the bandwidth of the bandpass signal requires that [1 + j HQ(f )] be zero over
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Figure 6.20 An example to show how quadrature modulation can be used to reduce the bandwidth of the trans-
mitted signal. Upper sideband modulation.

some part of f ∈ [−W, W ]. The remainder of the discussion will examine the
conditions which must hold to produce

Xz(f ) = 0 − W ≤ f ≤ − fv ≤ 0

where fv is commonly called the vestigial frequency. In other words, what condi-
tions on Hz(f ) must hold so that a portion of the lower sideband of the bandpass
signal is eliminated to achieve

EB = W
W + fv

> 50%

Note that VSB-AM is always more bandwidth efficient than either DSB-
AM or LC-AM and the improvement in bandwidth efficiency is a function of
fv. Since the lower portion of the signal spectrum is eliminated, this type of
transmission is often termed upper sideband VSB-AM (the upper sideband is
transmitted). Similar results as the sequel can be obtained to produce lower
sideband VSB-AM transmissions. A set of example spectra for upper sideband
VSB-AM is shown in Figure 6.20 to illustrate the idea of quadrature modulation.
The figure uses the energy spectrum of the baseband transmitted signal since
it is simple to represent the energy spectrum with a two dimensional graph.
Note that the remains of the lower sideband in this example illustrates the
reason for the name VSB-AM2 and that the resulting transmission bandwidth
is clearly BT = W + fv.

2A dictionary definition of vestigial is pertaining to a mark, trace, or visible evidence of something
that is no longer present or in existence.
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We want

Hz(f ) = [1 + j HQ(f )] = 0 − W ≤ f ≤ − fv (6.19)

Since HQ(f ) = 
[HQ(f )] + j �[HQ(f )] it is simple to see that Eq. (6.19) implies
that

�[HQ(f )] = 1 
[HQ(f )] = 0 − W ≤ f ≤ − fv (6.20)

Note, since hQ(t) is real then this implies

�[HQ(f )] = −1 
[HQ(f )] = 0 fv ≤ f ≤ W (6.21)

but the values for HQ(f ), − fv ≤ f ≤ fv are unconstrained. A plot of two
possible realizations of the filter HQ(f ) is shown in Figure 6.21. It should be
noted that our discussion focused on eliminating a portion of the lower sideband
but similar results hold for eliminating the upper sideband.

EXAMPLE 6.8
Analog television broadcast in the United States uses a video signal with a bandwidth of
approximately 4.5 MHz. The transmitted signals are a form of quadrature modulation,
where fv = 1.25 MHz for a total channel bandwidth of <6 MHz. Television stations in
the United States have 6 MHz spacings. Consequently

EB = 4.5 MHz
6 MHz

= 75%

6.3.2 Single Sideband AM

An interesting special case of VSB-AM occurs when fv → 0. In this case the
EB → 100%. This is accomplished by eliminating one of the sidebands and
hence this modulation is often termed single sideband amplitude modulation
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(SSB-AM). The xQ(t) that results in this case is important enough to get a name;
the Hilbert transform [ZTF89]. The transfer function of the Hilbert transformer
is

HQ(f ) = − jsgn(f ) (6.22)

where

sgn(f ) =
{

1 f > 0
−1 f < 0

(6.23)

Note, because of the sharp transition in the transfer function at DC it is
only possible to use SSB-AM with message signals that do not have significant
spectral content near DC. It should be noted that in analog video signals the DC
value is important in a simple way to synchronize the scanning of the picture so
SSB-AM cannot be used with video signals. The transmitted signal for SSB-AM
is

xz(t) = Ac(m(t) + j mh(t)) (6.24)

where mh(t) is the Hilbert transform of m(t).

EXAMPLE 6.9
Single-sideband modulation with a message signal

m(t) = β sin(2π fmt)

has an in-phase signal of

xI (t) = Acβ sin(2π fmt) X I (f ) = Acβ

2 j
δ( f − fm) − Acβ

2 j
δ( f + fm)

Applying the Hilbert transform, HQ(f ) = − j sgn(f ), to xI (t) produces a quadrature
signal with

X Q(f ) = HQ(f )X I (f ) = −Acβ

2
δ( f − fm) − Acβ

2
δ( f + fm)

or

xQ(t) = −Acβ cos(2π fmt)

This results in

xz(t) = Acβ(sin(2π fmt) − j cos(2π fmt)) = − j Acβ exp( j 2π fmt)
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Figure 6.22 SSB-AM with m(t) = sin(2π fmt).

and

Gxz(f ) = A2
c β2δ( f − fm)

The bandpass spectrum is

Gxc (f ) = A2
c β2

2
δ( f − fm − fc) + A2

c β2

2
δ( f + fm + fc)

Note that the lower sideband of the message signal has been completely eliminated with
SSB-AM. The message signal and the output modulated time domain signal are plotted
in Figure 6.22(a) for fc = 20 fm, β = 1, and Ac = 1/

√
2. Note that the message signal is

periodic with a period of T = 1/ fm and the modulated signal has a much shorter period,
T = 1/(21 fm). The plot of the energy spectrum of the message and the modulated signals
are plotted in Figure 6.22(b) for fc = 20 fm, β = 1, and Ac = 1/

√
2. It should be noted

that Pxz = Prz = 0.5.

EXAMPLE 6.10
The computer generated voice signal given in Chapter 2 (W = 2.5 kHz) is used to
SSB-AM modulate a 7-kHz carrier. The quadrature filter needs to be a close approxima-
tion to a Hilbert transformer given in Eq. (6.22). The magnitude and phase response of a
filter designed for a voice signal is shown in Figure 6.23. The resulting complex envelope
energy spectrum is given in Figure 6.24(a). This implementation provides greater than
80 dB of sideband rejection over most of the band. The bandpass energy spectrum is
shown in Figure 6.24(b). This plot clearly shows that SSB-AM uses half the bandwidth
of DSB-AM or LC-AM.
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Figure 6.23 The magnitude and phase response of the Hilbert transform implementation used in Example 6.10.

6.3.3 Modulator and Demodulator

The modulator for VSB-AM is given in Figure 6.19. Note also an implementa-
tion can be achieved with a bandpass filter that has an asymmetric frequency
response around f c. In practice both the baseband and bandpass implementa-
tions are used. An overview of analog processing techniques for SSB-AM trans-
mitters is provided in [Kur76]. The high performance digital processing that
has emerged over the recent past has pushed the implementations toward the
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Figure 6.24 The spectrum for SSB-AM transmission using the quadrature filter given in Figure 6.23.
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Figure 6.25 A coherent demodulator for VSB-AM. Note it is
exactly the same as DSB-AM.

digital baseband realizations due to the precise nature with which filter re-
sponses can be controlled in digital circuits.

The demodulator for VSB-AM can be exactly the same as for DSB-AM. Recall
that the received signal for VSB-AM is given as

yz(t) = Ac(m(t) + j mh(t)) exp[ j φp] (6.25)

Again it is clear that m(t) can be recovered by derotating by φp and looking
at the real part of the resulting signal. The coherent demodulator for VSB-AM
is shown in Figure 6.25. It is obvious from examining Figure 6.25 that the
VSB-AM demodulator is identical to the coherent demodulator for DSB-AM
and the output is

m̂(t) = Acm(t) + NI (t) = me(t) + N I (t)

Using the terminology of Chapter 5 where the low pass filter impulse response
is denoted hL(t), it can be noted that the VSB-AM demodulator is a coherent
demodulator with

m̂(t) = gc(yI (t), yQ(t), φp) = hL(t) ∗ (yI (t) cos(φp) + yQ(t) sin(φp)) (6.26)

The demodulator is quite simple once the phase induced in the propagation
from transmitter to receiver is identified.

The theory of quadrature modulation was developed pretty quickly [Osw56,
SS87]. In 1915, H. D. Arnold built an antenna that was tuned only to the upper
sideband of a DSB-AM signal and demonstrated that the voiceband signal could
be recovered from only one sideband. This result quickly led J. R. Carson to
propose a SSB-AM system for multiplexing many voiceband messages in a
telephony system. After a contentious and long patent examination a patent for
this SSB-AM system was finally issued in 1923 [Car23] even though commercial
usage of SSB-AM commenced in 1918.

6.3.4 Transmitted Reference Based Demodulation

A coherent demodulator is also necessary for VSB-AM transmission. Unfortu-
nately, the phase reference cannot be derived from the received signal like in
DSB-AM because VSB-AM uses both the real and imaginary components of
the complex envelope. This characteristic is best demonstrated by the vector
diagram of the complex envelope. Figure 6.26 shows the vector diagram of



6.24 Chapter Six

−1 −0.8 −0.6 −0.4 −0.2 0
xl(t)

0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

x Q
(t

)

0.2

0.4

0.6

0.8

Figure 6.26 Vector diagram for the SSB-AM transmission in Example 6.10.

the SSB-AM transmission of Example 6.10. Clearly if one compares the vector
diagram shown in Figure 6.8(a) to the vector diagram in Figure 6.26, it is easy
to see why automatic phase recovery from the received signal is tough. So, while
VSB-AM provides improved spectral efficiency it does it at the cost of increased
demodulator complexity.

If automatic phase tracking is desired with VSB-AM, a transmitted reference
signal is often used. We will explore this idea in a SSB-AM application. The block
diagram of an example SSB-AM transmitter system that uses a transmitted
reference is given in Figure 6.27. The notch filter removes the message signal
components from around DC. The in-phase signal consists of this notched-out
message and a DC term. This DC term when upconverted will result in a carrier

Notch
Filter I/Q

Upconverter

Σ
xQ(t)

xc(t)

Ar

xI(t)

fc

hQ(t)

m(t)

Figure 6.27 A modulator implementation for SSB-AM using a transmitted reference signal.



Amplitude Modulation 6.25

I/Q Down-
converter HPF

LPF

fc

(•)−1

Re[Σ] m̂ t( )

yL(t)

yH(t) yD(t)yc(t) yz(t)

Figure 6.28 A transmitted reference based demodulator implementation for SSB-AM.

signal much like LC-AM. The quadrature signal is a Hilbert transform of the
notched-out message signal.

The demodulator uses the transmitted reference as a carrier phase reference
to recover the message signal. The demodulator block diagram is shown in
Figure 6.28. In essence, at the receiver two filters are used to separate the
transmitted modulated signal and the transmitted reference signal into two
separate path, i.e.,

yH (t) = Ac[m(t) + j (m(t) ∗ hQ(t))] exp[ j φp] (6.27)

yL(t) = Ac Ar exp[ j φp] (6.28)

Since each of these paths experience the same channel distortion and phase
shift, the reference can be used to derotate the demodulated signal and recover
the message signal. This is easily seen with

yD(t) = yH (t)
yL(t)

= 1
Ar

[m(t) + j (m(t) ∗ hQ(t))] (6.29)

This transmitted reference demodulation scheme is very useful especially
in systems where automatic operation is desired or if the channel is varying
rapidly. Consequently, transmitted reference systems are often used in land
mobile radio where multipath and mobility can often cause significant channel
variations [Jak74, Lee82]. An important practical design consideration is how
large the reference signal power should be in relation to the modulated signal
power. This consideration is not important unless noise is considered in the
demodulation so this discussion will also be left until Chapter 11.

EXAMPLE 6.11
In this example we consider again the computer-generated voice signal given in
Chapter 2 (W = 2.5 kHz). This signal is SSB-AM modulated with a transmitted ref-
erence at a 7 kHz carrier in a fashion as shown in Figure 6.27. The notch bandwidth
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Figure 6.29 Signals in a SSB-AM transmitted reference system. fc = 7 kHz

is chosen to be about 200 Hz as this does not affect the audio quality of the signal.
The measured transmitted signal spectrum is shown in Figure 6.29(a). The transmit-
ted reference signal is the tone at the carrier frequency. The signal out of the notch
filter in the demodulator of Figure 6.28 is approximately a standard baseband SSB-AM
modulation. The measured power spectrum of yH (t) is shown in Figure 6.29(b) for a
notch bandwidth of 100 Hz. The transmitted reference tone has been greatly attenuated
but the modulated signal is roughly unaltered. The signal out of the low pass filter in
the demodulator of Figure 6.28 is approximately the phase shifted reference tone. The
measured power spectrum of yL(t) is shown in Figure 6.30(a) for a notch bandwidth of
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Figure 6.30 Signals in a SSB-AM transmitted reference system.
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100 Hz. The modulated signal has been greatly attenuated in yL(t) while the tone used
in demodulation is clearly evident. For example, in a channel with τp = 45.3 µs a phase
shift of −114◦ occurs. The measured phase of the output tone is shown in Figure 6.30(b)
and it is close to −114◦ once the filter transients have passed. The imperfections in the
filter can be seen to allow the message signal to cause some phase jitter to be induced on
the demodulator reference but the overall system produces a high quality audio output.

Noncoherent demodulation (envelope detection) is also used in conjunction
with a large carrier version of VSB-AM in analog television reception in the
United States. The details of how this is possible with a quadrature modulation
will be addressed in the homework.

6.3.5 Quadrature Modulation Conclusions

Quadrature modulation provides better spectral efficiency than either DSB-AM
or LC-AM but with a more complex modulator. Quadrature modulation accom-
plishes this improved spectral efficiency by using the imaginary portion of the
complex envelope. Like LC-AM, VSB-AM wastes part of the transmitted power
(the imaginary component is not used in demodulation) but for a useful purpose.
LC-AM contains a carrier signal that transmits no information while VSB-AM
transmits a filtered signal in the quadrature component of the modulation but
never uses this signal in demodulation. VSB-AM is also suitable for use with a
large carrier and envelope detection (this is what is used in broadcast TV) and
this idea will be explored in the homework.

In conclusion, three types of amplitude modulated signals have been pre-
sented in this chapter. These three signaling schemes provide different options
in cost/bandwidth efficiency tradeoffs.

6.4 Homework Problems

Problem 6.1. The message signal in a DSB-AM system is of the form

m(t) = 12 cos(6πt) + 3 cos(10πt)

(a) Calculate the message power, Pm.

(b) If this message is DSB-AM modulated on a carrier with amplitude Ac,
calculate the Fourier series of xz(t).

(c) Assuming f c = 20 Hz calculate the Fourier series of xc(t) and plot the
resulting time waveform when Ac = 1.

(d) Compute the output power of the modulated signal, Pxc .

(e) Calculate and plot xP (t). Computer might be useful.

Problem 6.2. A message signal of the form

m(t) = cos(2π fmt)

is to be transmitted by DSB-AM with a carrier frequency f c.
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(a) Give the baseband and bandpass forms of the modulated signal for this
message signal that has a power of 8 W (in a 1 � system).

(b) Assume f c = 10 fm give the baseband and bandpass spectral representa-
tion of this modulation. What is the transmission bandwidth, BT of such a
system?

(c) Plot the resulting bandpass signal for fm = 2 Hz.

(d) Give the simplest form of the modulator and demodulator (assume you
know φp).

Problem 6.3. The received bandpass DSB-AM signal has the form

yc(t) = Acm(t)
√

2 cos(2π f ct + φp)

and the Costas loop used in phase synchronous demodulation of DSB-AM is
shown in Figure 6.31

(a) What is yz(t)?

(b) Find expressions for the signals at points A and B. Assume the LPF are
only to remove the double frequency terms.

(c) Define a complex signal z1(t) = A− jB . Show that z1(t) = yz(t) exp[− j θ̂ (t)].

(d) Note that C = −0.5×�[z1(t)2]. Find C in terms of the phase error, φp − θ̂ (t).

Problem 6.4. As your first task, your new boss at Fony asks you to design a LC-AM
modulator (obviously busy work until she can find something real for you to do

LPF

LPF

VCO∗

Output

A

B

C

∗Voltage Controlled Oscillator

yc(t)

π 2

2 cos 2π fct + θ̂ t( )( )

Figure 6.31 A bandpass version of the Costas loop.
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since AM is not used much in practice) for a 1 kHz, 3 V peak amplitude test
tone, e.g.,

m(t) = 3 sin(2000πt) (6.30)

(a) She wants the transmitter to deliver a 5 W output power across a 1 �

resistor with MCPR = 8%. Provide the values of Ac and a to achieve this
specification.

(b) What is the maximum MCPR that can be achieved in this problem and have
distortionless envelope detection still possible? Give the values of Ac and a
to achieve this efficiency while maintaining a 5 W output power.

(c) Plot xI (t) and xQ(t) for the design in part (b).

Problem 6.5. A message signal of the form

m(t) = 2 cos(2π fmt)

is to be transmitted by LC-AM with a carrier frequency f c.

(a) Give the baseband and bandpass forms of the modulated signal for this mes-
sage signal that has a power of Pxz = 8 W (in a 1 � system) and MCPR = 1/8.

(b) Assume f c = 10 fm give the baseband and bandpass spectral representa-
tion of this modulation. What is the transmission bandwidth, BT of such a
system?

(c) Give the simplest form of the modulator and a noncoherent demodulator

(d) How big can a be made in this system and still ensure distortionless envelope
detection?

Problem 6.6. A term often used to characterize LC-AM waveforms is the percent
modulation defined as

PLC = Maximum value of the envelope − Minimum value of the envelope
Maximum value of the envelope

(6.31)
An example of this usage is seen on most microwave signal generators where

the LC-AM signal is characterized by percent modulation. For this problem
consider a sinusoidal message signal of unit amplitude and LC-AM. An example
LC-AM waveform is shown for PLC = 0.5 in Figure 6.32.

(a) What is the range for PLC?

(b) Solve for the value of a to give a particular PLC .

(c) The bandpass frequency domain representation (Fourier series or Fourier
transform) of this signal will have three frequencies (the carrier and two
modulation sidebands). Plot the relative power ratio (in dB) between the
carrier and one of the modulation sidebands as a function of PLC .

(d) Plot the MCPR as a function of PLC .
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Figure 6.32 A LC-AM signal with PLC = 0.5. Sinusoidal signal.

Problem 6.7. The Federal Communications Commission (FCC) makes each
station strictly limit their output frequency content. Assume AM stations pro-
duce a usable audio bandwidth of 10 kHz. AM stations in the same geographical
area are normally spaced at least 30 kHz apart. As an example of why limits
on the frequency content are necessary the following problem is posed.

Consider two stations broadcasting in the same geographic area with a
receiver tuned to one of them as shown in Figure 6.33. Station A is broad-
casting a 1 V peak sinewave of 2 kHz, mA(t) (a test of the emergency broadcast

Station A

Station B

I/Q Down-
converter

xA(t)

xB(t)

|Σ|BPFΣ rc(t)

fc

m̂A(t)

Figure 6.33 A model for two transmitting AM radio stations for Problem 6.7.
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system), at a center frequency of f c Hz. Station B is broadcasting a 1 V peak
3 kHz square wave, mB (t), at f c + 30 kHz with no filtering at the transmitter.
Since each transmitted waveform will have a different propagation loss, the
received waveform is given by the form

rc(t) = AA[(1.5 + mA(t))
√

2 cos(2π f ct + φA)]

+ AB [(1.5 + mB (t))
√

2 cos(2π( f c + 30000)t + φB )]

Assume without loss of generality that the phase shift for the station A is zero,
i.e., φA = 0.

(a) Give the complex envelope of the received signal, rz(t).

(b) Find the spectrum (Fourier series coefficients) of the complex envelope, rz(t).

(c) The demodulator has an ideal bandpass filter with a center frequency of
f c and a two-sided bandwidth of 2 W = 15 kHz followed by an envelope
detector as shown in Figure 6.33. Plot the output demodulated waveform,
m̂A(t), over 5 ms of time for several values of φb in the range [0, 2π] and
AB = 0.1, 1, 10.

The distortion you see in this example is called adjacent channel interference
and one of the FCC’s functions is to regulate the amount of interference each
station produces for people trying to receive another station.

Problem 6.8. Consider the message signal in Figure 6.34 and a bandpass signal
of the form

xc(t) = (5 + bm(t))
√

2 cos(2π f ct)

(a) What sort of modulation is this?

(b) Plot the bandpass signal, xc(t), with b = 2 when f c � 1
T .

(c) How big can b be and still permit envelope detection for distortion-free
message signal recovery.

(d) Compute the transmitted power for b = 3.

(e) Compute MCPR for b = 3.

… …

1

−1

− T
2−T

m t( )

t

T
2

Figure 6.34 A message signal for Problem 6.8.
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Gm( f )
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−W W

Figure 6.35 A message signal energy spectrum.

Problem 6.9. The complex baseband model for analog communications is given
in Figure 5.8. Ignore noise and assume m(t) = sin(2π fmt). If yz(t) = (5 +
3 sin(2π fmt)) exp[ j π/3],

(a) What kind of modulation does this represent? Identify all the important
parameters.

(b) Plot the envelope of the output, yA(t).

(c) Plot the phase of the output, yP (t).

(d) Show how to process yz(t) to recover m(t).

Problem 6.10. A message signal with an energy spectrum given in Figure 6.35
is to be transmitted with large carrier amplitude modulation. Additionally,
min(m(t)) = −2 and Pm = 1.

(a) If the MCPR = 25%, what is the modulation index, a.

(b) Will the modulation index obtained in part (a) be sufficiently small to allow
demodulation by envelope detection. Note if you cannot solve for part (a)
just give the necessary conditions such that envelope detection is possible.

(c) Plot the modulator output spectrum (either bandpass or baseband is fine)
and compute the EB .

Problem 6.11. Commercial TV uses large carrier AM transmission in conjunc-
tion with VSB-AM for the intensity signal (black and white levels). A typical
TV receiver block diagram for the intensity signal demodulation is shown in
Figure 6.36.

DC
Remover

Envelope
Detector

LC-VSB
Modulator

exp −[ ]j pφ

x tz( ) y tz( )
m̂ t( )t( )m

Figure 6.36 Typical TV demodulator.
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This problem tries to lead you to an explanation of why the filtering does not
significantly affect the envelope detector’s performance. Consider the simple
case of a sinusoidal message signal

m(t) = cos(2π fmt)

with fm > 0 and a VSB modulator that produces a complex envelope signal of
the form

xz(t) =
{

Ac(1 + a cos(2π fmt) + j a sin(2π fmt)) fm > fv

Ac(1 + a cos(2π fmt)) fm ≤ fv
(6.32)

(a) Sketch the modulator that would produce Eq. (6.32) and derive the transfer
function of the quadrature filter, HQ(f ), that is necessary to produce this
signal.

(b) Calculate the output envelope, |yz(t)|.
(c) Show that the envelope detector output is the desired signal (the message

signal plus a DC offset).

(d) Consider the case where modulator is exactly the same as above and the
message signal is the sum of two sinusoids

m(t) = A1 cos(2π f1t) + A2 cos(2π f2t) (6.33)

what would the form of xz(t) be?

(e) Show if a is chosen such that a2 is small that the envelope detector output
is approximately the desired signal (the message signal plus a DC offset).

(f) Compute the MCPR for fm < fv and fm > fv assuming a2 is small.

(g) Choose a value of a for which a2 is small compared to a and the envelope
detector can be used with a small resulting distortion. What does this say
about the MCPR of typical TV broadcast?

Problem 6.12. RF engineers that design and build quadrature upconverters (see
Figure 6.37) need tests to estimate how close to ideal their circuits are perform-
ing. The standard test used is known as a single sideband rejection test. This
test uses an input of xI (t) = cos(2π fmt) and xQ(t) = sin(2π fmt) and measures
the resulting bandpass power spectrum, |Xc(f )|2 on a spectrum analyzer.

(a) Compute what the output bandpass spectrum, |Xc(f )|2, should be for an
ideal quadrature upconverter.

(b) A common design issue in quadrature modulators is that the quadrature
carrier has a phase offset compared to the in-phase carrier, i.e.,

xc(t) = xI (t)
√

2 cos(2π f ct) − xQ(t)
√

2 sin(2π f ct + θ )

For the test signal in a single sideband rejection test what will be the output
bandpass spectrum as a function of θ .
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Figure 6.37 A quadrature upconverter.

(c) If |Xc( f c + fm)|2 = 100|Xc( f c − fm)|2 what is the value of θ that would
produce this spectrum.

(d) Postulate why this test is known as a single sideband rejection test.

Problem 6.13. A message with a Fourier transform of

M(f ) =
{

1√
W

∣∣∣sin
(

π f
W

)∣∣∣ −W ≤ f ≤ W

0 elsewhere
(6.34)

is to be transmitted with a quadrature modulation.

(a) Calculate the message energy, Em.

(b) For SSB-AM (upper sideband) compute the output transmitted energy, Exz .

(c) Design a simple quadrature filter for VSB-AM where fv = W/4. Give either
HQ(f ) or Hz(f ).

(d) Compute the resulting output energy for your design, Exz , in part c). Note,
depending on your design the solution might be easiest done with the aid of
a computer

Problem 6.14. (UM). An amplitude modulated (AM) signal has the following form

xc(t) = [A+ 1.5 cos(10πt) − 3.0 cos(20πt)] cos(2π f ct)

where the message signal is

m(t) = cos(10πt) − 2.0 cos(20πt)

(a) What type of amplitude modulation is this?

(b) What is the spectrum of xc(t), Xc(f )?
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(c) Determine the conditions on A such that envelope detection could be used
in the demodulation process with no distortion.

(d) Determine the MCPR of this modulation scheme as a function of A.

Problem 6.15. You need to test a VSB-AM system that your company has pur-
chased. The modulation scheme is DSB-AM followed by a bandpass filter, Hc(f ).
The demodulator is exactly the same as DSB-AM when the phase offset, φp, is
known. The system does not work quite right and testing has led you to suspect
the filter Hc(f ). After analysis and testing, you determine that the filter has
the following bandpass characteristic

Hc(f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 f c + 7500 ≤ | f | ≤ f c + 10000
2 f c + 2500 ≤ | f | < f c + 7500
4
3 f c ≤ | f | < f c + 2500
3
4 f c − 2500 ≤ | f | < f c

0 elsewhere

You will be using the system to transmit voice signals with a bandwidth of
5000 Hz.

(a) Compute Hz(f ) = HI (f ) + j HQ(f ).

(b) What are the conditions on HI (f ) and HQ(f ) for f ∈ [−W, W ] that will
produce a distortionless demodulator.

(c) Does the VSB system produce a distortionless output? That is, does m̂(t) =
Km(t), where K is some constant?

(d) The filter above consists of five frequency segments with constant gain.
Because of cost restrictions, you can change the gain on only one of the
segments. Change one segment gain such that the system will produce a
distortionless output.

(e) What is the bandwidth efficiency of your resulting VSB system and the
resulting savings in transmission bandwidth over DSB-AM?

(f) What is the spectrum of the corresponding complex envelope equivalent,
Hz(f ), of the improved filter?

Problem 6.16. This problem is concerned with double-sided band amplitude
modulation (DSB-AM) of the message signal given in Problem 5.1. Assume
a carrier frequency of f c = 200 Hz and a carrier amplitude of Ac.

(a) Give the baseband, xz(t), and bandpass, xc(t), time waveforms for DSB-AM
for this message signal as a function of m(t).

(b) The bandpass signal is also periodic. What is the period? Give the Fourier
series representation for the bandpass signal
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(c) Give the value of Ac that will produce a Pxz = 50 Watt transmitter output
power in a 1 � system.

(d) Sketch the demodulation process for a received signal yc(t).

Problem 6.17. Repeat Problem 6.16 with the bandlimited message signal of
Problem 5.2.

Problem 6.18. Repeat Problem 6.16 with the message signal of Problem 5.5.

Problem 6.19. This problem is concerned with large carrier amplitude modula-
tion (LC-AM) by the message signal given in Problem 5.1. Assume a carrier
frequency of f c = 200 Hz, a carrier amplitude of Ac, and a modulation coeffi-
cient of a.

(a) Give the baseband, xz(t), and bandpass, xc(t), time waveforms for LC-AM
for this message signal as a function of m(t).

(b) Give the Fourier series representation of the bandpass modulated signal as
a function of Ac and a.

(c) Give the value of a such that the MCPR is maximized and distortion-free
envelope detection is still possible.

(d) What is the MCPR with the value of a computed in (c)?

(e) With the value of a computed in (c) give the value of Ac that will produce a
Pxz = 50 W transmitter output power in a 1-� system.

(f) Sketch the demodulation block diagram for a received signal yc(t).

Problem 6.20. Repeat Problem 6.19 with the message signal of Problem 5.2.

Problem 6.21. Repeat Problem 6.19 with the message signal of Problem 5.5.

Problem 6.22. This problem is concerned with single sideband amplitude modu-
lation (SSB-AM) by the message signal given in Problem 5.1. Assume a carrier
frequency of f c = 200 Hz, and a carrier amplitude of Ac.

(a) Give the baseband, xz(t), and bandpass, xc(t), time waveforms for an upper
sideband SSB-AM for this message signal.

(b) Give the Fourier series representation of the bandpass modulated signal as
a function of Ac.

(c) Give the value of Ac that will produce a 50 W output power in a 1-� system.

(d) Sketch the demodulation block diagram for a received signal, yc(t), assum-
ing that you know φp.

Problem 6.23. Repeat Problem 6.22 with the message signal of Problem 5.2.

Problem 6.24. Repeat Problem 6.22 with the message signal of Problem 5.5.
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Figure 6.38 The received complex envelope of a LC-AM signal.

Problem 6.25. You have been given the noiseless received complex envelope,
yz(t) = yI (t) + j yQ(t), of a periodic message signal transmitted via large
carrier–amplitude modulation (LC-AM) as shown in Figure 6.38. Assume that
1 + a min m(t) > 0. As is standard practice the message signal has a time aver-
age value of zero so that it will pass through a DC block unchanged.

(a) Give the form of the received complex envelope for LC-AM, yz(t) as a function
of Ac, a, m(t), and φp.

(b) Find the best estimate of the message signal, m̂(t) = Am(t), from the data
in Figure 6.38.

(c) Find the transmitted power, Pxz using the data in Figure 6.38.

(d) Find the MCPR using the data in Figure 6.38.

Problem 6.26. Consider the periodic message signal in Figure 6.39 and LC-AM
modulation.

(a) Compute the DC value of m(t).

(b) Compute the message signal power, Pm as a function of ρ.

(c) What is the maximum value of a as a function of ρ that can be used and
still maintain distortionless envelope detection.

(d) Compute and plot the MCPR as a function of ρ.
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Figure 6.39 A periodic message signal for Problem 6.26.

Problem 6.27. A message signal is of the form

m(t) = 2 cos(4πt) + cos(6πt)

If xI (t) = Acm(t) and the modulator output complex envelope spectrum is given
by Figure 6.40.

(a) What is W and what is BT ?

(b) What type of modulation is being implemented?

(c) What is the value of Ac?

(d) What should xQ(t) be to produce the output spectrum?

Problem 6.28. In a single sideband amplitude demodulator the following signal
is output from the down converter

yz(t) = exp[ j 6πt] + j exp[ j 8πt] (6.35)

The channel phase is known to be φp = π/2.

Xz f( )

f

2Hz−2Hz 3Hz

666

Figure 6.40 The baseband modulator output spectrum.
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(a) Is the modulation using the upper sideband or the lower sideband?

(b) Find m̂(t).

Problem 6.29. At the output of a double sideband amplitude modulator (DSB-AM)
the signal

xc(t) = 8 cos(200πt)
√

2 cos(2π f ct) (6.36)

is observed. You know that the input message signal had a power of 2 W.

(a) Find xz(t).

(b) Find xA(t) and xP (t) over t ∈ [0, 0.01].

(c) What is the input message signal and what is Ac?

(d) Plot the Fourier transform of the complex envelope, Xz(f ) using impulse
functions. What the bandpass bandwidth, BT , that this signal occupies?

Problem 6.30. Consider the DSB-AM signal from the previous problem given as

xc(t) = 8 cos(200πt)
√

2 cos(2π f ct) (6.37)

This signal is put into a bandpass filter which has a complex envelope charac-
terized with

HQ(f ) = 0 HI (f ) =
⎧⎨
⎩1 − 0.5 f

100
| f | ≤ 200

0 elsewhere
(6.38)

The output of the filter at bandpass is denoted yc(t) and at baseband is denoted
yz(t).

(a) Find and plot Hc(f ).

(b) Find yz(t).

(c) Find yA(t) and yP (t) over t ∈ [0, 0.01]. Why is the phase varying as a function
of time for the DSB-AM signal?

Problem 6.31. A message signal with an energy spectrum given in Figure 6.35
is to be transmitted with single sideband amplitude modulation (SSB-AM).
Additionally, min(m(t)) = −2 and Pm = 10.

(a) Specify the quadrature filter transfer function to achieve a lower sideband
transmission.

(b) Find the transmitted power, Pxz .

(c) Plot the modulator output spectrum (either bandpass or baseband is fine)
and compute the EB .
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Figure 6.41 A received complex envelope.

Problem 6.32. Recall that for a quadrature modulation that the overall modulator
transfer function is

Hz(f ) = 1 + j HQ(f ) (6.39)

Specify conditions on HQ( f o) such that the sideband attenuation at frequency
f o is greater than 50 dB.

Problem 6.33. A periodic received signal, rz(t), from an analog modulation is
given in Figure 6.41.

(a) Assume the transmitted signal is given as xz(t), how have we modeled the
form for rz(t) in terms of xz(t) for this class?

(b) Given rz(t) in Figure 6.41, is it possible for the transmitted signal, xz(t),
to be a LC-AM signal that is able to be detected without distortion by an
envelope detector? Why?

Problem 6.34. (JG) Let m(t) be a message signal and define the bandpass signals
xc(t) and yc(t) as

m(t) = (sinc(t))2 (6.40)

xc(t) = m(t)
√

2 cos(2π f ct) − m̂(t)
√

2 sin(2π f ct) (6.41)

yc(t) = m(t)
√

2 cos(2π f ct) + m̂(t)
√

2 sin(2π f ct) (6.42)

where m̂(t) is the Hilbert transform of m(t).

(a) Find the complex envelopes, xz(t) and yz(t), for the bandpass signals xc(t)
and yc(t).

(b) Determine and sketch the Fourier transform of xc(t). What is the bandwidth
of Xc(f )?

(c) Determine and sketch the Fourier transform of yc(t).

Problem 6.35. (PD) Recall the received signal for a SSB-AM system (upper side-
band) is given as

yz(t) = Ac(m(t) + j mh(t)) exp[ j φp] (6.43)
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Figure 6.42 A message signal.

where mh(t) is the Hilbert transform of m(t). An alternative coherent demodu-
lation structure has been proposed as

m̂(t) = yI (t) + α(φp)yQ(t) (6.44)

where α(φp) is a real constant that is a function of φp.

(a) Give the form of m̂(t) as a function of m(t), mh(t), φp, and α(φp).

(b) Find the value of α(φp) where m̂(t) = A(φp)m(t), where A(φp) is not a
function of time.

(c) What is the value of A(φp) for the value of α(φp) derived in (b).

(d) What are your perceived advantages and disadvantages of this demodulator
versus that presented in the text.

Problem 6.36. (JG) Consider the message signal, m(t), shown in Figure 6.42.

(a) If an arbitrary m(t) is modulated using DSB-LC AM, what is the general
expression for the complex envelope?

(b) If the message signal shown above is modulated using DSB-LC AM, what
is the maximum possible power efficiency?

(c) If the message signal shown above is modulated using DSB-LC AM, sketch
the bandpass form of the DSB-LC AM signal which achieves the maximum
power efficiency. Clearly label your figure.

(d) If the message signal shown above is modulated using DSB-SC and de-
modulated using a standard envelope detector, sketch the resulting output
signal. Clearly label your figure.
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Problem 6.37. Given the LC-AM waveform of the form

xz(t) = Ac(1 + a cos(2π fmt)) (6.45)

(a) For Ac = 1 and a = 0.1 plot the instantaneous power of xz(t) in dB scale as
a function of time.

(b) Find the value of a such that the difference between the maximum and the
minimum power is 1 dB.

(c) Find the value of Ac and a such that Pxz = −10 dBm and the difference
between the maximum and the minimum power is 1 dB.

6.5 Example Solutions

Problem 6.17. For DSB-AM we have

xz(t) = Acm(t) (6.46)

(a) Since

m(t) = 8
π2 cos(2π(2)t) + 8

9π2 cos(2π(6)t) (6.47)

we have

xz(t) = Ac

(
8
π2 cos(2π(2)t) + 8

9π2 cos(2π(6)t)
)

(6.48)

The bandpass signal is

xc(t) = xI (t)
√

2 cos(2π f ct) = Acm(t)
√

2 cos(2π f ct) (6.49)

(b) The baseband signal has a Fourier series representation of

xI (t) = Ac4
π2 exp[ j 2π(2)t] + Ac4

π2 exp[− j 2π(2)t] + Ac4
9π2 exp[ j 2π(6)t]

+ Ac4
9π2 exp[− j 2π(6)t] (6.50)

and has a period T = 0.5. The modulated signal Fourier series is

xc(t) = Ac4√
2π2

exp[ j 2π(202)t] + Ac4√
2π2

exp[ j 2π(198)t]

+ Ac4√
29π2

exp[ j 2π(206)t] + Ac4√
29π2

exp[ j 2π(194)t]

+ Ac4√
2π2

exp[− j 2π(202)t] + Ac4√
2π2

exp[− j 2π(198)t]

+ Ac4√
29π2

exp[− j 2π(206)t] + Ac4√
29π2

exp[− j 2π(194)t] (6.51)
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The frequencies contained in the bandpass signal are f = 194, 198, 202,
206 so the bandpass signal will be periodic with period T = 1/2. Since

xc(t) =
∞∑

k=−∞
xk exp[ j 2π2kt] (6.52)

the Fourier series coefficients are

x97 = 8Ac

9π2
√

2
x−97 = 8Ac

9π2
√

2
x99 = 8Ac

π2
√

2
x−99 = 8Ac

π2
√

2
(6.53)

x101 = 8Ac

π2
√

2
x−101 = 8Ac

π2
√

2
x103 = 8Ac

9π2
√

2
x−103 = 8Ac

9π2
√

2
(6.54)

(c) The power of DSB-AM is Pxz = A2
c Pm = A2

c 0.3325. If a transmitted power
of 50 W is to be achieved then A2

c = 50/.3325 or Ac = 12.26.

(d) See Figure 6.6.

Problem 6.23. For SSB-AM we have

xz(t) = xI (t) + j xQ(t) = Ac[m(t) + j hQ(t) ∗ m(t)] (6.55)

where hQ(t) is the Hilbert transformer where HQ(f ) = − j sgn(f ).

(a) Since

m(t) = 8
π2 cos(2π(2)t) + 8

9π2 cos(2π(6)t) (6.56)

we have

xI (t) = Ac

(
8
π2 cos(2π(2)t) + 8

9π2 cos(2π(6)t)
)

(6.57)

The complex envelope of the transmitted bandpass signal is given as

xz(t) = xI (t) + j xQ(t)

= Ac

(
8
π2 cos(2π(2)t) + 8

9π2 cos(2π(6)t) + j 8
π2 sin(2π(2)t)

+ j 8
9π2 sin(2π(6)t)

)

= Ac

(
8
π2 exp( j 2π(2)t) + 8

9π2 exp( j 2π(6)t)
)

(6.58)

The frequency domain representation of the complex envelope is

Xz(f ) = Ac8
π2 δ( f − 2) + Ac8

9π2 δ( f − 6) (6.59)

The complex envelope is periodic with period T = 1/2.
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(b) xc(t) = xI (t)
√

2 cos(2π f ct) − xQ(t)
√

2 sin(2π f ct) and

Xc(f ) = 1√
2

Xz( f − f c) + 1√
2

X ∗
z (− f − f c) (6.60)

= 8Ac

π2
√

2
δ( f − 202) + 8Ac

9π2
√

2
δ( f − 206) + 8Ac

π2
√

2
δ( f + 202)

+ 8Ac

9π2
√

2
δ( f + 206)

The frequencies contained in the bandpass signal are f = 202, 206 so the
bandpass signal will be periodic with period T = 1/2. The period of the
bandpass signal is the same as the baseband signal. Since

xc(t) =
∞∑

k=−∞
xk exp[ j 2π2kt] (6.61)

the Fourier series co-efficients are

x101 = Ac8

π2
√

2
x−101 = Ac8

π2
√

2
(6.62)

x103 = Ac8

9π2
√

2
x−103 = Ac8

9π2
√

2
(6.63)

(c) Parseval’s theorem gives Pxz = 2A2
c Pm. If a transmitted power of 50 W is to

be achieved then A2
c = 25/0.3325 or Ac = 8.671.

(d) See Figure 6.25.

6.6 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter) The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). All team
members should be prepared to give the presentation.
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6.6.1 Project 1

Project Goals: Undergraduate classes often only look at idealized problems.
For example, one thing that is ignored in a course like this one is that frequency
sources at the transmitter and receiver cannot be made to have exactly the
same value. This project challenges the student to think about the impact of
this practical constraint that is not discussed in the text. This mini-project will
investigate the effects of this frequency offset on one demodulation algorithm
for DSB-AM.

For a signal received with a frequency offset the complex envelope of the
received signal will be rotating due to this frequency offset, i.e.,

yz(t) = xz(t) exp[ j (φp + 2π f ot)] (6.64)

where f o is the exisiting frequency offset. Get the Matlab files ampmodex1.m
andampmodex2.m from the class web page. In these files a DSB-AM transmitter
and receiver is implemented. If the carrier frequency offset is set to 10 Hz
(deltaf=10 in the Matlab code) the output of the squaring device will be

Vz(t) = A2
c m2(t) exp[ j 40πt + j 2φp] + NV (t) (6.65)

The demodulator implemented in the m-file still works pretty well with this
frequency offset. Explain why. Specifically, the filter in the open loop phase
estimator, Hz(f ), has a specific characteristic that enables the frequency offset
to be tracked in such a way as to not cause significant distortion. Note, at higher
frequency offsets (e.g., 100 Hz) the performance suffers noticeable distortion.
Extra credit will be given if you can figure out a method to eliminate this
distortion. Understanding Problem 4.15 will help.

6.6.2 Project 2

Project Goals: The selection of the modulation index can allow some distor-
tion and hence becomes a trade-off between MCPR and distortion. This project
challenges the student to examine this trade-off with a typical audio signal.

LC-AM uses a DC offset in xI (t) to ensure that envelope detection is possible
on the received signal. An envelope detector is a very simple demodulator. This
DC offset results in wasted transmitted power. Typically the best MCPR that
can be achieved with voice signals is around 10% to maintain xI (t) > 0. Better
MCPR can be achieved if xI (t) is allowed to go negative for a small amount
of time. This of course will cause distortion in the demodulated signal. Get
the Matlab files ampmodex3.m and ampmodex4.m from the class web page. In
these files a LC-AM transmitter and receiver is implemented. Find the maxi-
mum value of a such that no distortion envelope detection is possible. Increase
a beyond this value and see how large it can be made before the distortion
becomes significant. Calculate the maximum MCPR for the no distortion case
and calculate the MCPR when the amount of audio distortion is acceptable to
your ear.
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6.6.3 Project 3

Project Goals: This project examines the impact of phase and frequency error
in the SSB-AM demodulator.

SSB-AM uses the Hilbert transform in xQ(t) to eliminate half of the spec-
tral content of a DSB-AM signal. In class we showed that for demodulation a
coherent phase reference signal is needed to recover the xI (t) after the phase
shift in the channel. One might imagine that the an offset in the carrier phase
reference signal might result in a distorted demodulated signal. For example,
if the coherent phase reference is φp + ϕe then the demodulated output given
in Figure 6.25 is

m̂(t) = m(t) cos(ϕe) + m(t) ∗ hQ(t) sin(ϕe) (6.66)

Get the Matlab file ampmodex5.m and ampmodex6.m from the class web
page. In these files a SSB-AM transmitter and receiver is implemented (note,
these systems are much more complicated than you will actually need so prune
the code accordingly). Find the maximum value of ϕe such that the amount of
perceived distortion in the demodulated audio output is small. Note, the answer
might surprise you (it did me the first time). Extra credit will be given if the
team can explain the reason for this surprising behavior. Repeat the experiment
with a small frequency offset instead of a phase offset.



Chapter

7
Analog Angle Modulation

Analog angle modulation embeds the analog message signal in the phase of the
carrier or equivalently in the time varying phase angle of the complex envelope
(instead of the amplitude as was the case for AM modulation). The general form
of angle modulation is

xz(t) = Ac exp[ j �a(m(t))]

It is important to note that analog angle modulated signals have a con-
stant envelope (i.e., xA(t) = Ac). This is a practical advantage since most high
power amplifiers are not linear and amplitude variations produce distortion
(e.g. signal compression).

7.1 Angle Modulation

Amplitude modulation was the first modulation type to be considered in analog
communication systems. Amplitude modulation has the obvious advantage of
being simple and relatively bandwidth efficient. The disadvantages of ampli-
tude modulations are

■ The message is embedded in the amplitude of the carrier signal. Conse-
quently, linear amplifiers are very important to obtaining good performance
in AM systems. Linear amplifiers are difficult to achieve in applications when
either cost or small size are important.

■ When the message signal goes through a quiet period in DSB-AM or SSB-AM
systems, very small carrier signals are transmitted. This absence of signal
tends to accentuate the noise.

■ The bandpass bandwidth in AM systems is directly dependent on the message
signal bandwidth. There is no opportunity to use a wider bandwidth to achieve
better performance.

7.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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These enumerated shortcomings of AM can be addressed by using angle modu-
lation. Angle modulations modulate the angle of the complex envelope with the
message signal.

The introduction of angle modulation into commercial engineering systems
was wrought with controversy. It should be noted that angle modulation was
proposed during the 1910s and in a paper that set communication theory back
10 years angle modulation was dismissed as being inferior to amplitude modu-
lation by J. R. Carson [Car22], a proponent and credited inventor of SSB-AM
working at Bell Laboratories. Roughly a decade later Edwin H. Armstrong
became a proponent of frequency modulation (a type of angle modulation) in
spite of the theoretical analysis of Carson. Armstrong was able to build and
demonstrate a working angle modulation system that had, for the time pe-
riod, a remarkable fidelity [Arm35]. While battles raged between commercial
interests in radio engineering that were proponents of amplitude and angle
modulation [Les69] the engineering community quickly realized the trade-offs,
angle modulations offered that were not available with amplitude modulation
[CF37]. Over time, angle modulation has become the de facto standard for high
quality analog audio broadcast worldwide. This chapter will investigate the
theoretical underpinnings of angle modulation.

The first issue to address is what is meant by the phase and frequency of a
bandpass signal and how it relates to the complex envelope.

Definition 7.1 When a signal has the form

x(t) =
√

2 cos(θ (t))

then the instantaneous phase is θ(t) and the instantaneous frequency in Hertz is

fi(t) = 1
2π

d θ (t)
dt

(7.1)

EXAMPLE 7.1
When

x(t) =
√

2 cos(2π fmt)

then θ(t) = 2π fmt and fi(t) = fm.

Definition 7.2 For a bandpass signal having the form

xc(t) =
√

2xA(t) cos(2π fct + xP (t))

then the instantaneous phase is 2π fct + xP (t) and the instantaneous frequency in
Hertz is

fi(t) = fc + 1
2π

d xP (t)
dt

(7.2)
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Definition 7.3 For a bandpass signal the instantaneous frequency deviation in Hertz is

fd (t) = 1
2π

d xP (t)
dt

(7.3)

The instantaneous frequency deviation is a measure of how far the instanta-
neous frequency of the bandpass signal has deviated from the carrier frequency.

There are two prevalent types of analog angle modulated signals; phase mod-
ulated (PM) and frequency modulated signals (FM). Analog PM changes the
phase angle of the complex envelope in direct proportion to the message signal

xz(t) = �m(m(t)) = Ac exp[ j kpm(t)]

where kp (units of radians/volt) is the phase deviation constant. Similarly, FM
changes the instantaneous frequency deviation in direct proportion to the mes-
sage signal. Note that the instantaneous radian frequency is the derivative of
the phase so that the phase of a bandpass signal can be expressed as

xP (t) =
t∫

−∞
2π fd (λ)dλ

Consequently, FM signals will have fd (t) = f km(t) and so for this book an
FM signal will have the following form

xz(t) = �m(m(t)) = Ac exp

⎡
⎣ j

t∫
−∞

kf m(λ)dλ

⎤
⎦ = Ac exp

⎡
⎣ j

t∫
−∞

2π f km(λ)dλ

⎤
⎦

where kf is the radian frequency deviation constant (units radians/second/volt)
and f k is the frequency deviation constant (units Hertz/volt). It should be noted
that the complex envelope of an angle modulated signal is a nonlinear function
of the message signal. This nonlinear relationship will complicate the analysis
of the fidelity of message reconstruction and spectral efficiency of transmis-
sion. The subject of angle modulation is typically where students interested in
communications first find the limits of the undergraduate signals and systems
education. The nonlinearities in angle modulation and demodulation do not
permit closed form analysis and consequently approximate/simplified results
need to be examined. The approaches taken to understand the fidelity of mes-
sage reconstruction and spectral efficiency in angle modulation are useful not
only for the results that are derived but also for the methodology used to solve
the nonlinear problems.

The bandpass angle modulated signals are constant envelope signals with a
phase or a frequency modulation. For PM the modulation is defined as

xI (t) = gI (m(t)) = Ac cos(kpm(t)) xQ(t) = gQ(m(t)) = Ac sin(kpm(t))
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and bandpass signal is

xc(t) = Ac

√
2 cos(2π f ct + kpm(t))

For FM the modulation is defined as

xI (t) = gI (m(t)) = Ac cos

⎛
⎝kf

t∫
−∞

m(λ)dλ

⎞
⎠

xQ(t) = gQ(m(t)) = Ac sin

⎛
⎝kf

t∫
−∞

m(λ)dλ

⎞
⎠

and the bandpass signal is

xc(t) = Ac

√
2 cos

⎛
⎝2π f ct + kf

t∫
−∞

m(λ)dλ

⎞
⎠

An example message signal and the integral of this message signal is given
in Figure 7.1. The corresponding bandpass phase modulated signal is shown
in Figure 7.2. The corresponding bandpass FM modulated signal is given in
Figure 7.3. It is obvious from this plot that the instantaneous frequency of the
carrier1 is being modulated in proportion to the message signal.

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20
Time, t, sec

m t( )
k m λ( )dλ

−∞

t

∫

Figure 7.1 An example message signal and message signal integral.

1The instantaneous carrier frequency can be estimated by noting the frequency of the peaks of
the sinusoid.
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Figure 7.2 The PM modulated bandpass waveform corresponding to the message in Figure 7.1.

EXAMPLE 7.2
Angle modulation with

m(t) = Am sin(2π fmt)

produces a complex envelope of

xz(t) = Ac exp[ jβp sin(2π fmt)] (PM) xz(t) = Ac exp[ j (β f cos(2π fmt) + θ f )] (FM)

xc(t)m(t)

−1.2

−0.8

−0.4

10−8

0.4

0.8

1.2

0 5 10 15 20

Time, t, sec

Figure 7.3 The FM modulated bandpass waveform corresponding to the message in Figure 7.1.
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where βp = Amkp , βf = −kf Am
2π fm

and θ f is a constant phase angle that depends on the
initial conditions of the integration. The in-phase and quadrature signals then have the
form

xI (t) = Ac cos[βp sin(2π fmt)] xQ(t) = Ac sin[βp sin(2π fmt)] (PM)

and

xI (t) = Ac cos[β f cos(2π fmt) + θ f ] xQ(t) = Ac sin[β f cos(2π fmt) + θ f ] (FM)

7.1.1 Angle Modulators

Two methods are typically used to produce analog angle modulation in modern
communication systems; the voltage controlled oscillator (VCO) and the direct
digital synthesizer. The VCO is a device which directly generates an FM signal
and the block diagram is given in Figure 7.4. The VCO varies the frequency of
the oscillator in direct proportion to the input signal and it is very useful in a
variety of applications besides FM modulation as well. Note, the VCO was first
introduced as a component in a Costas loop in Chapter 6.

Direct digital synthesis (DDS) is a powerful technique used in the generation
of radio frequency signals for use in a variety of applications in analog and digi-
tal communications. The technique has become widespread with the advances
being made in integrated circuit technology that allow high performance digital
synthesis to be made cheaply. The DDS is detailed in Figure 7.5. The input
to a DDS is an analog signal (for angle modulation m(t)). This analog signal
can be processed in a variety of ways but for angle modulation this processing
corresponds to a multiplication (for PM) or an integration (for FM). The output
of this processing is then input into two parallel trigonometric functions (cosine
and sine). The structure is most often implemented with digital processing and
these trigonometric functions are implemented in a digital lookup table. Often
the DDS function is integrated with an upconverter so that a bandpass signal
is produced at the output of the DDS.

The output power of an angle modulated signal is of interest. To this end
using Eq. (4.24), the power in an angle modulated signal is given as

Pxc = A2
c (7.4)

For an angle modulated waveform the output power is only a function of the
power associated with the carrier (A2

c ) and not a function of the message signal
at all.

VCO
in out

kf

m t( ) 2 cos 2π fct + kf m λ( )dλ
−∞

t

∫
⎛

⎝⎜
⎞

⎠⎟

Figure 7.4 A voltage controlled oscillator.
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Multiplier
or

Integrator

Sine Generator

Cosine Generator

m t( )

x tI( )

x tQ( )

Figure 7.5 A direct digital synthesizer.

7.2 Spectral Characteristics

Unfortunately, a general expression cannot be found for a Fourier transform of
the form

Xz(f ) = F{exp[ j u(t)]}

so no general results can be given for angle modulated spectrums.

EXAMPLE 7.3
The computer-generated voice signal given in Chapter 2 (W = 2.5 kHz) is used with
phase modulation (kp = 1). The power spectrum of the complex envelope of the PM signal
is shown in Figure 7.6. Note, there is no apparent relationship between the baseband
message spectrum (see Figure 2.8) and the modulated spectrum. The nonlinear nature
of angle modulation produces a situation where the prerequisite signals and systems
material fails to characterize the resulting modulation bandwidth. It is interesting to
note that the apparent tone at DC is due to the periods of silence in the message signal
(m(t) = 0).

7.2.1 A Sinusoidal Message Signal

As a first step in understanding the spectrum of angle modulated signals, con-
sider the simple case of

xz(t) = Ac exp[ jβ sin(2π fmt)] (7.5)

It should be noted here that by looking at the signal in Eq. (7.5) that insight
can be achieved about the spectrum of both phase and frequency modulation.
It should be noted that an achieved β is a function of both the message signal
characteristics and the modulator characteristics (kp in the case of PM and
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Figure 7.6 The power spectral density of the complex envelope of a phase modu-
lated carrier. The message signal is the computer-generated voice signal from
Chapter 2 (W = 2.5 kHz). kp = 1.

kf in the case of FM). The complex envelope in Eq. (7.5) can correspond to a
phase modulated signal where

m(t) = β

kp
sin(2π fmt) = Apm sin(2π fmt) (7.6)

or a frequency modulated signal where

m(t) = β
fm

f k
cos(2π fmt) = Af m cos(2π fmt) (7.7)

Or stated another way, for PM if the message signal has the form m(t) =
Am sin(2π fmt) then the resulting angle modulated complex envelop will be as
in Eq. (7.5) with β = Amkp. Likewise, for FM if the message signal has the form
m(t) = Am cos(2π fmt) then the resulting angle modulated complex envelop will
be as in Eq. (7.5) with β = Am f k

fm
. It is important in this setup to note that for

PM signals β is proportional to the message amplitude and the phase deviation
constant. In FM β is directly proportional to the message amplitude and the ra-
dian frequency deviation constant while inversely proportional to the message
frequency (see Example 7.2).

The signal xz(t) is a periodic signal with period T = 1/ fm, i.e., it is obvi-
ous that xz(t) = xz(t + 1/ fm). Since the signal is periodic, the obvious tool for
computing the spectral representation is the Fourier series.
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Figure 7.7 The measured power spectrum of an angle modulation with a sinusoidal message signal. fm = 300 Hz.

EXAMPLE 7.4
Consider an angle modulation with a sinusoidal message signal with fm = 300 Hz,
Ac = 1, and β = 1, and β = 3. The measured power spectrum of the angle modulated
complex envelope is shown in Figure 7.7. The impulsiveness of the spectrum indicates
the signal is periodic and the fundamental frequency is fm = 300 Hz. It can be deduced
from Figure 7.7 that a larger value of β produces a larger transmission bandwidth.

The Fourier series is given as

xz(t) =
∞∑

n=−∞
zn exp[ j 2π fmnt] (7.8)

where

zn = 1
T

T
2∫

− T
2

xz(t) exp
[
− j

2πnt
T

]
dt

A first spectral characteristic obvious on examining Eq. (7.8) is that angle
modulation can potentially produce a bandwidth expansion compared to AM
modulation. Note that a DSB-AM signal with a message signal of

m(t) = sin(2π fmt)

will produce a bandpass bandwidth of 2 fm. If zn �= 0 for any |n| ≥ 2 then an
angle modulated signal will have a bandwidth greater than that of DSB-AM
and EB < 50%. The actual coefficients of Fourier series can be obtained by
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noting that

zn = fm

1
2 fm∫

− 1
2 fm

Ac exp[− j (2π fmnt − β sin(2π fmt))]dt (7.9)

The change of variables θ = 2π fmt simplifies Eq. (7.9) to give

zn = Ac

2π

π∫
−π

exp[− j (θn − β sin θ )]dθ = Ac Jn(β)

where Jn(•) is the Bessel function of the first kind order n. More details about
the Bessel function are provided in the sequel as these characteristics give
insights into the spectral characteristics of angle modulation. Consequently,
we now have

xz(t) =
∞∑

n=−∞
Ac Jn(β) exp[ j 2π fmnt] (7.10)

and a frequency domain representation of

Xz(f ) =
∞∑

n=−∞
Ac Jn(β)δ( f − nfm) (7.11)

A convenient form for the spectrum of the angle modulation for a sinusoidal
message signal is now available once we characterize the Bessel function.

The Bessel Function

The Bessel function of the first kind is a transcendental function much like sine
or cosine and has the following definition [Ae72]

Jn(x) = 1
2π

π∫
−π

exp[− j (nθ − x sin θ )]dθ

This Bessel function can completely characterize the spectrum of an angle
modulated signal with a sinusoidal message signal. Plots of the Bessel function
of the first kind for various orders are seen in Figure 7.8. The Bessel function
has the following important characteristics

1. Jn(x) is real valued

2. Jn(x) = J−n(x) n even

3. Jn(x) = −J−n(x) n odd

4.
∞∑

n=−∞
J 2

n (x) = 1
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Figure 7.8 The Bessel function of the first kind.

5. lim
n→∞ |Jn(x)| = 0

6. When β � 1
(a) J0(β) ≈ 1
(b) J1(β) ≈ β

2
(c) Jn(β) ≈ 0 ∀ |n| > 1

The first three characteristics of the Bessel function indicate that the power
of the angle modulated signal is distributed evenly around zero. Characteristic
4 of the Bessel function is simply a consequence of Parseval’s theorem, i.e.,

Pxz = 1
T

∫ T

0
|xz(t)|2dt =

∞∑
n=−∞

|zn|2 = A2
c

∞∑
n=−∞

|Jn(β)|2 = A2
c

The fifth characteristic simply indicates that the angle modulated signal has a
finite practical bandwidth (the Fourier coefficients converge to zero). Charac-
teristic 6 of the Bessel function will be important for understanding the case of
narrowband angle modulation.

EXAMPLE 7.5
The previous example considered a sinusoidal message signal. Comparing the measured
power spectrum in Figure 7.7 to the results one could obtain from Figure 7.8 shows a
perfect match between theory and measurement.
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Engineering Bandwidth

The bandwidth of angle modulation for a sinusoidal message signal is controlled
by β. All terms of the Fourier series expansion of the complex envelope are such
that, zn = Jn(β) �= 0, so to transmit this angle modulated waveform without
distortion requires an infinite bandwidth. As noted above

lim
n→∞ Jn(β) = 0

so a bandwidth can be selected such that the distortion that occurs due to
not including higher frequencies is appropriately small. A traditional design
practice used by communications engineers sets the filtering at the transmitter
such that the transmission bandwidth is the 98% power bandwidth. Since the
Bessel function has the characteristics

∞∑
n=−∞

J 2
n (x) = 1 lim

n→∞ |Jn(x)| = 0 (7.12)

it is clear that the power in an angle modulation is finite and the spectral distri-
bution of power of the angle modulated signal dies off eventually with increasing
frequency. For angle modulation of a sinusoidal message signal selecting the
98% bandwidth implies selecting how many harmonics of the message signal
are transmitted. Consequently, the 98% bandwidth of a angle modulated sinu-
soid is B98 = 2K fm, where the value of K satisfies

K∑
n=−K

J 2
n (β) > 0.98 ≥

K−1∑
n=−K+1

J 2
n (β) (7.13)

While this value can be evaluated for each β, a good approximation for β > 1
is given as K = β + 1. The 98% transmission bandwidth is accurately approxi-
mated as

BT = 2(β + 1) fm (7.14)

and consequently the bandwidth efficiency of angle modulation is approximated
by

EB = W
BT

= 1
2(β + 1)

(7.15)

Figure 7.9 shows a comparison between the actual 98% transmission band-
width and the simple approximation given in Eq. (7.14). Consequently, setting
β for a particular message frequency, fm, sets the transmission bandwidth.
Commercial FM broadcast can be thought of as having 0.8 < β < 5, but we will
discuss this in more detail later.

Early engineers noted that the peak frequency deviation of an angle modu-
lated carrier largely determines the bandwidth occupied by the signal [CF37].
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Figure 7.9 A comparison of the actual transmission bandwidth Eq. (7.13) and the
rule of thumb approximation Eq. (7.14) for angle modulation with a sinusoidal mes-
sage signal.

Definition 7.4 The peak frequency deviation is

f p = max | fd (t)| Hz (7.16)

For the sinusoidal message signal the frequency deviation is given as

fd (t) = 1
2π

d xP (t)
dt

= β fm cos(2π fmt) (7.17)

and the peak frequency deviation is given as

f p = max | fd (t)| = β fm (7.18)

Consequently, the transmission bandwidth is approximated as

BT = 2( f p + fm) (7.19)

This approximation is valid for other signals besides sinusoidal message signals.
In conclusion, the bandwidth of an angle modulated sinusoidal message sig-

nal is completely a function of β. Returning to Example 7.2 shows the value of
β for PM is directly proportional to the message amplitude, Am, and the phase
deviation constant, kp. For FM the value of β is directly proportional to the
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Figure 7.10 The resulting spectrum of a narrowband angle
modulation with a sinusoidal message signal.

message amplitude, Am, and the radian frequency deviation constant, kf , but
inversely proportional to the message frequency, fm.

Narrowband Angle Modulation

Interesting insights can be obtained by examining β � 1 which is known as
narrowband (NB) angle modulation. Using the characteristics of the Bessel
function for small arguments, only DC and fm spectral lines are significant,
i.e., z0 ≈ Ac and z±1 = ±Acβ/2. The resulting spectrum is given in Figure 7.10
and we have

xz(t) ≈ Ac(1 + β/2 exp[ j 2π fmt] − β/2 exp[− j 2π fmt])

= Ac(1 + jβ sin[2π fmt]) (7.20)

Note this implies that

xI (t) = Ac xQ(t) = Acβ sin[2π fmt] (7.21)

It is interesting to note that by examining Eq. (7.21) one can see that NB angle
modulation is quite similar to LC-AM. Both have a large carrier component but
the message signal is modulated on the in-phase component of the complex
envelope in LC-AM while the message signal is modulated on the quadrature
component in NB angle modulation. Also it should be noted that no bandwidth
expansion of an angle modulated signal compared to an AM signal occurs in
this case as the bandpass bandwidth in both cases is 2 fm. This implies that the
bandwidth efficiency of narrowband angle modulation is also EB = 50%.

7.2.2 General Results

We cannot obtain similar analytical results for a general message signal but
we can use the results in Section 7.2.1, which was for the sinusoidal message
signal, to provide general guidelines for angle modulation characteristics.
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Engineering Bandwidth

Again we can use the approximation using f p found for sinusoidal message
signals to get some insight into the occupied bandwidth for general signals.
For FM f p = f k max |m(t)| and for PM f p = (kp/2π ) max | d

dtm(t)|. Recall the
sinusoidal message signal case detailed in Section 7.2.1 and we have

f p = f k Af m FM f p = kp Apm fm PM (7.22)

Hence noting W = fm, we can see that Eq. (7.14) reduces to

BT = 2( f p + W ) (7.23)

Generalizing Eq. (7.14) can be accomplished by identifying the peak fre-
quency deviation.

Definition 7.5 The bandwidth expansion factor of an angle modulated signal is the ratio
of the peak frequency deviation to the message bandwidth, i.e.,

D = f p

W
(7.24)

For the angle modulations, considered in this chapter, the bandwidth expansion
factor is given as

D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f k max |m(t)|
W

FM

kp max
∣∣∣ d
dtm(t)

∣∣∣
2πW

PM

(7.25)

D is roughly the equivalent factor for an arbitrary message signal that β is for
a sinusoidal message signal2. Consequently, an engineering approximation to
the 98% power bandwidth of an angle modulated signal is

BT = 2(D + 1)W (7.26)

and the bandwidth efficiency is

EB = 1
2(D + 1)

(7.27)

This is known as Carson’s rule and is a common rule of thumb used for the
engineering bandwidth of angle modulated signals. Early work by Carson and
Fry [CF37] showed theoretically how the bandwidth varies with f p and W , and
since Carson was an early pioneer of communication theory his name became
associated with this powerful rule of thumb.

2In fact, if m(t) is a sinusoidal signal it is easy to show D = β.
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Another way to interpret Carson’s rule is to note that

BT = 2( f p + W ) (7.28)

f p corresponds to the largest frequency deviation of the complex envelope, xz(t),
and so the total bandwidth required on one side of the carrier is f p plus the
bandwidth necessary to support the message signal (W ). Obviously Carson’s
rule assumes m(t) behaves similiarly for positive values as it does for negative
values.

EXAMPLE 7.6
Commercial FM broadcast was originally configured with the following characteristics

1. Channel separation = 200 kHz,

2. Peak frequency deviation = f p = fd [max |m(t)|] ≤ 75 kHz (set by the FCC),

3. Message bandwidth = W = 15 kHz (mono broadcast).

Consequently we have

D ≤ 75 kHz
15 kHz

= 5

and

BT = 2(D + 1) 15 kHz = 180 kHz < 200 kHz

Modern FM broadcast has two audio channels (stereo) and sometimes even a auxiliary
channel so W ≥ 15 kHz. The later discussion of multiplexing analog signals will provide
more details.

EXAMPLE 7.7
The computer-generated voice signal given in Chapter 2 (W = 2.5 kHz) is used with
phase modulation (kp = 3.0). The peak frequency deviation constant is measured to be
about 2608 Hz in this case. Carson’s bandwidth rule of thumb predicts a BT = 10000 Hz
(5000 Hz one-sided) would be required. The measured cumulative power as a function
of frequency is plotted in Figure 7.11 for the whole time record in the left plot and
for a smaller time record which includes the largest values of the message signal and
the frequency deviation in the right plot. The measured 98% bandwidth of the whole
time record (approximately 3.5 kHz) is much less than that predicted by Carson’s rule.
This characteristic is due to the message signal having fairly long passages of silence
(m(t) ≈ 0) which tend to concentrate power at low frequencies. On the other hand the
measured spectrum of the part of the time record where the signal and the frequency
deviation take their largest values, the spectral distribution of power is quite accurately
modeled by Carson’s rule. Filtering the transmitted signal to a bandwidth less than
Carson’s bandwidth will distort the bandpass signal when the message signal is large
and results in degraded performance. The bandpass PM signal ( fc = 5500 Hz) filtered
to Carson’s bandwidth has a measured power spectrum shown in Figure 7.12.



Analog Angle Modulation 7.17

0 2000 4000 6000 8000 10000
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Frequency, f, Hz

C
um

ul
at

iv
e 

N
or

m
al

iz
ed

 P
ow

er

0 2000 4000 6000 8000 10000
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Frequency, f, Hz

C
um

ul
at

iv
e 

N
or

m
al

iz
ed

 P
ow

er

(a) Whole time record (b) Time record near the peak
frequency deviation

Figure 7.11 The normalized cumulative power of the phase modulated computer
generated voice saying “Bingo”. kp = 3.0.
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Figure 7.12 The bandpass spectrum for the phase modulated computer-
generated voice saying “Bingo” filtered at Carson’s bandwidth. kp = 0.8, fc =
5500 Hz.
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Narrowband Angle Modulation

Recall that PM has the complex envelope

xz(t) = Ac exp[ j kpm(t)]

and FM has the complex envelope

xz(t) = Ac exp

⎡
⎣ j

t∫
−∞

kf m(λ)dλ

⎤
⎦

Narrowband angle modulation results when either kp (PM) or kf (FM) is small
such that the total phase deviation caused by the modulation is small. Con-
sequently, we can use the Taylor series expansion and examine the first order
approximation, i.e.,

xz(t) ≈ Ac(1 + j kpm(t)) (PM) xz(t) ≈ Ac

⎛
⎝1 + j kf

t∫
−∞

m(λ)dλ

⎞
⎠ (FM)

This leads to a bandpass signal of the form

xc(t) ≈ Ac

√
2 cos(2π f ct) − Ackpm(t)

√
2 sin(2π f ct) (PM)

xc(t) ≈ Ac

√
2 cos(2π f ct) − Ackf

t∫
−∞

m(λ)dλ
√

2 sin(2π f ct) (FM) (7.29)

The bandpass implementation is seen in Figure 7.13 and is very similar to
the LC-AM modulator presented in Figure 6.14. This modulator was often used
in the early days of broadcast as one stage in a wideband angle modulator. This
idea will be explored in the homework.

Ac

m t( )( )PM

2 cos 2π fct( )
π 2

m λ( )dλ
−∞

t

∫ FM( )
Σ−

+

Figure 7.13 A bandpass implementation of a narrowband angle modu-
lator.
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Figure 7.14 The signals in a direct phase detector.

7.3 Demodulation of Angle Modulations

Since angle modulation only affects the angle of the complex envelope, the de-
modulation algorithms also focus on the phase of the received complex envelope.
Recall the received complex envelope has the form

yz(t) = xz(t) exp[ j φp] + noise

Consequently, the received complex envelope of the angle modulated signal is
given as

yz(t) = Ac exp[ j (kpm(t) + φp)] + Noise (PM)

yz(t) = Ac exp

⎡
⎣ j

⎛
⎝kf

t∫
−∞

m(λ)dλ + φp

⎞
⎠
⎤
⎦+ Noise (FM) (7.30)

EXAMPLE 7.8
Consider phase modulation of a unit amplitude sinusoidal message signal with kp = 2
and φp = −112.6◦ = −1.97 radians. The complex envelope of transmitted signal, xz(t),
plotted in Figure 7.14(a), demonstrates a phase deviation of 2 radians as expected.
It should be noted that the slight amplitude variation of the transmitted complex enve-
lope is due to a filtering at Carson’s bandwidth. The complex envelope output from the
channel has a phase rotation as predicted by Eq. (7.30). The plot of the received complex
envelope shown in Figure 7.14(b) clearly demonstrates this phase shift.
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The obvious detection approach for PM is to compute the angle of this complex
envelope,

yp(t) = tan−1(yQ(t), yI (t)) (7.31)

and implement a DC block to eliminate the phase shift induced by the propa-
gation delay in the channel. The demodulator is the form

m̂(t) = gn(yI (t), yQ(t)) = hH (t) ∗ yp(t) = kpm(t) + Noise (7.32)

where hH (t) represents the DC block. To recover the message signal in the
FM case this direct phase detector could be implemented and followed by a
differentiator so that the demodulator would have the form

m̂(t) = gn(yI (t), yQ(t)) = d
dt

yP (t) = d
dt

⎛
⎝kf

t∫
−∞

m(λ)dλ + Noise

⎞
⎠

= kf m(t) + Noise (7.33)

Figure 7.15 shows the block diagram for such a detector. This detector is known
as a direct phase detector. Note that the DC block is unnecessary in the case
of FM because the constant phase shift will be eliminated by the derivative.
This demodulation technique does not have to know or estimate φp hence it is
a noncoherent demodulator. The resulting fidelity of demodulation of angle
modulations will be detailed after noise is introduced in Chapter 11.

One practical characteristic of a direct phase detector that must be accom-
modated is that phase is typically measured in the range [−π, π ]. A phase shift
or a large phase deviation will cause the measured phase to wrap around the
range [−π, π ]. Recovery of the message signal requires that measured phase
be unwrapped. The unwrapping ensures that the output phase from the di-
rect phase detector is a smooth function of time. The unwrapping function is
implemented in Matlab in the function unwrap.

I/Q to
Phase

Converter
FM Out

PM Out

d
dt

DC
Block

yP (t)
yI(t)
yQ(t)yz(t)

Figure 7.15 The direct phase detector for analog angle modu-
lation.
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Figure 7.16 An example of phase unwrapping with a sinusoidal message signal.

EXAMPLE 7.9
Consider phase modulation of a unit amplitude sinusoidal message signal with kp = 2
and φp = −112.6◦ = −1.97 radians. The plot of yP (t) is shown in Figure 7.16(a).
It is clear that the direct detected phase has the form of a sinusoid offset roughly
−2 radians. The deviation from this sinusoidal characteristic occurs when the value
of the direct detected phase goes below −π , in this case the direct phase detector will re-
turn a positive phase angle. These abrupt changes in the detected phase can be reliably
identified since the message signal is bandlimited. The unwrapped phase is plotted in
Figure 7.16(b). In this case the unwrapping function has moved all the negative values
of the phase to positive values of phase by adding 2π.

EXAMPLE 7.10
Consider the PM signal generated in Example 7.7 with a measured transmitted power
spectrum given in Figure 7.12. In a channel with a propagation delay τp = 45.3µs a
phase shift of φp = −89.8◦ is produced in transmission. The vector diagram of the re-
ceived complex envelope is shown in Figure 7.17. The received signal does not have
a constant amplitude due to the filtering to Carson’s bandwidth at the transmitter.
The phase shift due to the propagation delay in transmission is clearly evident in
Figure 7.17(a). It is clear that the phase shift incurred in transmission will require
phase unwrapping in a direct phase demodulator as the received signal phase crosses
the [−π, π ] boundary frequently. The direct detected phase is given in Figure 7.17(b)
and the unwrapped phase is given in Figure 7.18(a). The unwrapped phase has a DC
offset due to the propagation delay in the channel. The output of the DC block is also
given in Figure 7.18(b). The demodulated output signal has little distortion compared to
the original computer-generated message signal introduced in Chapter 2. Note, in this
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Figure 7.17 The signals in a direct phase detector.

example there is a little glitch at the beginning of the transmission due to the transient
response of the DC block.

A second detector called a discriminator has frequently been used in prac-
tice because it can be implemented without an active device. The basis for the
operation of the discriminator is found in the relation

d
dt

ea(t) = d a(t)
dt

ea(t)
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Figure 7.18 The signals in a direct phase detector.
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or equivalently

d
dt

cos(a(t)) = d a(t)
dt

cos(a(t) + π/2)

For angle modulated signals this implies that the derivative of the complex
envelope will have the form

d yz(t)
dt

= j kp
d m(t)

dt
Ac exp[ j (kpm(t) + φp)] (PM)

d yz(t)
dt

= j kf m(t) Ac exp

⎡
⎣ j

⎛
⎝kf

t∫
−∞

m(λ)dλ + φp

⎞
⎠
⎤
⎦ (FM) (7.34)

Note that taking the derivative of an angle modulated signal produces an am-
plitude modulation which is a direct function of the message signal. If we can
simply demodulate the AM then we have a simple angle demodulator. Recall
the simplest AM demodulator is the envelope detector but this only works for
LC-AM. Fortunately, similar processing can be implemented to produce a large
carrier signal amplitude modulated signal. Recall that the form of the bandpass
signal is

yc(t) = Ac

√
2 cos(2π f ct + kpm(t) + φp) (PM)

yc(t) = Ac

√
2 cos

⎛
⎝2π f ct + kf

t∫
−∞

m(λ)dλ + φp

⎞
⎠ (FM) (7.35)

so taking a derivative at bandpass actually gives a LC-AM signal, i.e.,

d yc(t)
dt

= Ac

(
kp

d m(t)
dt

+ 2π f c

)√
2 cos(2π f ct + kpm(t) + φp + π/2) (PM)

d yc(t)
dt

= Ac(kf m(t) + 2π f c)
√

2 cos

⎛
⎝2π f ct + kf

t∫
−∞

m(λ)dλ + φp + π/2

⎞
⎠ (FM)

(7.36)

Note that f c is usually very large in comparison with the frequency devi-
ation of the angle modulation so that the resultant signal is an LC-AM and
the modulation can be recovered by envelope detection. Figure 7.19 shows the
block diagram of the discriminator for angle modulations. Implementation of
the discriminator can be accomplished without active devices (see Figure 5.39
in [PS94]) so it was popular in the early days of FM broadcast. The discrimi-
nator also does not need to know or estimate φp so it is also a noncoherent
demodulation scheme.
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Figure 7.19 Model of a discriminator detector for angle modulation.

7.4 Comparison of Analog Modulation Techniques

A summary of the important characteristics of analog modulations is given
in Table 7.1. At the beginning of Chapter 5 the performance metrics for ana-
log communication systems were given as: complexity, fidelity, and spectral
efficiency. At this point in our development we are able to understand the
trade-offs involved in two of the three metrics (spectral efficiency and comple-
xity). Characterizing fidelity of reconstruction can only be addressed after the
tools to analyze the effects of noise and interference in electronic systems are
introduced.

When examining the complexity of the implementation, angle modulations
offer the best characteristics. Transmitters for all of the analog modulations are
reasonably simple to implement. The most complicated transmitters are needed
for VSB-AM and SSB-AM. The complexity is needed in VSB-AM and SSB-AM
to achieve the improved bandwidth efficiency. The angle modulations have a
transmitted signal with a constant envelope. This makes designing the output
amplifiers much simpler since the linearity of the amplifier is not a significant
issue. Receivers for LC-AM and angle modulation can be implemented in simple
noncoherent structures. Receivers for DSB-AM and VSB-AM require the use
of a more complicated coherent structure. SSB-AM additionally will require a
transmitted reference for automatic coherent demodulation and operation.

When examining the spectral efficiency, SSB-AM offers the best character-
istics. SSB-AM is the only system that achieves 100% bandwidth efficiency.
DSB-AM and LC-AM achieve a bandwidth efficiency of 50%. VSB-AM offers
performance somewhere between SSB-AM and DSB-AM. Angle modulations
are the least bandwidth efficient. At best they achieve EB = 50%, and often
much less.

TABLE 7.1 Summary of the important characteristics of analog modulations

Modulation EB ET Transmitter Complexity Receiver Complexity

DSB-AM 50% ? moderate moderate
LC-AM 50% ? moderate small
VSB-AM > 50% ? large large
SSB-AM 100% ? large large
PM < 50% ? small moderate
FM < 50% ? small moderate
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This concluding discussion on the characteristics of analog modulations
demonstrates the trade-offs typically encountered in engineering practice.
Rarely does one option lead in all of the possible performance metric categories.
The trade-offs between analog modulations will become even more complicated
when the fidelity of message reconstruction is included.

7.5 Homework Problems

Problem 7.1. A message signal is given as

m(t) =
⎧⎨
⎩

−1 + 2t 0 ≤ t < 1
2 − t 1 ≤ t < 2
0 elsewhere

(7.37)

Assume Ac = 1.

(a) If m(t) is phase modulated with kp = π radians/volt, plot xP (t), xI (t), and
xQ(t).

(b) If m(t) is frequency modulated with kf = π radians/second/volt, plot xP (t),
xI (t), and xQ(t).

(c) If m(t) is frequency modulated with kf = 10π radians/second/volt, plot
xP (t), xI (t), and xQ(t).

Problem 7.2. As a first task at Swensson, your boss asks you to design a PM
modulator (obvious busy work) for a 1 kHz, 2 V peak amplitude test tone.

(a) She wants a 5 W output power across a 1-� resistor with a 98% power
bandwidth of 20 kHz. Provide the values of Ac and kp to achieve this speci-
fication.

(b) If you chose m(t) = 2 sin(2π fmt), then the Fourier series coefficients are a
direct lift from lecture. What if m(t) = 2 cos(2π fmt)?

Problem 7.3. A true angle modulated signal has an infinite bandwidth but the
Federal Communications Commission (FCC) makes each station strictly limit
their output frequency content as shown in Figure 7.20. For the case of si-
nusoidal angle modulation as discussed in class with β = 3 plot the output
waveforms, x̃c(t), when the angle modulation is ideally bandlimited before

I/Q
Upconverter

Angle
Modulator BPF

fc

x t( )x tz ( ) x tc( ) c
~

Figure 7.20 Bandlimiting the output of an angle modulator for
Problem 7.3.
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Figure 7.21 The measured bandpass amplitude spectrum for Problem 7.4.

transmission. Consider plots where the bandlimiting is done at 30%, 75%, 100%,
and 150% of Carson’s bandwidth. For uniformity in the answers assume that
fm = 1 kHz and f c = 20 kHz. The plots should have time points no more than
5 µs apart.
Problem 7.4. You work for North Dakota Instruments and they are pathetically
behind the competition in building portable PM radio transmitters. Your boss
has obtained a transmitter from the competition and has asked you to reverse
engineer the product. In the first test you perform, you input a signal into the
phase modulator of the form

m(t) = sin(2π fmt)

The resulting normalized amplitude spectrum is measured (where Ac = √
2)

and plotted in Figure 7.21.

(a) What is fm?

(b) What is the phase deviation constant, kp? Hint: It is a whole number for
simplicity.

(c) Draw a block diagram for a demodulator for this signal.

Problem 7.5. In Problem 7.3 you were asked to compute the output waveforms
when a sinusoidally modulated FM or PM signal is bandlimited at various
fractions of Carson’s bandwidth. We return to this problem and look at the
distortion in demodulation of this signal for the various bandwidths.

(a) Find the functions yI (t) and yQ(t) assuming that φp = π/4.

(b) Compute the output from a direct phase detector. Will unwrapping the
phase be necessary to reconstruct the signal?

(c) Show that the signal can be written in the form m̂(t) = Am(t) + n(t) and
identify A and n(t). n(t) here represents the distortion due to nonideal pro-
cessing at the transmitter and the receiver. This distortion is much different
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than the noise that will be introduced in Chapters 9 and 10 but produces
similar effects.

(d) With

S N R = A2 Pm

Pn

Find BT such that the SNR > 30 dB Hint: n(t) is periodic with the same
period as the message signal so Pn can be computed in a simple way.

Problem 7.6. A test tone of frequency fm = 1000 Hz with an amplitude Am = 2
volts is to be transmitted using both frequency modulation (FM) and phase
modulation (PM).

(a) Give values of kp and kf to achieve a β = 2. Using Carson’s rule what is
the resulting transmission bandwidth.

(b) Keeping Am, kp, and kf the same as in part (a) and setting fm = 200 Hz
compute the resulting transmission bandwidth for both modulations.

(c) Keeping Am, kp, and kf the same as in part (a) and setting fm = 5000 Hz
compute the resulting transmission bandwidth for both modulations.

(d) What characteristic does FM have that would be an advantage in a practical
system?

Problem 7.7. A message signal, m(t), with bandwidth W = 10 kHz, max |m(t)| =
Am, and average power Pm is frequency modulated (FM) (the frequency devia-
tion constant is kf radians/second/volt) onto a carrier ( f c) with amplitude Ac.

(a) Give the form of the transmitted signal (either in bandpass form or complex
baseband form).

(b) Choose the signal parameters such that the transmitted power is Pxc =
25 W in a 1-� system.

(c) Define the deviation ratio, D, for an FM signal and choose the signal para-
meters such that D = 4.

(d) With D = 4 give a transmission bandwidth which will contain approxi-
mately 98% of the signal power.

Problem 7.8. As a new engineer at Badcomm, you are given the task to reverse
engineer a phase modulator made by your competitor.

(a) Given your lab bench contains a signal generator and a spectrum analyzer,
describe a test procedure that would completely characterize the phase
modulator.

(b) Given your lab bench contains a signal generator, a bandpass filter with
center frequency f c and bandwidth 2000 Hz, a power meter, and an I/Q
downconverter describe a test procedure that would completely characterize
the phase modulator.
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Problem 7.9. This problem is concerned with frequency modulation (FM) by the
message signal given in Problem 5.1. Assume a carrier frequency of f c =
1000 Hz, a radian frequency deviation constant of kf and a carrier amplitude
of Ac.

(a) Give the baseband, xz(t), and bandpass, xc(t), time waveforms.

(b) Using the results of Problem 5.1 what is the peak frequency deviation?

(c) State Carson’s rule for an arbitrary message signal that is angle modulated.
Select a value of kf that will achieve a Carson’s rule bandwidth of 600 Hz
for FM with a message signal given in Problem 5.1.

(d) For the value of kf selected in (c) plot the bandpass time waveform, xc(t)
and the vector diagram of xz(t).

(e) Use Matlab to compute a measured power spectrum. How do the results
compare to that predicted by the Carson’s rule approximation?

(f) Give the value of Ac that will produce a 50-W output power in a 1-� system.

Problem 7.10. Repeat Problem 7.9 with the message signal of Problem 5.5 except
with a Carson’s rule bandwidth of 20 Hz and a carrier frequency of f c = 40 Hz.

Problem 7.11. This problem is concerned with phase modulation (PM) by the mes-
sage signal given in Problem 5.1. Assume a carrier frequency of f c = 1000 Hz,
a phase deviation constant of kp and a carrier amplitude of Ac.

(a) Give the baseband, xz(t), and bandpass, xc(t), bandpass time waveforms.

(b) Using the results of Problem 5.1 what is the peak frequency deviation?

(c) State Carson’s rule for an arbitrarily message signal that is angle modu-
lated. Select a value of kp that will achieve a Carson’s rule bandwidth of
600 Hz for PM with a message signal given in Problem 4.1.

(d) For the value of kp selected in (c) plot the bandpass time waveform, xc(t)
and the vector diagram of xz(t).

(e) Use Matlab to compute a measured power spectrum. How do the results
compare to that predicted by the Carson’s rule approximation?

(f) Give the value of Ac that will produce a 50-W output power in a 1-� system.

Problem 7.12. Repeat Problem 7.11 with the message signal of Problem 5.5 except
with a Carson’s rule bandwidth of 20 Hz and a carrier frequency of f c = 40 Hz.

Problem 7.13. Angle modulation with a sinusoidal message signal has the form

xz(t) = Ac exp[ jβ sin(2π fmt)]

The vector diagram of the received signal yz(t) is plotted in Figure 7.22 for
0 ≤ t ≤ ( fm)−1.
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Figure 7.22 A vector diagram for a sinusoidal angle modulation for Problem 7.13.

(a) What are the approximate values of Ac, β, and φp?

(b) Give the approximate values of time (or times) associated with each labeled
point (A, B, & C).

Problem 7.14. For m(t) = sin(2π fmt) the received complex envelope is

yz(t) = 5 exp[ j (0.1 cos(2π fmt − π ) + π/5)]

Identify as many parameters of the modulation and channel as possible.

Problem 7.15. The waveform shown in Figure 7.23 is phase modulated on a car-
rier with kp = π/3.

(a) Plot the output bandpass waveform for f c = 10 fm. For uniformity in the
answers assume that fm = 1 kHz and f c = 10 kHz. The plots should have
time points no more than 5 µs apart.
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Figure 7.23 Message waveform for Problem 7.15.

(b) This same bandpass waveform can be generated with frequency modula-
tion (FM). Specify the message signal and the f k that achieves the same
waveform as plotted in part (a).

Problem 7.16. (UM) In this problem, you will consider the effects of the mes-
sage amplitude on angle modulation. Consider a message signal, m(t) = 2 cos
(2000πt). Let the deviation constants be kp = 1.5 radians/volt and f k =
3000 Hz/V.

(a) Determine the modulation indices: βp for PM and β f for FM.

(b) Determine the engineering transmission bandwidths.

(c) Plot the spectrum of the complex envelopes, considering only those compo-
nents that will lie within the transmission bandwidth determined above.
Hint: You’ll need to think about what the modulated signal will look like.

(d) If the amplitude of m(t) is decreased by a factor of two, how will your pre-
vious answers change?

You can use Matlab to compute the Bessel function evaluated for relevant orders
and relevant arguments (besselj(n,x)).

Problem 7.17. Consider the following complex envelope signal for angle modu-
lation with a sinusoidal message xz(t) = exp[ jβ cos(2π fmt)] and compute the
Fourier series. Recall that sin

(
θ + π

2

) = cos(θ). How does the power spectrum
of this complex envelope compare to the signal considered in Eq. (7.5)?

Problem 7.18. You are making a radio transmitter with a carrier frequency f c
that uses an angle modulation. The message signal is a sinusoid with Am = 1
and the complex envelope of the signal output from your voltage controlled
oscillator is

xz(t) = 2 exp[ jβ sin(2π500t)] (7.38)

where β is a constant.
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(a) Choose β such that BT = 6000 Hz (use Carson’s rule).

(b) The output spectrum for this transmitted signal will have a line (or impul-
sive) spectrum since the baseband signal is periodic. What is the value of
the output bandpass spectrum impulse at f = f c for the value of β given
in part (a).

(c) What is the message signal and the value of kp if the signal is phase modu-
lated (PM)?

(d) What is the message signal and the value of kf if the signal is frequency
modulated (FM)?

(e) For PM if fm is reduced from 500 Hz to 100 Hz choose a value of kp such
that the output bandwidth is still BT = 6000 Hz according to Carson’s rule.

(f) For FM if fm is reduced from 500 Hz to 100 Hz choose a value of kf such
that the output bandwidth is still BT = 6000 Hz according to Carson’s rule.

Problem 7.19. Recall that narrowband phase modulation has a very similar form
to LC-AM, i.e.,

xc(t) ≈ Ac

√
2 cos(2π f ct) − Ackpm(t)

√
2 sin(2π f ct) (PM)

xc(t) = Ac

√
2 cos(2π f ct) + Acam(t)

√
2 cos(2π f ct) (AM)

Because of this similarity one might be tempted to use an envelope detector as
a simple demodulator.

(a) Compute the envelope, yA(t), of the received signal.

(b) Consider a simple example with m(t) = cos(2π(100)t) and kp = 0.1. Plot the
vector diagram of the true PM signal and the approximate form in Eq. (7.20).

(c) Plot the envelope for the signal in Eq. (7.20).

(d) Could the envelope detector be used for demodulating narrowband PM?

Problem 7.20. For a sinusoidal angle modulated signal

xz(t) = Ac exp[ jβ sin(2π500t)] (7.39)

and a propagation phase rotation of φp.

(a) For φp = 0, how large could β be and not require phase unwrapping?

(b) For φp = π
2 , how large could β be and not require phase unwrapping?

(c) For φp = − 7π
8 , how large could β be and not require phase unwrapping?

Problem 7.21. What condition must hold for the message signal, m(t), and the
modulation constants, kp and kf , such that the signals in Eq. (7.36) are guar-
anteed to be of the form of a LC-AM signal.
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Problem 7.22. In a digital receiver samples of the complex envelope, yz(kTs),
are often processed to demodulate a message signal. Here Ts is the sample
period and k enumerates the sample number. Assume the received signal is
FM modulated, i.e.,

yz(t) = Ac exp
(

j kf

∫ t

−∞
m(λ)dλ + φp

)
(7.40)

(a) Show that if the sampling frequency is high enough that

q(k) = yz(kTs)y∗
z ((k − 1)Ts) ≈ A2

c exp( j Km(t)) (7.41)

(b) Postulate how small Ts must be such that the result in (a) holds with a good
accuracy.

(c) Identify the value of K .

(d) Using the idea in (a) as a basis for an FM demodulator, show a block diagram
of the whole FM demodulator.

Problem 7.23. You have been given the received complex envelope, yz(t) = yI (t)+
j yQ(t), of a periodic message signal transmitted via phase modulation (PM) as
shown in Figure 7.24. The message signal has an average value of 0 so that it
will pass through a DC block unchanged and max |m(t)| = 1.

(a) Give the form of the received complex envelope for PM, yz(t) as a function
of the phase deviation constant kp, Ac, m(t), and φp.

(b) Find yA(t) and use that to find Ac.

t

yQ(t)

y
I
(t)

t

1 2 3 4 5 6

1

−1

−1

2

…
…

… …

1 2 3 4 5 6

Figure 7.24 The received complex envelope of a PM signal.
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15 kHz−15 kHz

M( f )

Figure 7.25 An example spectrum for audio broadcast.

(c) Find received phase yP (t) from the data in Figure 7.24. Hint: I made it easy
enough to do without calculators or Matlab.

(d) Pass yP (t) through a PM demodulator and use the result to find a possible
message signal and a value of kp. Will phase unwrapping be necessary?

(e) Find the transmitted power, Pxz .

Problem 7.24. High fidelity audio broadcast typically tries to maintain a 15 kHz
of bandwidth in transmitting to listener. An example audio spectrum is given
in Figure 7.25.

(a) In the days before stereo became a reality FM broadcasts frequency modu-
lated a message signal of the form seen in Figure 7.25 onto a carrier. The
FCC set f p ≤ 75 kHz. Using Carson’s rule determine the D that would
achieve a 98% power bandwidth of 180 kHz.

(b) After these allocations were set in concrete by the FCC stereo audio became
a reality. After long discussions by the communication engineers of the day
it was decided that stereo FM was possible if the input message signal
to the FM modulator had the spectrum seen in Figure 7.26. Essentially
the signal resulting from the sum of the left and right channels, mS (t) =
mL(t) + mR(t) is combined with an DSB-AM modulated signal ( f c = 38 kHz)
of the difference of the left and the right channels, mD(t) = mL(t) − mR(t).
This way of combining the left and right channel was considered a nice

19 kHz

15 kHz

Pilot Tone Pilot Tone

M( f )

23 kHz
38 kHz−38 kHz f

Figure 7.26 Stereo FM message signal.
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Figure 7.27 Vector diagram of angle modulation with a sinusoidal message
signal.

solution since a radio that did not have stereo capability would still decode
mS (t) and not lose any capability. Again using Carson’s rule determine the
D that would achieve a 98% power bandwidth of 180 kHz.

Problem 7.25. Angle modulation with a sinusoidal message signal has the form

xz(t) = Ac exp[ jβ sin(2π fmt)]

The vector diagram of the received signal yz(t) is plotted in Figure 7.27 for
0 ≤ t ≤ ( fm)−1.

(a) What are the approximate values of Ac, β, and φp?

(b) Give the approximate values of time (or times) associated with each labeled
point (A, B, & C).

Problem 7.26. The message signal in Figure 5.11 is phase modulated with a kp =
π/2 and an amplitude Ac = 2.
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(a) What is the form for xz(t).

(b) What is the transmitted power?

(c) Plot the instantaneous frequency deviation, fd (t).

(d) Plot a vector diagram of xz(t). Clearly label the points corresponding to
t = 0, T /4, T /2, 3T /4, T .

(e) Is xz(t) a periodic signal? If so what is the fundamental frequency?

(f) Using Carson’s rule estimate the 98% bandpass bandwidth of this phase
modulated signal.

(g) The spectrum of the bandpass signal will be impulsive (discrete frequen-
cies). What will be the value of the impulse at f = f c.

Problem 7.27. If m(t) is periodic with period T

(a) What is the largest possible period of a phase modulated signal with phase
deviation constant kp?

(b) Is it possible for the period of xz(t) to be less than T ? If yes, give an example.

(c) State a condition on m(t) such that Fourier series coefficient for DC,

z0 =
∫ T

0
xz(t)dt (7.42)

is real valued.

Problem 7.28. If m(t) is periodic with period T and the integral of m(t) is

mi(t) =
∫ t

−∞
m(λ)dλ (7.43)

(a) State a condition on m(t) such that mi(t) is periodic with the same period.

(b) Can mi(t) be aperiodic but xz(t) = exp[ j mi(t)] be periodic? Give an example
if the statement is true.

Problem 7.29. A periodic received signal, rz(t), from an analog modulation is
given in Figure 7.28.

r tI( ) r tQ( )

−1 −1

1

T T… … … …

Figure 7.28 A received complex envelope.
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(a) Assume the transmitted signal is given as xz(t), how have we modeled the
form for rz(t) in terms of xz(t) for this class?

(b) Given rz(t) in Figure 7.28, is it possible for the transmitted signal to be a
PM signal? Why?

Problem 7.30. For m(t) = cos(200πt) a received complex envelope in the absence
of any noise is

yz(t) = 5 exp[ j (0.8 sin(200πt) + π/5)]

(a) With what modulation has the analog message been transmitted?

(b) Identify as many parameters of the modulation and the channel as
possible.

(c) You have been tasked to build a lowpass filter for the signals yI (t) and
yQ(t) such that you pass about 98% of the power of the signals. With what
bandwidth should the lowpass filters be designed?

Problem 7.31. The message signal detailed in Problem 5.5 is used in a phase
modulation. Assume the amplitude is Ac and that kp = 3.

(a) Choose Ac such that Pxz = 16.

(b) With the Ac as specified in a) plot xI (t) and xQ(t).

(c) Find D.

(d) Use D and Carson’s rule to estimate BT . What is EB ?

(e) Assume φp = π/4 and plot yI (t), yQ(t), and yp(t).

Problem 7.32. (JG) If the waveform in Figure 7.29 is input into an angle
modulator,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

−0.5

1

−1

1.5

−1.5

2

−2

m
(t

)

t

Figure 7.29 A message signal.
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(a) Derive an expression for the time domain bandpass waveform if PM is used
with kp = π and Ac = 1/

√
2. Plot the PM signal for f c = 4.

(b) Derive an expression for the time domain bandpass waveform if FM is used
with kf = 2π and Ac = 1/

√
2. Plot the FM signal for f c = 4.

Problem 7.33. An often used pulse in radar systems has a complex envelope of

xz(t) =
{

Ac exp
[

j 2πg0t2] 0 ≤ t ≤ Tp

0 elsewhere
(7.44)

(a) Is this an angle modulated signal? Justify your answer.

(b) Plot the bandpass signal, xc(t) for f c = 10 Hz and g0 = 100 Hz/s, Ac = 1,
and Tp = 1.

(c) Find the instantaneous frequency deviation, fd (t), and the peak frequency
deviation, f p, for this signal.

(d) Plot Gxz(f ) and estimate B98 when g0 = 100 Hz/s and Tp = 1.

(e) Show that Carson’s rule of thumb does not hold for this signal and identify
the characteristic of this radar signal that is different than a typical angle
modulated message signal that causes this well respected rule of thumb not
to hold.

7.6 Example Solutions

Problem 7.7.

(a) The complex baseband signal for FM is given as

xz(t) = Ac exp
[

j kf

∫ t

−∞
m(λ)dλ

]
(7.45)

The bandpass signal is given as

xc(t) = Ac

√
2 cos
(

2π f ct + kf

∫ t

−∞
m(λ)dλ

)
(7.46)

(b) Since Pxc = 25 = A2
c it is straightforward to see that Ac = 5

(c) The definition of the deviation ratio is

D = f k max |m(t)|
W

(7.47)

Rearranging gives

max |m(t)| = 40, 000
f k

(7.48)

(d) Using Carson’s rule gives BT = 2(D +1)W = 2×5×10, 000 = 100,000 Hz.
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Problem 7.18.

(a) Carson’s rule gives

BT = 2(β + 1) fm (7.49)

6000 = 2(β + 1)500 (7.50)

Solving gives β = 5.

(b) Using the results in Eq. (6.7) gives

xz(t) =
∞∑

n=−∞
Ac Jn(β) · e( j 2π fmnt) (7.51)

and consequently

Xz(f ) =
∞∑

n=−∞
Ac Jn(β)δ( f − nfm) (7.52)

Note Ac = 2 and β = 5 and recall the relationship between the baseband
and bandpass spectrum is

Xc(f ) = 1√
2

Xz( f − f c) + 1√
2

X ∗
z (− f − f c) (7.53)

=
∞∑

n=−∞

Ac Jn(β)√
2

δ( f − nfm − f c) +
∞∑

n=−∞

Ac Jn(β)√
2

δ( f + nfm + f c)

(7.54)

so consequently the value of the spectral impulse at f c is 2J0(5)√
2

= −0.3678

(c) Recall

kp · m(t) = 5 sin(2π fmt) (7.55)

and since Am = 1 we have kp = 5 and m(t) = sin(1000πt).

(d) Recall

kf

∫ t

−∞
m(λ)dλ = 5 sin(2π fmt) (7.56)

consequently

kf m(t) = 5
d
dt

sin(2π fmt) = 5(2π fm) cos(2π fmt) (7.57)

and since Am = 1 we have kf = 5(2π fm) = 5000π rad/s/V and m(t) =
cos(1000πt).
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(e) Carson’s rule gives

BT = 2(β + 1) fm (7.58)

6000 = 2(β + 1)100 (7.59)

Solving gives β = kp = 29.

(f) Carson’s rule again gives β = 29 and kf = β(2π fm) = 5800π rad/s/V.
Parts (e) and (f) show one of the interesting differences between FM and
PM. A characteristic of FM is that once the frequncy deviation is chosen
the transmission bandwidth remains relatively constant regardless of the
signal bandwidth. PM on the otherhand has the transmission bandwidth
varying in direct proportion to the message signal bandwidth for a fixed
phase deviation constant. This is one reason why FM is preferred in practice
to PM.

7.7 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). Each team
member should be prepared to make the presentation on the due date.

7.7.1 Project 1

Project Goals: Undergraduate communication courses often only look at ide-
alized problems. For example, one thing that is ignored in a course is that fre-
quency sources at the transmitter and receiver cannot be made to have exactly
the same value. This miniproject will investigate the effects of this frequency
offset on one phase demodulation algorithm.

When a frequency offset exists the complex envelope of the received signal
will be rotating due to this frequency offset, i.e.,

yz(t) = xz(t) exp[ j (φp + 2π f ot)] (7.60)

where f o is the existing frequency offset. Get the Matlab file angmodex1.m and
angmodex3.m from the class web page. In these files a PM transmitter (for a
sinusoid message signal) and receiver is implemented. If the carrier frequency
offset is set to 10 Hz (in the Matlab code deltaf = 10) the demodulator
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implemented in the m-file still works pretty well with this frequency offset.
Explain why. Note, at higher frequency offsets (e.g., 100 Hz) the performance
suffers noticeable distortion. Extra credit will be given if you can figure out a
method to eliminate this distortion.

7.7.2 Project 2

Project Goals: Use your knowledge of communication theory to decode an
unknown analog modulated signal.

You have been hired by the National Security Agency of the US Federal
government as an engineer. The first job you have been given by your new boss
is to decode a radio message signal between two members of a South Albuman
drug cartel. This signal was intercepted by a spy satellite and the data has been
processed and forwarded on to you for decoding.

The technical details are

■ The sampled data file contains about 1 second worth of data at a 44,100-Hz
sampling rate. (Precisely 44,864 samples). This data is available at the class
web site in the file entitled Intercept.mat.

■ The radio signal is analog modulated. The type of analog modulation is un-
clear. Human intelligence sources have indicated that the modulation used
is either DSB-AM, LC-AM, SSB-AM, or PM.

■ The carrier frequency is unknown. Obviously since the data is provided to
you with a sample rate of 44,100 Hz the carrier frequency must be between
0 and 22,050 Hz.

■ The channel includes an unknown delay that produces an unknown phase
shift, ϕp.

Your job is to decode the signal. It should be obvious when you are correct as
you can play the demodulated output as a sound. The solution should include

■ a discussion of the methodology that led you to identifying the modulation.
■ a discussion of the methodology that led you to identifying the carrier fre-

quency.
■ a discussion of the demodulator architecture and the method used to estimate

the phase shift or to operate in the presence of an unknown phase shift.
■ submission of Matlab code for the demodulator.



Chapter

8
More Topics in Analog

Communications

This chapter covers two topics which are important for both amplitude and an-
gle modulation methods of analog communications: the phase-locked loop and
the multiplexing of message signals. In fact, almost all modern communications
systems, analog or digital, contain a phase-locked loop and contain some form
of multiplexing.

8.1 Phase-Locked Loops

8.1.1 General Concepts

The phase-locked loop (PLL) is a commonly used component in communica-
tion systems. It can be used for tracking the phase and frequency of signals,
demodulating angle modulated signals, and frequency source synthesis. The
PLL is a tracking system that uses feedback. We have seen one example so
far in the Costas loop for synchronous demodulation of DSB-AM. This section
will investigate the use of the PLL for FM and PM demodulation (feedback
demodulation) but the general characteristics are valid for any application of
the PLL. The input complex signal into a PLL has amplitude variation A(t), a
phase variation, θ (t), and a nuisance phase variation, d (t). The goal of a PLL,
in most cases, is to track and/or estimate the value of θ(t).

The typical PLL, seen in Figure 8.1, has three components: the phase detector,
the loop filter, and the voltage controlled oscillator (VCO). Recall the VCO has
the characteristics shown in Figure 8.2. The VCO has a quiescent frequency of
f c and a gain of kf = 2π fd radians/s/volt.

EXAMPLE 8.1
For demodulation of PM we have A(t) = Ac, θ(t) = kpm(t) + φp , and d (t) = 0.

8.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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Phase
Detector

VCO

Loop
Filter

e td ( )

y td ( )

A t j d t t( )exp ( ) ( )+( )[ ]θ

j texp ( )[        ]θ̂

Figure 8.1 Phase-locked loop block diagram.

EXAMPLE 8.2
For the Costas loop used as a synchronous demodulator for DSB-AM we have A(t) =
Ac|m(t)|, θ (t) = φp , and d (t) = (1 − m(t)) π

2 .

The phase detector simply measures the phase difference between the input
signal and the locally generated reference. Denoting the input signal to the PLL
as yz(t) the phase detector is a nonlinear function denoted ed (t) = g(yz(t), θ̂ (t)),
which is usually designed to be proportional to the phase error ϕ(t) = θ (t) − θ̂ (t).

EXAMPLE 8.3
The most common phase detector for an unmodulated sinusoidal input signal (A(t) = Ac
and d (t) = 0) is the quadrature multiplier and the analytical model is seen in Figure 8.3.
This phase detector is given as

g(yz(t), θ̂ (t)) = Ackm�[yz(t) exp[− j θ̂ (t)]]

VCO
In Out

Kv

Bandpass

VCO
In Out

Kv

Baseband

y td ( ) 2 cos 2π fct + k f yd λ( )dλ
−∞

t

∫
⎛

⎝⎜
⎞

⎠⎟

exp jkf yd λ( )dλ
⎛

⎝⎜
⎞

⎠⎟
y td ( )

−∞

t

∫

Figure 8.2 The bandpass and baseband block diagrams for a VCO.
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e td( )A j tc exp θ( )[ ] km

( )*

Im •[ ]

exp j θ̂ t( )⎡⎣ ⎤⎦

Figure 8.3 The quadrature multiplier phase detector block
diagram.

where km is the multiplier gain. The phase detector output can be expressed in terms
of the phase error as

ed (t) = Ackm sin(θ(t) − θ̂(t)) = Ackm sin(ϕ(t))

The signal ed (t) is a function of the phase error and it can be used as a feedback signal
in a closed loop tracking system.

EXAMPLE 8.4
Note, Figure 6.9 shows another type of a phase detector which is useful for phase tracking
with DSB-AM signals (A(t) �= Ac and d (t) �= 0). The phase detector is given as

g(yz(t), θ̂(t)) = km�[(yz(t) exp[− j θ̂ (t)])2]
= 2km�[yz(t) exp[− j θ̂ (t)]]
[yz(t) exp[− j θ̂ (t)]] (8.1)

Expressing the phase detector output in terms of the phase error gives

ed (t) = km A2
c m2(t) sin(2ϕ(t))

The loop filter is a linear filter and its design is often critical in getting the
desired performance out of a PLL. For this development the loop filter is rep-
resented with F (s). Two common types of loops are the first and second order
PLL. The first-order PLL loop filter has a transfer function given as

F (s) = 1

and the second-order PLL loop filter is given as

F (s) = s + a
s + b

It should be noted that the most common type of second order loop is one with
a perfect integrator (b = 0). The second-order PLL loop filter is more commonly
used in practice because it can both track a phase and a frequency offset.
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F(s)

yd(t)

+

−
θ( )t kd

e td( )

kf
s

θ̂ t( )

Σ

Figure 8.4 The linear model of
the phase-locked loop.

8.1.2 PLL Linear Model

The linear analysis of the PLL is valid when the loop is closely tracking the
input signal (ϕ(t) ≈ 0). Close tracking implies that ϕ(t) is small and that the
phase detector can be linearized around ϕ(t) = 0 so that

g(yz(t), θ̂ (t)) ≈ kd ϕ(t)

where kd is denoted the phase detector gain. This results in a linear model for
the PLL that is shown in Figure 8.4. Note, since the phase of the VCO output
is proportional to the integral of the input signal the VCO can be modeled by a
transfer function with a Laplace transform of kf/s where kf is the gain of the
VCO.

EXAMPLE 8.5
The quadrature multiplier has ed (t) = Ackm sin(ϕ(t)) so that the linear approximation
has kd = Ackm and sin(ϕ(t)) ≈ ϕ(t).

8.2 PLL–Based Angle Demodulation

8.2.1 General Concepts

Demodulation of angle modulations with a PLL is actually quite simple con-
ceptually. This section will concentrate on demodulation of FM signals and the
differences for PM will be pointed out when appropriate. Recall a received FM
signal has the form

yz(t) = Ac exp
[

j kf

∫ t

−∞
m(λ)dλ + j φp

]
(8.2)

Figure 8.5 shows a block diagram of an FM system with a feedback demodulator.
A VCO is used to produce the FM signal and the proposed receiver consists of
a two input, one output black box and a VCO identical to the one used for
modulation. After a transient period if θ(t) = θ̂(t) then we know m̂(t) = m(t).
The job of the black box in the diagram is to measure the phase difference
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VCOm(t)
In Out

Transmitter

VCO
InOut

Receiver

Black Box

Channel

kf

kf

exp j pφ[ ] m̂ t( )

Figure 8.5 The conceptual diagram for FM demodulation.

ϕ(t) = θ (t) − θ̂ (t) and update m̂(t) in such a way as to drive ϕ(t) to zero. Note
that if

ϕ(t) = θ (t) − θ̂(t) < 0 ⇒
∫ t

−∞
m(λ)dλ <

∫ t

−∞
m̂(λ)dλ

ϕ(t) = θ (t) − θ̂(t) > 0 ⇒
∫ t

−∞
m(λ)dλ >

∫ t

−∞
m̂(λ)dλ (8.3)

Equation (8.3) indicates that ϕ(t) can be driven to zero if m̂(t) is updated in
proportion to ϕ(t). Thus the black box in Figure 8.5 is composed of the other
two elements of the PLL: the phase detector and the loop filter.

Since the FM signal has a constant amplitude the quadrature multiplier (see
Figure 8.3) can be used as the phase detector. Consequently, the overall block
diagram is seen in Figure 8.6 and the equation defining the operation is

m̂(t) = f (t) ∗ kd sin
(

kf

∫ t

−∞
(m(λ) − m̂(λ))dλ + φp

)
(8.4)

where kd = Ackm is the quadrature multiplier phase detector gain. It is im-
portant to note that the phase detector gain is a function of the received signal
amplitude. While this amplitude is treated as a known constant in these notes
in practical systems accounting for this amplitude is an important function in
a FM demodulator based on a PLL.

F s( )

( )*

y tz( )
e td( )

VCO
kf

km

m̂ t( )

Im •[ ]

Figure 8.6 The block diagram of a PLL for FM demodulation.
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Equation (8.4) is a nonlinear integral equation that can be solved but only
with mathematical tools that undergraduate engineering students typically
have not been exposed to. Consequently, this presentation examines approxi-
mations that simplify the mathematical description of a PLL. This simplified
description enables the use of undergraduate engineering tools to be applied to
the problem of analyzing the performance of a PLL. These approximations will
give some design insights and provide a rough performance characterization.

8.2.2 PLL Linear Model

The linear analysis of the PLL is valid when the loop is closely tracking the
input signal. Close tracking implies that ϕ(t) is small and for the quadrature
multiplier phase detector

ed (t) = Ackm sin(ϕ(t)) ≈ Ackmϕ(t) = kd ϕ(t)

This results in a linear model for a PLL used in FM demodulation that is shown
in Figure 8.7. Rearranging and defining k = kf kd gives the block diagram
shown in Figure 8.8. It is quite obvious from Figure 8.8 that the linear model for
the PLL reduces to a simple linear feedback control system commonly studied
in an undergraduate program. Taking Laplace transforms yield

(M(s) − M̂(s))
kF (s)

s
= M̂(s)

Solving for the transfer function gives

HL(s) = M̂(s)
M(s)

= kF (s)
s + kF (s)

(8.5)

Often the error between the demodulated output and the message signal is of
interest. Defining e(t) = m(t) − yd (t) and using identical techniques a transfer
function for the error is given as

HE (s) = E(s)
M(s)

= s
s + kF (s)

+

−
m t( ) F s( )kf kd

s Σ

m̂ t( )kf
s

Figure 8.7 The PLL linear model for FM demodula-
tion.
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+

−

k
s F s( )m t( )

m̂ t( )

Σ
Figure 8.8 The PLL linear model
rearranged to have a classic feed-
back control systems structure.

Frequency Response

The frequency response of the loop is of interest. The frequency response is
given as

H (f ) = H (s)|s= j 2π f

The loop and error transfer functions are plotted Figure 8.9 for a first-order loop
with k = 1000. Consequently, when the linear model is valid the PLL appears
much like a lowpass filter to the message signal. For example, for the case
considered in Figure 8.9 (k = 1000) the 3 dB-loop bandwidth is about 100 Hz.
Consequently, design of PLLs for FM demodulation must carefully consider the
bandwidth of the message signal in choosing the bandwidth of the loop.

Acquisition

Let’s consider the transient response produced by a first-order loop (F (s) = 1)
to a sinusoidal input signal, m(t) = sin(2π fmt). The Laplace transform of this
signal is

M(s) = 2π fm

s2 + (2π fm)2 (8.6)
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Figure 8.9 The frequency response of a first-order PLL used for FM demodula-
tion. k = 1000
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Figure 8.10 The time response of the linear model of a PLL for FM demodulation.

Using Eq. (8.6) in Eq. (8.5) produces a loop output Laplace transform of

M̂(s) = 2π fm

s2 + (2π fm)2

k
s + k

Inverse transforming this signal gives

m̂(t) = k(2π fm)
k2 + (2π fm)2 e−kt + k√

k2 + (2π fm)2
sin
[
2π fmt + tan−1

(
2π fm

k

)]

Figure 8.10 shows a plot of the time response for k = 1000 and fm = 10 and
fm = 1000. Note that if the signal is inside the passband of the loop, the loop
quickly locks onto the signal and tracks it very closely. If the signal is outside the
loop bandwidth the signal is not tracked and the FM demodulation performance
is poor.

8.3 Multiplexing Analog Signals

Definition 8.1 Multiplexing for analog message signals is the common transmission of
multiple message signals using a single communications resource.

The common resource is typically spectrum (e.g., broadcast radio), expensive
electronic equipment (e.g., satellites), or both (e.g., analog cellular telephony).
For this discussion we will denote the ith message signal as mi(t) and K as
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Multiplexer Resource De-
multiplexer

m t1( )

m t2( )

m tK( )

x tc( ) y tc( )

m̂1 t( )

m̂2 t( )

m̂K t( )

Figure 8.11 The multiplexing concept.

the number of users of the resource. Consequently, the idea of multiplexing is
shown in Figure 8.11. As a measure of how efficiently we are using the resource
we define the multiplexing efficiency as

EM =
∑K

i=1 Wi

BT
(8.7)

where Wi is the ith message bandwidth and BT is the transmission bandwidth
of the composite signal. Note, the best multiplexing efficiency without signifi-
cant distortion for analog communications is unity. For analog signals there are
two basic types of multiplexing techniques: (1) quadrature carrier multiplexing
and (2) frequency division multiplexing.

EXAMPLE 8.6
For those homes that subscribe to cable television services a single cable enters the home
with an electronic signal. Typically greater than 100 channels are supported with that
one cable.

8.3.1 Quadrature Carrier Multiplexing

Quadrature carrier multiplexing (QCM) uses the two degrees of freedom in a
bandpass signal to transmit two message signals on the same carrier. This type
of multiplexing is achieved by setting xI (t) = Acm1(t) and xQ(t) = Acm2(t). The
block diagram is shown in Figure 8.12. The efficiency of QCM is

EM = W1 + W2

2 max W1, W2
(8.8)

Note, if W1 = W2 then EM = 1 which is the best that can be accomplished
in analog communications. The advantage of QCM is that it is a very efficient
method of multiplexing message signals. The disadvantage is that the applica-
bility is limited to only two message signals and that coherent demodulation
must be used (typically with a transmitted reference carrier which will reduce
the bandwidth efficiency somewhat).
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I/Q
Up-converter

Resource
I/Q

Down-
converter

m t1( )

x tc( ) y tc( )

m̂1 t( )

m̂2 t( )m t2( )

Figure 8.12 Quadrature carrier multiplexing.

8.3.2 Frequency Division Multiplexing

Frequency division multiplexing (FDM) assigns each user a different carrier
frequency for transmission. Typically the carrier frequencies for each user are
chosen so that the transmissions do not overlap in frequency. Figure 8.13 shows
a typical energy spectrum for a FDM system. Typically each user in the system
is modulated with an analog modulation and has a bandwidth of Bi. This mod-
ulation is then separated from its spectral neighbor by a guard band. The size
of this guard band and the modulation type limits the spectral efficiency. The
multiplexing for FDM is accomplished by simply summing together appropri-
ately modulated bandpass waveforms as shown in Figure 8.14. Demultiplexing
for FDM, seen in Figure 8.15, simply corresponds to bandpass filtering to iso-
late each user followed by a standard I/Q demodulator. Note, the guard bands
between users are usually chosen to be compatible with the bandpass filtering
operation (i.e., the guard band is made large enough to ensure each user can
be adequately separated at the demultiplexer).

EXAMPLE 8.7
Broadcast communications in the United States use the resource of free space radio wave
propagation. The multiplexing is typically implemented with a combination of frequency

…

BT

User 1 User 2 User KUser 3

Gxc
( f )

B1 B2 B3 BK

fc
(K) ffc

(3)fc
(2)fc

(1)

Figure 8.13 A typical energy spectrum for a frequency division multiplexed signal.
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Figure 8.14 A FDM multiplexing system.

multiplexing and location multiplexing (stations far enough away from each other can
use the same transmission frequency). AM radio broadcast in the United States has been
assigned the spectrum of 535–1605 kHz, BT = 1070 kHz. There are 107 FDM channels
spaced about 10 kHz apart ( f (i)

c = 540 + 10i kHz). Each AM station provides an audio
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converter
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Figure 8.15 A FDM demultiplexing system.
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Figure 8.16 A two-level multiplexing scheme.

signal of about 4 kHz bandwidth (Wi = 4 kHz). The efficiency of AM broadcast is then
given as

EM = 107 × 4
1070

= 40%

Note, 20% of the loss in efficiency is due to guard bands and 40% of the loss is due to
using spectrally inefficient LC-AM as the modulation.

There can be several levels of multiplexing that are implemented for a given
system. The first level often groups related messages together and the subse-
quent levels multiplex several groups of messages together. The block diagram
for a system using two levels of multiplexing is shown in Figure 8.16.

EXAMPLE 8.8
An example of multilevel multiplexing is seen in broadcast communications in the
FM band in the United States. Each FM station in the United States typically broad-
casts three message signals. Two are audio channels: the left channel, mL(t) and the
right channel, mR(t) for stereo broadcast, and one is an auxiliary channel, mA(t) (e.g.,
Musak, or Radio Data Services). These three message signals are multiplexing onto one
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composite message signal which is FM modulated and transmitted. For discussion pur-
poses the bandwidth of these message signals can be assumed to be Wi = 15 kHz. The
first level of multiplexing FDM with m1(t) = mL(t) + mR(t), m2(t) = mL(t) − mR(t),
and m3(t) = mA(t), �

(1)
m = �

(2)
m = �

(3)
m = DSB-AM, and f (1)

c = 0, f (2)
c = 38 kHz, and

f (3)
c = 76 kHz.

8.4 Conclusions

This chapter considered two ideas that have found utility in analog communi-
cations; phase locked loops and multiplexing. Phase-locked loops are used in a
variety of applications in analog communications. Examples include phase ref-
erence estimation and tracking in DSB-AM demodulation and in demodulation
of angle modulations. This chapter gave an introductory overview and showed
how tools from feedback control are useful in gaining an understanding of the
operation of phase-locked loops. Multiplexing is an important aspect of commu-
nications. Multiplexing allows multiple information sources to be transmitted
on a common resource. The common forms of multiplexing for analog commu-
nications include quadrature carrier multiplexing and frequency multiplexing.
Again the trade-offs between spectral efficiency and complexity were evident
in multiplexing techniques.

8.5 Homework Problems

Problem 8.1. Your boss at Enginola has assigned you to be the systems engineer
in charge of an FM demodulator. Unfortunately, this design must be done in one
day. The demodulator is required to be a PLL-based system and since you are
pressed for time, you will use the linear approximation for the loop. Figure 8.17
is the model for your system.

The transfer function, HL(f ), from the input (m(t)) to the output (m̂(t)) has
the form

HL(s) = 2ζωns + ω2
n

s2 + 2ζωns + ω2
n

Phase
Detector

Loop Filter

VCO

m̂ t( )

φp

θ t( ) k s a
s

1 +( )
m t( ) Σ

k f m̂ λ( )dλ
−∞

t

∫

k f m λ( )dλ
−∞

t

∫

Figure 8.17 Block diagram of a PLL demodulator for FM.
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(a) Select values of kf , k1, and a such that ζ = 1.00 and |HL(12 kHz)| > 0.707
(i.e., the 3-dB bandwidth is 12 kHz). Note, while this problem can be com-
pleted with pencil and paper, a proficiency with a computer would be useful.

(b) If the input signal is m(t) = sin(2π(10 kHz)t)U (t) where U (t) is the unit
step function, calculate the output response to this signal and plot the
response.

Problem 8.2. As a communication engineer you need to transmit eight voice sig-
nals (W = 4 kHz) across a common communication resource at a carrier fre-
quency of 1 GHz. For hardware reasons you need to maintain a 1 kHz guard
band between frequency multiplexed transmissions.

(a) If you use DSB-AM and FDM, what is the total used bandwidth, BT , and
the multiplexing efficiency, EM?

(b) If you use SSB-AM and FDM what is the total used bandwidth and the
multiplexing efficiency, EM?

(c) If a two-stage multiplexing scheme is employed such that two voice sig-
nals are grouped together with QCM and the resulting four signals are
multiplexed using FDM, what is the total bandwidth and the multiplexing
efficiency, EM?

Problem 8.3. In the text the example of a first-order loop was considered for FM
demodulation. k = 1000 gave a design of a loop with a bandwidth of about
100 Hz.

(a) Redesign the loop gain, k, to give a 3-dB bandwidth of 5 kHz.

(b) Note that the loop gain is a function of the signal amplitude, Ac. Keeping
the remainder of the loop the same and if the signal amplitude is cut in half
what will be the loop 3 dB bandwidth?

(c) Keeping the remainder of the loop the same and if the signal amplitude is
doubled what will be the loop 3 dB bandwidth?

(d) Postulate how PLL-based FM demodulators might deal with amplitude
variations in the received signal.

Problem 8.4. High fidelity audio broadcast typically tries to maintain a 15 kHz of
bandwidth in transmitting to listener. An example audio spectrum is given in
Figure 8.18. In the days before stereo became a reality FM broadcasts frequency
modulated a message signal of the form seen in Figure 8.18 onto a carrier. This
message signal had a bandwidth of 15 kHz.

After FM had been around a while stereo audio became a reality and a finan-
cially desirable service to provide. After long discussions by the communication
engineers of the day it was decided that stereo FM was possible if the input
message signal to the FM modulator had the spectrum seen in Figure 8.19.
Essentially the signal resulting from the sum of the left and right channels,
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−15 kHz 15 kHz

M( f )

Figure 8.18 An example spectrum for audio broadcast.

mS (t) = mL(t) + mR(t) is combined with an DSB-AM modulated signal ( f 2 =
38 kHz) of the difference of the left and the right channels, mD(t) = mL(t) −
mR(t). There is a third signal that is a tone at 19 kHz that is used as a reference
for the DSB-AM demodulator. The composite message signal has the form

m(t) = mS (t) + mD(t)
√

2 cos(2π f 2t) + Am

√
2 cos(π f 2t) (8.9)

This way of combining the left and right channel was considered a nice solu-
tion since a radio that did not have stereo capability would still decode mS (t)
and not lose any capability.

(a) For this method of multiplexing these two signals, mL(t) and mR(t), on to
one signal, m(t) compute the multiplexing efficiency, EM .

(b) Draw a block diagram of the multiplexing system.

(c) After demodulation assume the decoded message signal has the form

m̂(t) = mS (t) + mD(t)
√

2 cos(2π f 2t) + Am

√
2 cos(π f 2t) + NL(t) (8.10)

Assume a bandpass filter is centered at f = 19 kHz, what bandwidth must
the filter have to not pass anything but the tone at f = 19 kHz so that the
resulting bandpass filter output is

mr (t) = Am

√
2 cos(π f 2t) + Nr (t) (8.11)

(d) Show that when the noise is ignored Figure 8.20 will produce the needed
carrier signal for a coherent demodulator of the DSB-AM.

19 kHz

15 kHz

Pilot Tone
L − R L − RL + R L + R

Pilot Tone

M ( f )

23 kHz
38 kHz 53 kHz−38 kHz

Figure 8.19 Stereo FM message signal.
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( )2 DC
Block

m tr( ) m tc( )
Figure 8.20 Tone processor.

(e) Draw a block diagram of the stereo demultiplexer having an input of m̂(t)
and outputs mL(t) and mR(t), using the idea presented in (d).

(f) If SSB-AM (lower sideband) replaced DSB-AM in Eq. (8.9), draw the block
diagram of the multiplexing system and compute the multiplexing effi-
ciency, EM .

(g) Draw a block diagram of the stereo demultiplexer for the system using SSB-
AM using the idea presented in (d). Why do you think the engineers of the
day chose DSB-AM over SSB-AM?

Problem 8.5. In systems where frequency division multiplexing is used the con-
cept of a superheterodyning receiver has found utility in practice. The idea is
to take a bandpass signal, which is centered on a carrier frequency, and shift
the frequency to some intermediate value, called the intermediate frequency
(IF). For practical purposes, the superheterodyne receiver always reduces to the
same value of IF. The block diagram of the superheterodyne receiver is shown
in Figure 8.21 where the filters are bandpass filters centered at frequency f c
and f I F , respectively.

(a) Assuming a typical bandpass modulated spectrum at the input to the radio
what is the output spectrum corresponding to y1(t)?

(b) A common IF frequency is f 2 = 10.7 MHz. Find the value(s) of f 1 such that
this receiver architecture could be used to demodulate a radio signal at
89.3 MHz.

(c) In a superheterodyne receiver two frequencies arrive at the IF frequency
after the mixing with f 1. One signal is the desired and one signal is denoted

I/Q Down-
converterH fc( ) H fI ( )

f2

y tc( )
y t1( )

2 cos 2π fct( )
Figure 8.21 The superheterodyning receiver.
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the “image” frequency. For the case detailed in (b) what is the image fre-
quency? It should be noted that one of the main functions of Hc(f ) in a
superheterodyne receiver is to make sure this image frequency has been
appropriately suppressed.

(d) The FM radio band is from 88 to 108 MHz. The FM stations are assigned
center frequencies at 200 kHz separation starting at 88.1 MHz, for a max-
imum of 100 stations. Assume a frequency synthesizer that can step f 1 to
whatever frequencies that is desired and f 2 = 10.7 MHz. Specify the filters
Hc(f ) and HI (f ) so that it would be possible to perfectly demodulate every
FM channel and eliminate interference from any adjacent transmissions.

Problem 8.6. In television (TV) broadcast there are four signals that must be
multiplexed into one channel. These signals are

■ Black and white video – W1 = 4.2 MHz
■ Color 1 – W2 = 1.5 MHz
■ Color 2 – W3 = 0.5 MHz
■ Stereo audio – W4 = 54 kHz.

Design a multiplexer and a modulator that would fit the transmission of
these four signals in a small bandpass bandwidth. Do not feel constrained by
past practice in developing a design. Sketch block diagrams for both the mod-
ulator/multiplexer and the demodulator/demultiplexer. What do you think the
minimum achievable bandwidth would be for a TV channel that would contain
these four independent signals?

Problem 8.7. You are working for Glenfyre a leading paging company. Your first
assignment is to set up a communications link from just outside the main paging
headquarters to the telephone company home office. The FCC has allocated to
the Glenfyre 20 kHz of spectrum for this communication at a carrier frequency
of 1 GHz. You are told that you have four voice channels containing speech
(W = 4 kHz). The guard band between frequency multiplexed systems must be
at least 1 kHz.

(a) Design a complete multiplexing scheme that transmits the four voice chan-
nels on the 20 kHz allocated to Glenfyre. Specify the center frequencies of
any bandpass signals, the guard bands between frequency division multi-
plexed signals, and sketch the multiplexer.

(b) Plot an example output spectrum and draw the demultiplexer. Compute EM .

(c) You are asked to support eight voice channels in the same 20 kHz of spec-
trum. Is this possible? If yes, sketch the multiplexer and demultiplexer.

Problem 8.8. A voiceband signal is typically specified to have frequencies from
200 to 3200 Hz. A telegraph signal is usually specified to have frequencies from
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0 to 100 Hz. These signals are easily frequency multiplexed. Draw a possbile
multiplexer and a demultiplexer. Compute the multiplexer efficiency, EM .

Problem 8.9. A voiceband signal is typically specified to have frequencies from
200 to 3200 Hz. In the United States analog voice communications was the stan-
dard for telephone communications in the early days of the telephone network.
One of the important jobs of the telephone company is to efficiently multiplex
many voice signals across the cables that were laid between cities. The first
level of multiplexing in analog telephony in the United States (denoted 12VF
by American Telephone and Telegraph (AT&T)) used SSB modulation for each
message and frequency multiplexed 12 voiceband signals into a BT = 48 kHz
bandwidth. The second level of multiplexing (denoted 60VF by AT&T) used
SSB modulation for each message and frequency multiplexed 5 12VF signals
into a BT = 240 kHz bandwidth.

(a) Compute the overall multiplexing efficiency, EM , for this two-level multi-
plexing scheme.

(b) Draw an example block diagram of the two-level multiplexer.

(c) Draw an example block diagram of the two-level demultiplexer.

Problem 8.10. The telecommunication infrastructure in the United States was
originally an analog transmission system. Telephone calls were multiple layer
multiplexed on cables that were strung across the nation. The lowest levels of
multiplexing are detail as

■ V12 – 12 voiceband channels grouped together
■ V60 – 5 V12 signals multiplexed together
■ V600 – 10 V60 signals multiplexed together
■ V3600 – 6 V600 signals multiplexed together.

The cost of the multiplexer and demultiplexer grow with the number of voice
band signals that are supported. A typical design problem is to identify the size
of the multiplexer needed to support a desired quality of service in a telecom-
munication system. A cable is to be run between Akron, Ohio, and Columbus
Ohio to carry phone calls between these two cities and measurements show
that the number of calls is well modeled as a Poisson random variable, i.e.,

PN (n) = λk exp[−λ]
k!

(8.12)

where λ is the average number of calls. Assuming that between Akron and
Columbus the average number of calls is λ = 40, find the size of multiplexer
that should be deployed for this cable such that there is less than a 1% chance
that a call will be blocked.
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8.6 Example Solutions

Problem 8.2.

(a) If eight signals are frequency multiplexed using DSB-AM the transmitted
signal spectrum is shown in Figure 8.22. The transmission bandwidth is
given as

BT = 8 users × 2 WHz/user + 7 guardbands × 1 kHz/guardband (8.13)

Therefore, BT = 8 × 8 + 7 = 71 kHz and

EM = 8 × W
BT

= 32
71

= 45.07% (8.14)

(b) If eight signals are frequency multiplexed using SSB-AM the transmission
bandwidth is given as

BT = 8 users × WHz/user + 7 guardbands × 1 kHz/guardband (8.15)

Therefore, BT = 8 × 4 + 7 = 39 kHz and

EM = 8 × W
BT

= 32
39

= 82% (8.16)

(c) If two signals are quadrature carrier multiplexed then the resulting band-
width is 8 kHz. FDM four pairs of signals will give a transmission bandwidth
of

BT = 4 pairs × 2 WHz/pair + 3 guardbands × 1 kHz/guardband (8.17)

Therefore, BT = 4 × 8 + 3 = 35 kHz and

EM = 8 × W
BT

= 32
35

= 91.4% (8.18)

1 kHz

xc(f)

fc

2 W

BT

……

Figure 8.22 Bandpass spectrum of a DSB-AM FDM system.
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8.7 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). All team
members should be prepared to give the presentation.

8.7.1 Project 1

Project Goals: Analyze a signal and figure out a multiplexing and demulti-
plexing strategy.

Problem 8.4 gives the details of the multiplexing of stereo signals in analog
FM broadcast in the United States. To multiplex two channels of 15 kHz audio
requires 53 kHz of spectrum resulting in a

EM = 30
53

= 57% (8.19)

Prof. Fitz would like to propose a more efficient multiplexing strategy that
would require no change in the demultiplexer. Get the Matlab file
projfdm1data.m from the class web page. This file contains a multiplexed
sum and difference audio signal sampled at f s = 132.3 kHz using Prof. Fitz’s
proposed multiplexing strategy.

(a) Examining the signal identify the multiplexing strategy.

(b) Compute the multiplexing efficiency of Prof. Fitz’s multiplexing strategy.

(c) Identify a demultiplexer and produce the two audio signals. If this signal
processing is done well a song should be able to be identified in the output
using the sound command in Matlab.
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Chapter

9
Random Processes

An additive noise is characteristic of almost all communication systems. This
additive noise typically arises from thermal noise generated by random mo-
tion of electrons in the conductors comprising the receiver. In a communication
system the thermal noise having the greatest effect on system performance is
generated at and before the first stage of amplification. This point in a commu-
nication system is where the desired signal takes the lowest power level and
consequently the thermal noise has the greatest impact on the performance.
This characteristic is discussed in more detail in Chapter 10. This chapter’s
goal is to introduce the mathematical techniques used by communication sys-
tem engineers to characterize and predict the performance of communication
systems in the presence of this additive noise. The characterization of noise
in electrical systems could comprise a course in itself and often does at the
graduate level. Textbooks that provide more detailed characterization of noise
in electrical systems are [DR87, Hel91, LG89, Pap84, YG98].

A canonical problem formulation needed for the analysis of the performance
of a communication systems design is given in Figure 9.1. The thermal noise
generated within the receiver is denoted W (t). This noise is then processed
in the receiver and will experience some level of filtering, represented with
the transfer function HR(f ). The simplest analysis problem is examining a
particular point in time, ts and characterizing the resulting noise sample, N (ts),
to extract a parameter of interest (e.g., average signal–to–noise ratio (SNR)).
Additionally, we might want to characterize two or more samples, e.g., N (t1)
and N (t2), output from this filter.

To accomplish this analysis task this chapter first characterizes the thermal
noise, W (t). It turns out that W (t) is accurately characterized as a station-
ary, Gaussian, and white random process. Consequently, our first task is to
define a random process (Section 9.1). The exposition of the characteristics of
a Gaussian random process (Section 9.2) and a stationary Gaussian random
process (Section 9.3) then will follow. A brief discussion of the characteristics of
thermal noise is then followed by an analysis of stationary random processes

9.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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Thermal
Noise

W t( ) N t( )
H fR( )

ts

N ts( )

Figure 9.1 The canonical communications noise formulation.

and linear systems. In conclusion, we return and solve the canonical problem
posed in Figure 9.1 in Section 9.6.

9.1 Basic Definitions

Understanding random processes is fundamental to communications engineer-
ing. Essentially random or stochastic processes are indexed families of random
variables where the index is normally associated with different time instances.

Definition 9.1 Let (�, F , P ) be a probability space. A real random process, N (ω, t), with
ω ∈ � is a single-valued function or mapping from � to real valued functions of an index
set variable t.

The index set in this text will always be time but generalizations of the
concept of a random process to other index sets is possible (i.e., space in image
processing). The idea behind the definition of a random process is shown in
Figure 9.2. Essentially there is an underlying random experiment. The outcome
of this random experiment is then mapped to a function of time. The example
in Figure 9.2 shows the mapping of three of the possible experiment outcomes
into three different functions of time.

Definition 9.2 The function N (ω1, t) for ω1 fixed is called a sample path of the random
process.

Communication engineers observe the sample paths of random processes and
the goal of this chapter is to develop the tools to characterize these sample paths.
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Figure 9.2 A pictorial explanation of the definition of a random process.
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From this point forward in the text the experimental outcome index will be
dropped and random processes will be represented as N (t).

EXAMPLE 9.1
A particular random process is defined as

N (t) = U exp[−|t|] + V (9.1)

where U and V are independent random variables. It is clear that with each sample
value of the random variables U (ω) and V (ω) there will be a time function N (t, ω).
This example of a random process is not typical of a noise process produced in real
communication systems but it is an example process that proves insightful as we develop
tools to characterize noise in communications.

EXAMPLE 9.2
A noise generator and a lowpass filter are implemented in Matlab with a sample rate of
22,050 kHz. Recall each time Matlab is run this is equivalent to a different experiment
outcome, i.e., a different ω. A sample path of the input noise to the filter, W (t), and a
sample path at the output of the filter, N (t), is shown in Figure 9.3 for a filter with a
bandwidth of 2.5 kHz. It is clear that filtering drastically alters the characteristics of
the noise process. Each time the Matlab program is run a different set of sample paths
will be produced.
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Figure 9.3 Input and output noise typical of the canonical problem highlighted in Figure 9.1 when HR(f ) is a
lowpass filter of bandwidth 2.5 kHz.
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Property 9.1 A sample of a random process is a random variable.

If we focus on a random process at a particular time instance then we have
a mapping from a random experiment to a real number. This is exactly the
definition of a random variable (see Section 3.2). Consequently, the first impor-
tant question in the canonical problem stated at the beginning of this chapter
has been answered: the sample N (ts) of the random process, N (t), is a random
variable. Consequently, to characterize this sample of a random process we use
all the tools that characterize a random variable (distribution function, density
function, etc.). If random processes are indexed sets of random variables then
a complete statistical characterization of the random process would be avail-
able if the random variables comprising the random process were completely
characterized. In other words, for a random process, N (t), if M samples (where
M can be an arbitrary value) of the random process are taken at various times
and if the PDF given by

fN (t1),N (t2),···,N (tM )(n1, n2, · · · , nM)

is known then the random process is completely characterized. This full charac-
terization, in general, is very difficult to do. Fortunately, the case of the Gaussian
random process is the exception to the rule as Gaussian random processes are
very often accurate models for noise in communication systems.

Point 1: The canonical problem can be solved when the random variable
N (ts) or a set of M random variables, N (t1), . . . , N (tM), can be statistically
characterized with a PDF or a CDF.

Property 9.2 A numeric average of a set of independent samples of a random variable or
sample paths of a random process will converge to the statistical average of that random
variable or random process as the number of samples grows large.

This property is formally known as the weak law of large numbers (WLLN)
and will not be proven here (see e.g., [DR87, Hel91, LG89, Pap84] for a more
detailed discussion). Statistical averages play a very important role in under-
standing random processes. The intersting characteristic of the WLLN for this
text is that Matlab can generate large number of sample paths and the numeric
averages will give some insight into the statistical averages.

EXAMPLE 9.3
An example of the WLLN is given by the sample mean. For this example it will be
assumed that there is a random variable X with finite set of moments. The N sample
mean is

mN = 1
N

N∑
n=1

X (ωn) (9.2)
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If X (ωn) is independently obtained, then the WLLN implies that

E[X ] = lim
N →∞

mN . (9.3)

For example, Matlab can be used to generate N independent samples of a random
variable or a random process and insight can be gained into the ensemble average by
looking at mN as N gets large.

9.2 Gaussian Random Processes

Definition 9.3 A Gaussian random process is a random process where any set of samples
taken from the random process are jointly Gaussian random variables.

Many important random processes in communication system analysis are
well modeled as Gaussian random processes. This is important since Gaussian
random variables are simply characterized. A complete characterization of
Gaussian random variables (their joint PDF) is obtained by knowing their first-
and second-order moments.

EXAMPLE 9.4
Considering the Matlab experiment briefly highlighted in Example 9.2, histograms of
values of the sample paths at t = 45 ms are shown for the input in Figure 9.4(a) and
for the output in Figure 9.4(b). These histograms show that the noise in the canonical
problem is well modeled by Gaussian random processes. Also the filtering has obvi-
ously changed the distribution of the random variables W (0.045) and N (0.045) since
the measured variance of the input is clearly larger than the measured variance of
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Figure 9.4 Histograms of input and output samples taken at t = 45 ms.
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the output. The goal in the remainder of this chapter is to develop the needed tools
to predict the change in statistical characterization of the noise as a function of the
filtering, HR(f ).

EXAMPLE 9.5
Considering random process defined in Example 9.1, if U and V are independent, zero
mean, unit variance Gaussian random variables then, for every t, N (t) will be the sum
of two Gaussian random variables and hence a Gaussian random variable. Likewise,
joint distributions of the samples of N (t) will be jointly Gaussian random variables.
Three example sample paths of the Gaussian random process N (t) = U exp[−|t|] + V
is shown in Figure 9.5.

Property 9.3 If N (t) is a Gaussian random process then one sample of this process,
N (ts), is completely characterized with the PDF

fN (ts)(ns) = 1√
2πσ 2

N (ts)
exp

(
− (ns − mN (ts))2

2σ 2
N (ts)

)
(9.4)
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Figure 9.5 Three example sample paths of the Gaussian random process N (t) =
U exp[−|t|] + V .
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where

mN (ts) = E[N (ts)] σ 2
N (ts) = var(N (ts))

Consequently, the complete characterization of one sample of a Gaussian
random process only requires the mean value and the variance of N (ts) to be
evaluated. Here is the first example of how ensemble averages of random quan-
tities help characterize the random quantities. The Gaussian random variable
has great utility because only two ensemble averages completely characterize
the randomness. Section 3.2.4 has more discussion on the PDF of a Gaussian
random variable.

EXAMPLE 9.6
Consider the random process defined in Example 9.1, where U and V are independent,
zero mean, unit variance Gaussian random variables and samples are taken at t = 0
and t = 2. The appropriate moments needed to characterize the marginal PDFs of these
two samples are

E[N (0)] = E[U ] + E[V ] = 0 E[N (2)] = E[U ]e−2 + E[V ] = 0 (9.5)

E[N 2(0)] = E[(U + V )2] = E[U 2] + E[V 2] = 2 (9.6)

E[N 2(2)] = E[(U e−2 + V )2] = E[U 2]e−4 + E[V 2] = 1 + e−4 (9.7)

Property 9.4 Most thermally generated noise corrupting a communication system typ-
ically has a zero mean.

This is motivated by the physics of thermal noise generation. If the average
voltage or current in a conductor is not zero that means that electrons are
on average leaving the device. Physically this nonzero mean is not possible
without an external force to induce an average voltage or current flow. All
random processes will be assumed to have a zero mean throughout
the remainder of this chapter.

Property 9.5 If N (t) is a Gaussian random process then two samples of this process,
N (t1) and N (t2), are completely characterized with the PDF

fN (t1)N (t2)(n1, n2) = 1

2π

√
σ 2

N (t1)σ 2
N (t2)
(
1 − ρN (t1, t2)2

)
× exp

[ −1
1 − ρN (t1, t2)2

(
n2

1

2σ 2
N (t1)

− 2ρN (t1, t2)n1n2

2σN (t1)σN (t2)
+ n2

2

2σ 2
N (t2)

)]

where

σ 2
N (ti) = E

[
N 2(ti)

]
ρN (t1, t2) = E[N (t1)N (t2)]

σN (t1)σN (t2)
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The joint PDF of two Gaussian random variables can be characterized by
evaluating the variance of each of the samples and the correlation coefficient be-
tween the two samples. Here is a second example of how random quantities are
entirely characterized by ensemble averages (variance and correlation). Recall a
correlation coefficient describes how similar two random variables behave. The
two random variables in this case are samples from the same random process.
Section 3.3.3 has more discussion on the PDF of a bivariate Gaussian random
variable. Similarly, three or more samples of a Gaussian random process can
be characterized by evaluating the variance of each of the samples and the cor-
relation coefficient between each of the samples as was shown in Section 3.3.6.

Property 9.6 The correlation function,

RN (t1, t2) = E[N (t1)N (t2)] (9.8)

contains all the information needed to characterize the joint distribution of any set of
samples from a zero mean Gaussian random process.

Proof: Property 9.5 shows that only σ 2
N (t) and ρN (t1, t2) need to be identified

to characterize the joint PDF of the Gaussian random variables resulting from
samples of the random process. To this end

σ 2
N (t) = RN (t, t) = E[N 2(t)] ρN (t1, t2) = RN (t1, t2)√

RN (t1, t1)RN (t2, t2)
. �

The correlation function plays a key role in the analysis of Gaussian random
processes.

EXAMPLE 9.7
For the random process defined in Example 9.1, the correlation function is given as

RN (t1, t2) = E[N (t1)N (t2)] = e−|t1|e−|t2| + 1 (9.9)

The correlation function, RN (t1, t2), is plotted in Figure 9.6(a). Consequently, the corre-
lation coefficient between N (0) and N (2) is

ρN (0, 2) = e−2 + 1√
2(e−4 + 1)

(9.10)

The joint density of these two samples is plotted in Figure 9.6(b).

Point 2: When the noise, N (t), is a Gaussian random process the canonical
problem can be solved with knowledge of the correlation function, RN (t1, t2).
The correlation function completely characterizes any joint PDF of samples
of the process N (t).
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Figure 9.6 The functions that characterize N (t) = U exp[−|t|] + V .

9.3 Stationary Random Processes

If the statistical description of a random process does not change over time, it
is said to be a stationary random process.

EXAMPLE 9.8
Figure 9.7(a) shows a sample function of a nonstationary noise, WN S (t), and
Figure 9.7(b) shows a sample function of a stationary noise, WS (t). The random pro-
cess plotted in Figure 9.7(a) appears to have a variance, σ 2

N (t), that is growing with
time, while the random process in Figure 9.7(b) appears to have a constant variance.

Examples of random processes which are not stationary are prevalent

■ Temperature in Columbus, Ohio
■ The level of the Dow-Jone’s Industrial Average

In these nonstationary random processes the statistical description of the
resulting random variables will change greatly depending on when the process
is sampled. For example, the average temperature in Columbus, Ohio is signif-
icantly different in July than in January. Nonstationary random processes are
much more difficult to characterize than stationary processes. Fortunately, the
thermal noise that is often seen in communication systems is well modeled as
stationary over the time spans which are of interest in understanding commu-
nication system’s performance. For the remainder of this book all noise
will be assumed to be stationary.
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Figure 9.7 Sample paths of random processes.

9.3.1 Basics

Definition 9.4 A random process, N (t), is called stationary if the density function de-
scribing M samples of the random process is independent of time shifts in the sample
times, i.e.,

fN (t1),N (t2),···,N (tM )(n1, n2, · · · , nM ) = fN (t1+t0),N (t2+t0),···,N (tM+t0)(n1, n2, · · · , nM )

for any value of M and t0.

In particular the random variable obtained by sampling a stationary random
processes is statistically identical regardless of the selected sample time, i.e.,
fN (t)(n1) = fN (t+t0)(n1). Also two samples taken from a stationary random pro-
cess will have a statistical description that is a function of the time difference
between the two time samples but not the absolute location of the time samples,
i.e., fN (0),N (t1)(n1, n2) = fN (t0),N (t1+t0)(n1, n2).
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EXAMPLE 9.9
For the random process defined in Example 9.1, since the second moment is given as

E[N 2(t)] = RN (t, t) = 1 + e−2|t| (9.11)

it is obvious that N (t) is not a stationary process.

9.3.2 Gaussian Processes

Stationarity for Gaussian random processes implies a fairly simple complete
description for the random process. Recall a Gaussian random process is
completely characterized with RN (t1, t2) = E[N (t1)N (t2)]. Since fN (t)(n1) =
fN (t+t0) (n1) this implies that the mean (E[N (t)] = 0) and the variance (σ 2

N (ti) =
σ 2

N ) are constants. Since fN (0),N (t1)(n1, n2) = fN (t0),N (t1+t0)(n1, n2) we know from
Property 9.5 that RN (0, t1) = RN (t0, t0 + t1) for all t0. This implies that the
correlation function is essentially a function of only one variable, RN (t1, t2) =
RN (τ ) = E[N (t)N (t − τ )] where τ = t1 − t2. For a stationary Gaussian process
this correlation function RN (τ ) completely characterizes any statistical event
associated with the noise N (t).

EXAMPLE 9.10
This example examines again the random process defined in Example 9.2 where a wide-
band noise is lowpass filtered. Recall that the mean function of the input and output is
defined as

mW (t) = E[W (t)] mN (t) = E[N (t)] (9.12)

Insight into the ensemble mean can be obtained by looking at the sample mean defined
as

m̄W (t) = 1
N

N∑
i=1

W (t, ωi) m̄N (t) = 1
N

N∑
i=1

N (t, ωi) (9.13)

Figure 9.8 shows a plot of the sample mean function for 4000 sample paths. It is pretty
clear that both the input and the output random processes from the canonical problem
have a zero mean. Similarly, the sample variance functions of the input and output
process are computed from 4000 sample paths, e.g.,

σ̄ 2
W (t) = 1

N

N∑
i=1

W 2(t, ωi) σ̄ 2
N (t) = 1

N

N∑
i=1

N 2(t, ωi) (9.14)

Figure 9.9 shows the resultant averaged square value of the noise functions. It is clear
from Figure 9.9 that the variance of both the input and output noise processes for the
canonical problem are a constant function of time. These curves are empirical evidence
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Figure 9.8 The ensemble averages of the process mean function for the input and
output of the filter. 4000 trials.
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Figure 9.9 The ensemble averages of the process variance function for the input
and output of the filter. 4000 trials.



Random Processes 9.13

that the processes in the canonical problem are stationary processes, since the mean
and variance appear to be constant functions of time. The sample mean and variance of
the processes match the histograms in Figure 9.4.

The correlation function gives a description of how rapidly the random process
is changing with time. For a stationary random process the correlation function
can be expressed as

RN (τ ) = σ 2
N ρN (τ ) (9.15)

where ρN (τ ) is the correlation coefficient between two samples taken τ seconds
apart. Recall that if ρN (τ ) ≈ 0 then the two samples will behave statistically
in an independent fashion. If ρN (τ ) ≈ 1 then the two samples will be very close
in value (statistically dependent). In addition to giving an engineer an idea of
how rapidly the random process varies as a function of time, the correlation
function also fully specifies the PDF of any number of samples from a Gaussian
random process. Recall the quantities needed to specify the PDF of zero mean,
jointly Gaussian random variables are the variance which is constant given as

σ 2
N = RN (0) (9.16)

and the correlation coefficient between the random variables. The correlation
coefficient between the random variables N (t) and N (t − τ ) is given as

ρN (τ ) = RN (τ )
σ 2

N
(9.17)

Consequently for a zero mean, stationary Gaussian process the correlation func-
tion completely determines the statistical characteristics of the process.

The idea of a correlation function has been introduced before in the context of
deterministic signal analysis. For deterministic signals the correlation function
of a signal x(t) was defined as

Vx(τ ) =
∞∫

−∞
x(t)x∗(t − τ )dt (9.18)

This correlation function also was a measure of how rapidly a signal varied
in time just like the correlation function for random processes measures the
time variations of a noise. Table 9.1 summarizes the comparison between the
correlation functions for random processes and deterministic energy signals.
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TABLE 9.1 Summary of the important characteristics of the correlation function

Signal Definition Units Correlation value at τ = 0

Deterministic Vx(τ ) =
∞∫

−∞
x(t)x∗(t − τ )dt Joules Vx(0) = Ex (Energy of x(t))

Random RN (τ ) = E[N (t)N (t − τ )] Watts RN (0) = σ 2
N (Average power of N (t))

EXAMPLE 9.11
Consider a correlation coefficient parameterized as

ρN (τ ) = sinc(2W τ ) (9.19)

For two samples taken τ = 250 µs apart, a process characterized with W = 400 Hz would
have these samples behaving very similar (ρN (.00025) = 0.935). A process characterized
with W = 6400 Hz would have ρN (.00025) = −0.058 and essentially the two samples
will be independent. Figure 9.10 shows a plot of several sample functions of Gaussian
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Figure 9.10 Sample paths for several Gaussian random processes parameterized by Eq. (9.19).
Note this plot show samples of random processes where the sample rate is f s = 44, 100 Hz. The
jaggedness and piecewise linear nature of the high bandwidth noise is due to this sampling. A
higher sampling rate would result in a smoother appearance.
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Figure 9.11 Sample paths of a stationary Gaussian process along with the associated correlation function.

random processes whose correlation function is given Eq. (9.19) with different values of
W . The process parameterized with W = 6400 Hz varies rapidly over 250 µs, while the
process parameterized with W = 400 Hz is nearly constant. Another way to view the
relation between the correlation function and the time variability of the random process
intuitively is to plot sample paths of the random process along with the correlation
function. Examples of this type of plot are shown in Figure 9.11 for W = 6400 Hz and
W = 1600 Hz. This type of plot clearly highlights how the correlation function relates
to the variability of a random process; the narrower the correlation function the faster
the random process varies in time.

Point 3: When the noise, N (t), is a stationary Gaussian random process
the canonical problem can be solved solely by knowing the form of RN (τ ) =
E[N (t)N (t − τ )] as the PDF of any number of samples taken arbitrarily
from the process N (t) can be determined from RN (τ ).

9.3.3 Frequency Domain Representation

Stationary noise can also be described in the frequency domain. Frequency
domain analysis has been very useful for providing an alternate view (compared
to time domain) in deterministic signal analysis. This characteristic holds true
when analyzing stationary random processes. Recall the definition of a finite
time Fourier transform given in Eq. (2.8), i.e.,

NTm( f , ω) =
∫ Tm

−Tm

N (t, ω) exp[− j 2π f t]dt (9.20)
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The finite time Fourier transform is a complex random function of frequency.
Since N (t) is a stationary random process the energy of N (t) grows unbounded
as the measurement interval, Tm, gets large. Because of the unbounded energy
it proves useful to examine the finite time measured power spectral density
(units Watts per Hertz), which is given as

SN ( f , ω, Tm) = 1
2Tm

|NTm( f , ω)|2 (9.21)

It should be noted that the finite time measured power spectral density is now
a real random function of frequency. In analogy to the energy spectrum, Gx(f ),
introduced in Chapter 2, the measured power spectral density gives a distribu-
tion of power in the frequency domain for the sample path N (t, ω). Stationary
Gaussian random processes are characterized in the frequency domain by the
average power spectral density. The average of the measured power spectral
density is given as

SN ( f , Tm) = 1
2Tm

E
[|NTm( f , ω)|2] = E[SN ( f , ω, Tm)] (9.22)

and the limit as the measurement time gets large of this average is known as
the power spectral density of a stationary random process.

Definition 9.5 The power spectral density of a random process N (t) is

SN (f ) = lim
Tm→∞

SN ( f , Tm)

Since the power spectral density is obtained by taking the ensemble average
and the time average of the energy spectrum of the sample paths, the power
spectral density is a measure of how the average power of the process is dis-
tributed as a function of frequency. The characteristics of the power spectral
density of stationary random signals, SN (f ), will parallel that of the energy
spectral density of deterministic signals, GX (f ). Intuitively, random processes
that vary rapidly must have power at higher frequencies in a very similar way
as deterministic signals. This definition of the power spectral density puts that
intuition on a solid mathematical basis.

Property 9.7 The power spectrum of a real valued1 random process is always a nonnega-
tive and an even function of frequency, i.e., SN (f ) ≥ 0 and SN (f ) = SN (− f ).

Proof: The positivity of SN (f ) is a direct consequence of Definition 9.5 and
Eq. (9.22). The evenness is due to Property 2.4. �

1This chapter only considers real valued random processes but the next chapter will extend these
ideas to the complex envelope of a bandpass noise, hence the need to distinguish between a real
and a complex random process.
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Figure 9.12 A sample path and the average of 4000 sample paths.

EXAMPLE 9.12
For the output random process defined in Example 9.2, sample power spectra, SN ( f , ω,
Tm), can be computed from one sample path. Insight into the ensemble average can be
computed by looking at the sample mean of this function, i.e.,

S̄N ( f , Tm) = 1
N

N∑
i=1

SN ( f , ωi , Tm) (9.23)

Figure 9.12 shows one sample path, SN ( f , ωi , Tm), and the average of the sample paths,
S̄N ( f , Tm), for 4000 samples paths. This is empirical evidence that SN (f ) is well defined
and exists for this canonical process that is the focus of this chapter.

Spectral analysis of stationary random processes proves extremely valuable
because the power spectral density is related to the correlation function as a
Fourier transform pair.

Property 9.8 (Wiener-Khinchin) The power spectral density for a stationary random
process is given by

SN (f ) = F{RN (τ )}

Proof: The power spectral density (see Definition 9.5) can be rewritten as

SN (f ) = lim
Tm→∞

1
2Tm

E
[|NTm(f )|2]
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Using the definition in Eq. (9.20) gives

E
[|NTm(f )|2] = E

[∫ Tm

−Tm

N (t1) exp[− j 2π f t1]dt1

∫ Tm

−Tm

N (t2) exp[ j 2π f t2]dt2

]

=
∫ Tm

−Tm

∫ Tm

−Tm

E[N (t1)N (t2)] exp[− j 2π f (t1 − t2)]dt1dt2 (9.24)

Making a change of variables τ = t1 − t2 and using the stationarity of N (t)
reduces Eq. (9.24) to

E
[|NTm(f )|2] = ∫ Tm

−Tm

∫ Tm−t2

−Tm−t2

RN (τ ) exp[− j 2π f τ ]d τdt2 (9.25)

Taking the limit gives the desired result. �

Actually the true Wiener-Khinchin theorem is a bit more general but this
form is all that is needed for this text. The Wiener-Khinchin theorem has utility
in communication system engineering because it implies that RN (τ ) can be
computed once SN (f ) is identified. This correspondence between RN (τ ) and
SN (f ) implies that the statistical description of N (t) is fully characterized
with SN (f ).

The power spectral density can be used to find the average power of a random
process with a direct analogy to Rayleigh’s energy theorem. Recall that

E[N (t)N (t − τ )] = RN (τ ) = F−1{SN (f )} =
∫ ∞

−∞
SN (f ) exp( j 2π f τ )df (9.26)

so that the total average power of a random process is given as

E[N 2(t)] = RN (0) = σ 2
N =
∫ ∞

−∞
SN (f )df (9.27)

Equation (9.27) demonstrates that the average power of a random process is
the area under the power spectral density curve.

EXAMPLE 9.13
If

RN (τ ) = σ 2
N sinc(2W τ ) (9.28)

then

SN (f ) =

⎧⎨
⎩

σ 2
N

2W
| f | ≤ W

0 elsewhere
(9.29)

A random process having this correlation–spectral density pair has power uniformly
distributed over the frequencies from −W to W .
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TABLE 9.2 Summary of the duality of spectral densities nonnegativity

Signal Definition Units Correlation Value at τ = 0

Deterministic Gx(f ) = F{Vx(τ )} J/Hz Vx(0) = Ex =
∫ ∞

−∞ Gx(f )df Gx(f ) ≥ 0

Random SN (f ) = F{RN (τ )} W/Hz RN (0) = σ 2
N =
∫ ∞

−∞ SN (f )df SN (f ) ≥ 0

The duality of the power spectral density of random signals, SN (f ) and the
energy spectral density of deterministic energy signals, Gx(f ), is also strong.
Table 9.2 summarizes the comparison between the spectral densities for ran-
dom processes and deterministic energy signals.

Point 4: When the noise, N (t), is a stationary Gaussian random process
the canonical problem can be solved with knowledge of the power spectral
density of the random process, SN (f ). The power spectral density determines
the correlation function, RN (τ ) through an inverse Fourier transform. The
correlation function completely characterizes any joint PDF of samples of
the process N (t).

9.4 Thermal Noise

An additive noise is characteristic of almost all communication systems. This
additive noise typically arises from thermal noise generated by random motion
of electrons in conductors. From the kinetic theory of particles, given a resistor
R at a physical temperature of T degrees Kelvin, there exists a random additive
noise voltage, W (t), across the resistor. This noise is zero mean, stationary2, and
Gaussian distributed (due to the large number of randomly moving electrons
and the central limit theorem), with a spectral density given as [Zie86, Joh28,
Nyq28b]

SW (f ) = 2Rh| f |
exp
[

h| f |
KT

]
− 1

(9.30)

where h = 6.62 × 10−34 is Planck’s constant and K = 1.3807 × 10−23 is Boltz-
mann’s constant. A plot of the power spectral density of thermal noise is shown
in Figure 9.13. The major characteristic to note is that this spectral density is
constant up to about 1012 Hz at a value of 2KTR. Since Johnson [Joh28] made
measurements to characterize the thermally generated noise in conductors and
Nyquist [Nyq28b] provided the theory that matched these measurements, ther-
mal noise is often known as Johnson noise or Johnson–Nyquist noise.

2As long as the temperature is constant.
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Figure 9.13 The PSD of thermal noise.

Since a majority of communications occurs at frequencies much lower than
1012 Hz3 an accurate and simplifying model of the thermal noise is to assume
a flat spectral density (white noise). This spectral density is a function of the
receiver temperature. The lower the temperature of the receiver the lower the
noise power. Additive white Gaussian noise (AWGN) is a basic assumption
made about the corrupting noise in most communication systems performance
analyses. White noise has a constant spectral density given as

SW (f ) = N0

2
(9.31)

where N0/2 is the noise power spectral density. Note that since

E[W 2(t)] =
∫ ∞

−∞
SW (f )df (9.32)

this thermal noise model has an infinite average power. This characteristic is
only a result of modeling Eq. (9.30) with the simpler form in Eq. (9.31). Tra-
ditionally some engineers have been loath to admit to the idea of negative
frequencies hence they are not comfortable with the model in Eq. (9.31). These
engineers like to think about noise power distributed over positive only fre-
quencies with a spectral density of double the height. In the literature one will
often see people denote N0/2 as the two-sided noise spectral density and N0 as
the one-sided noise spectral density.

3Fiber optic communication is a notable exception to this statement.
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The autocorrelation function of AWGN is given by

RW (τ ) = E[W (t)W (t − τ )] = N0

2
δ(τ ) (9.33)

AWGN is a stationary random process so a great majority of the analysis in
communication systems design can utilize the extensive theory of stationary
random processes. White noise has the interesting characteristic that two sam-
ples of the process W (t) will always be independent no matter how closely the
samples are taken. Consequently, white noise can be thought of as a very rapidly
varying noise with no predictability.

A resistor in isolation will produce an approximate white noise with a two-
sided spectral density of 2KTR. If this system is placed in an electronic system,
the greatest value of the average power that would be able to be transferred
out of the resistor is one fourth of value that would exist if the resistor was
shorted (using the maximum power transfer theorem of linear systems, see
Problem 9.13). Hence an important number for communication system engi-
neers to remember is N0 = KT . For room temperature (T = 290◦K ) N0 =
4 × 10−21 W/Hz (−174 dBm/Hz). When signals get amplified by active com-
ponents in a receiver the value of this noise spectral density will change. We
explore some of these ideas in the homework and refer the interested student to
the detailed references [Zie86, Cou93, Skl88] on the ideas of noise figure, link
budgets, and computing output signal to noise ratio.

This noise spectral density at the input to a communication system is very
small. If this thermal noise is to corrupt the communication signal then the
signal must also take a small value. Consequently, it is apparent from this
discussion that thermal noise is only going to be significant when the signal at
the receiver has been attenuated to a relatively small power level.

EXAMPLE 9.14
The noise plotted in Figure 9.7(b) could result from sampling of an wideband noise at a
sample rate of f s = 22, 050 Hz. The rapidly varying characteristic of the noise samples
predicted by Eq. (9.33) is evident from Figure 9.7(b). A sample path of the measured
power spectrum and the average of 4000 trials of this experiment (see Eq. (9.22)) for
this process is shown in Figure 9.14. This average spectrum clearly shows the white
noise model for the PSD is appropriate. Figure 9.15 shows the histogram of the samples
of the AWGN. The Gaussian nature of this histogram is also clearly evident. In a vast
majority of communication system analysis the model of a AWGN is very accurate and
used in practice.

Point 5: The dominant noise in communication systems is often generated by
the random motion of electrons in conductors. This noise process is accurately
modeled as stationary, Gaussian, and white.
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Figure 9.14 Spectral characteristics of sampled wideband Gaussian noise.
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Figure 9.15 The measured histogram of wideband Gaussian noise, 4000 trials.
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9.5 Linear Systems and Random Processes

The final step in solving the canonical problem is to characterize the output of
a linear time-invariant filter when the input is a stationary, white, Gaussian
random process.

Property 9.9 Random processes that result from linear filtering of Gaussian random
processes are also Gaussian processes.

Proof: The technical machinery needed to prove this property is beyond the
scope of this class but most advanced texts concerning random processes will
prove this. For example [DR87]. It should be noted that a majority of the im-
portant ideas used in this proof can be understood by examining Problem 3.24.

�

Property 9.10 A random process that results from linear filtering of a zero mean process
will also be zero mean.

Proof: Assume the filter input is W (t), the filter impulse response is hR(t), and
the filter output is N (t).

E[N (t)] = E
[∫ ∞

−∞
hR(λ)W (t − λ)dλ

]
=
∫ ∞

−∞
hR(λ)E[W (t − λ)]dλ = 0. (9.34)

�

Property 9.11 A Gaussian random process that results from linear time-invariant fil-
tering of another stationary Gaussian random process is also a stationary Gaussian
process.

Proof: Assume the filter input is W (t), the filter impulse response is hR(t), and
the filter output is N (t). Since we know the output is Gaussian, the stationarity
of N (t) only requires that the correlation function of N (t) be a function of τ

only, i.e., RN (t1, t2) = RN (τ ). The two argument correlation function of N (t) is
given as

RN (t1, t2) = E[N (t1)N (t2)]

= E
[∫ ∞

−∞
hR(λ1)W (t1 − λ1)dλ1

∫ ∞

−∞
hR(λ2)W (t2 − λ2)dλ2

]
(9.35)

Rearranging gives

RN (t1, t2) =
∫ ∞

−∞
hR(λ1)

∫ ∞

−∞
hR(λ2)E[W (t1 − λ1)W (t2 − λ2)]dλ1dλ2

=
∫ ∞

−∞
hR(λ1)

∫ ∞

−∞
hR(λ2)RW (t1 − λ1 − t2 + λ2)dλ1dλ2

=
∫ ∞

−∞
hR(λ1)

∫ ∞

−∞
hR(λ2)RW (τ − λ1 + λ2)dλ1dλ2

= g(τ ). (9.36)

�
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Point 6: The output noise in the canonical problem, N (t), is accurately mode-
led as a stationary Gaussian process.

The canonical problem given in Figure 9.1 can now be solved by finding the cor-
relation function or spectral density of the stationary Gaussian random process
N (t). For the canonical problem W (t) is a white noise so that Eq. (9.36) can be
rewritten as

RN (τ ) =
∫ ∞

−∞
hR(λ1)

∫ ∞

−∞
hR(λ2)

N0

2
δ(λ1 − λ2 − τ )dλ1dλ2 (9.37)

Using the sifting property of the delta function gives

RN (τ ) = N0

2

∫ ∞

−∞
hR(λ1)hR(λ1 − τ )dλ1 = N0

2
VhR (τ ) (9.38)

where VhR (τ ) is the correlation function of the deterministic impulse response
hR(t) as defined in Chapter 2. This demonstrates that the output correlation
function from a linear filter with a white noise input is only a function of the
filter impulse response and the white noise spectral density.

The frequency domain description of the random process N (t) is equally
simple. The power spectral density is given as

SN (f ) = F{RN (τ )} = N0

2
F{VhR (τ )} = N0

2
GhR (f ) = N0

2
|HR(f )|2 (9.39)

The average output noise power is given using either Eq. (9.38) or Eq. (9.39) as

σ 2
N = E[N 2(t)] = RN (0) = N0

2

∫ ∞

−∞
|HR(f )|2df = N0

2

∫ ∞

−∞
|hR(t)|2dt (9.40)

It should be noted that Eq. (9.40) is another example of Parseval’s theorem in
signal analysis.

The result in Eq. (9.39) is a special case of a more general result. The general
result is

SN (f ) = SW (f )|HR(f )|2 = SW (f )GhR (f ) (9.41)

This can be obtained by taking the Fourier transform of Eq. (9.36) as this dou-
ble integral can be reformulated as a double convolution. It is clear that by
substituting SW (f ) = N0/2 into Eq. (9.41) gives the result in Eq. (9.39). Con-
sequently, the output spectral density of a linear time-invariant filter is equal
to the product of the input power spectral density and the energy spectrum of
the impulse response (the magnitude squared of the transfer function). This
characteristic enables an easy characterization of the impact of a filter in the
frequency domain.

EXAMPLE 9.15
This example considers the sampled wideband Gaussian noise shown in Figure 9.7(b)
being put into a lowpass filter of bandwith 1600 Hz. This lowpass filter will significantly
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Figure 9.16 Sample paths of wideband and filtered noise. Filter bandwidth =
1600 Hz.

smooth out the sampled noise and reduce the variance of the output process. Two sample
functions; one for the input wideband noise and one for the filtered noise, are shown in
Figure 9.16. The lowering of the output power of the noise and the smoothing in the
time variations that is expected to be produced at the lowpass filter output are readily
apparent in this figure. The output measured PSD of the filtered noise is shown in
Figure 9.17(b). This measured PSD validates Eq. (9.39), as this PSD is clearly the result
of multiplying the measured input noise spectral density (modeled in the text as a
white noise) with the lowpass filter energy spectrum as seen in Figure 9.17(a). This is
another great example in communication engineering where the theory exactly predicts
the measurement and why the theory has found such utility in practice. As a final point,
the histogram of the output samples, shown in Figure 9.18, again demonstrates that the
output noise is well modeled as a zero mean Gaussian random process.

EXAMPLE 9.16
Consider an AWGN with a one-sided spectral density of N0 being input into an ideal
lowpass filter of bandwidth W , i.e.,

HR(f ) =
{

1 | f | ≤ W

0 elsewhere
(9.42)
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Figure 9.17 Measured spectral characteristics of filtered wideband noise.
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Figure 9.18 A histogram of the samples of the filtered noise.
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The output spectral density is given as

SN (f ) =

⎧⎨
⎩

N0

2
| f | ≤ W

0 elsewhere
(9.43)

and the average output power is given as σ 2
N = N0W .

Engineers noted the simple form for the average output noise power expression
in Example 9.16 and decided to parameterize the output noise power of all filters
by a single number, the noise equivalent bandwidth.

Definition 9.6 The noise equivalent bandwidth of a filter is

BN = 1
2|HR(0)|2

∫ ∞

−∞
|HR(f )|2df

For an arbitrary filter the average output noise power will be σ 2
N = N0 BN

|HR(0)|2. Note, for a constant |HR(0)| the smaller the noise equivalent band-
width the smaller the noise power. This implies that noise power can be mini-
mized by making BN as small as possible. In the homework problems we will
show that the output signal to noise ratio is not a strong function of |HR(0)|
so that performance in the presence of noise is well parameterized by BN. In
general, HR(f ) is chosen as a compromise between complexity of implementa-
tion, signal distortion, and noise mitigation.

Point 7: A stationary, white, and Gaussian noise of two-sided spectral den-
sity N0/2 when passed through a filter will produce a stationary Gaussian
noise whose power spectral density is given as

SN (f ) = N0

2
|HR(f )|2

9.6 The Solution of the Canonical Problem

Putting together the results of the previous five sections leads to a solution of
the canonical problem posed in this chapter.

First, the characterization of one sample, N (ts), of the random process N (t)
is considered. This case requires a four step process summarized as

1. Identify N0 and HR(f ).

2. Compute SN (f ) = N0
2 |HR(f )|2.

3. σ 2
N = E[N 2(t)] = RN (0) = N0

2

∫∞
−∞ |HR(f )|2df = N0 BN |HR(0)|2

4. fN (ts)(n1) = 1√
2πσ 2

N

exp
(
− n2

1
2σ 2

N

)
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EXAMPLE 9.17
Consider two ideal lowpass filters with

HR(i)(f ) =
{

1 | f | ≤ Wi

0 elsewhere
(9.44)

with W1 = 400 Hz and W2 = 6400 Hz and a noise spectral density of

N0 = 1
1600

Step 2 gives

SNi (f ) =

⎧⎨
⎩

1
3200

| f | ≤ Wi

0 elsewhere
(9.45)

Step 3 gives σ 2
N1

= 0.25 and σ 2
N2

= 4. The average noise power between the two filter
outputs is different by a factor of 16. The PDFs in step 4 are plotted in Figure 9.19.

Second, the characterization of two samples, N (t1) and N (t2), of the random
process N (t) is considered. This case requires a five step process summarized
as

1. Identify N0 and HR(f ).

2. Compute SN (f ) = N0
2 |HR(f )|2.
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Figure 9.19 The PDF of a filter output sample for W = 400 and W = 6400 Hz.
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3. RN (τ ) = F−1{SN (f )}
4. σ 2

N = RN (0) and ρN (τ ) = RN (τ )/σ 2
N

5. fN (t1)N (t2)(n1, n2) = 1
2πσ 2

N

√
(1−ρN (τ )2)

exp
[

−1
2σ 2

N (1−ρN (τ )2)

(
n2

1 − 2ρN (τ )n1n2 + n2
2

)]

EXAMPLE 9.18
Consider two ideal lowpass filters with

HR(i)(f ) =
{

1 | f | ≤ Wi

0 elsewhere
(9.46)

with W1 = 400 Hz and W2 = 6400 Hz and a noise spectral density of

N0 = 1
1600

Step 2 gives

SNi (f ) =

⎧⎨
⎩

1
3200

| f | ≤ Wi

0 elsewhere
(9.47)

Step 3 gives RN1 (τ ) = 0.25sinc(800τ ) and RN2 (τ ) = 4sinc(12,800τ ). Step 4 has the
average noise power between the two filter outputs being different by a factor of 16
since σ 2

N1
= 0.25 and σ 2

N2
= 4. For an offset of τ seconds the correlation coefficients

are ρN1 (τ ) = sinc(800τ ) and ρN2 (τ ) = sinc(12,800τ ). The PDFs in step 5 are plotted
in Figure 9.20(a) and Figure 9.20(b) for τ = 250 µs. With the filter having a band-
width of 400 Hz the variance of the output samples is less and the correlation between
samples is greater. This higher correlation implies that the probability that the two
random variables take significantly different values is very small. This correlation is
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Figure 9.20 The PDF of two samples separated by τ = 250 µs.
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evident due to the knife edge like joint PDF. These two joint PDFs show the charac-
teristics in an analytical form that were evident in the noise sample paths shown in
Figure 9.10.

Similarly, three or more samples of the filter output could be characterized
in a very similar fashion. The tools developed in this chapter give a student the
ability to analyze many of the important properties of noise that are of interest
in communication systems design.

9.7 Homework Problems

Problem 9.1. For this problem consider the canonical block diagram shown in
Figure 9.21 with si(t) = cos(2π(200)t) and with W (t) being an additive white
Gaussian noise with two-sided spectral density of N0/2. Assume HR(f ) is an
ideal lowpass filter with bandwidth of 400 Hz. Two samples are taken from the
filter output at time t = 0 and t = τ , i.e., Yo(0) and Yo(τ ).

(a) Choose N0 such that the output noise power, E[N 2(t)] = 1.

(b) Yo(0) is a random variable. Compute E[Yo(0)] and E[Y 2
o (0)], and var(Yo(0)).

(c) Yo(τ ) is a random variable. Compute E[Yo(τ )] and E[Y 2
o (τ )], and var(Yo(τ )).

(d) Find the correlation coefficient between Yo(0) and Yo(τ ) i.e.,

ρYo (τ ) = E[(Yo(0) − E[Yo(0)])(Yo(τ ) − E[Yo(τ )])]√
var(Yo(0))var(Yo(τ ))

(9.48)

(e) Plot the joint density function, f Yo(0)Yo(τ )(y1, y2), of these two samples for
τ = 2.5 ms.

(f) Plot the joint density function, f Yo(0)Yo(τ )(y1, y2), of these two samples for
τ = 25 µs.

(g) Compute the time average signal to noise ratio where the instantaneous
signal power is defined as E[Yo(t)]2.

Problem 9.2. Real valued additive white Gaussian noise (two-sided spectral den-
sity N0/2) is input into a linear-time-invariant filter with a real valued impulse
response hR(t) where hR(t) is constrained to have a unit energy (see Figure 9.21
where si(t) = 0).

H fR( )s t W ti( ) ( )+ Y t s t N to o( ) ( ) ( )= +

Figure 9.21 Block diagram for signals, noise, and linear
systems.
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(a) Calculate the output correlation function, RN (τ ).

(b) The output signal is sampled at a rate of f s. Give conditions on the im-
pulse response, hR(t), that will make these samples independent. Give one
example of a filter where the output samples will be independent.

(c) Give the PDF of one sample, e.g., fN (t1)(n1).

(d) Give the PDF of any two sample, e.g., fN (t1)N (t1+k/ f s)(n1, n2) where k is a
nonzero integer and the filter satisfies the conditions in (b).

(e) Give an expression for P (N (t1) > 2).

Problem 9.3. Real valued additive white Gaussian noise, W (t) with a two-sided
spectral density N0/2 = 0.1 is input into a linear-time-invariant filter with a
transfer function of

H (f ) =
{

2 | f | ≤ 10

0 elsewhere
(9.49)

The output is denoted N (t).

(a) What is the correlation function, RW (τ ), that is used to model W (t)?

(b) What is E[N (t)]?

(c) Calculate the output power spectral density, SN (f ).

(d) What is E[N 2(t)]?

(e) Give the PDF of one sample, e.g., fN (t1)(n1).

(f) Give an expression for P (N (t1) > 3).

Problem 9.4. For this problem consider the canonical block diagram shown in
Figure 9.21 with si(t) = A and with W (t) being an additive white Gaussian
noise with two-sided spectral density of N0/2. Assume a 1-� system and break
the filter response into the DC gain term, HR(0) and the normalized filter
response, HN (f ), i.e., HR(f ) = HR(0)HN (f ).

(a) What is the input signal power?

(b) What is the output signal power, Ps?

(c) What is the average output noise power, σ 2
N ?

(d) Show that the output SNR = Ps/σ
2
N is not a function of HR(0).

(e) Give the output SNR as a function of A, N0, and BN.

Problem 9.5. For the canonical problem given in Figure 9.1, the output noise
spectral density is given as

SN (f ) =
{

N0 f 2 | f | ≤ W

0 elsewhere
(9.50)
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(a) What is the average ouput noise power?

(b) Give a possible HR(f ) that would result in this output noise?

(c) Think of a way to implement this HR(f ) using a lowpass filter cascaded
with another linear system that is used in the demodulation of an analog
modulation.

Problem 9.6. Show that SN (f ) = SW (f )|HR(f )|2 by taking the Fourier transform
of Eq. (9.36).

Problem 9.7. Consider the following linear system with a signal, si(t), plus a
white Gaussian noise, W (t), as inputs.

Y (t) = so(t) + N (t) =
∫ t

t−T i

x(λ)dλ =
∫ t

t−T i

(si(λ) + W (λ))dλ (9.51)

where T i is defined as the integration time.

(a) What is the impulse response of this linear system, hr (t).

(b) Show that

σ 2
N = N0

2

∫ ∞

−∞
|hr (t)|2dt (9.52)

(c) If the input to the filter is a DC term plus the AWGN, i.e.,

Y (t) =
∫ t

t−T i

( A+ W (λ))dλ (9.53)

find the output SNR= Ps/σ
2
N as a function of T i.

(d) For the case considered in (c) show that SNR grows monotonically with T i.

(e) If the input to the filter is a sinusoid signal plus the AWGN, i.e.,

Y (t) =
∫ t

t−T i

(
√

2Acos(2π fmt) + W (λ))dλ (9.54)

find the output SNR as a function of T i.

(f) For the case considered in (e) show that SNR does not grows monotonically
with T i and find the optimum T i for each fm.

Problem 9.8. Real valued additive white Gaussian noise, W (t) with a two-sided
spectral density N0/2 = 0.1 is input into a linear-time-invariant filter with a
transfer function of

HR(f ) =
{

2 | f | ≤ W

0 elsewhere
(9.55)

The output is denoted N (t).
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(a) What is the correlation function, RW (τ ), that is used to model W (t)?

(b) What is E[N (t)]?

(c) Calculate the output power spectral density, SN (f ).

(d) Select W to give E[N 2(t)] = 10.

(e) Give the PDF of one sample, e.g., fN (t1)(n1) when E[N 2(t)] = 10.

(f) Given an expression for P (N (t1) > 3) when E[N 2(t)] = 10.

Problem 9.9. As simple model of a radar receiver consider the following problem.
A radar sends out a pulse and listens for the return at the receiver whose
filtering is represented with an impulse response hR(t). The situation when no
target is present is represented with the input being modeled as a real valued
additive white Gaussian noise, Y (t) = W (t), (W (t) has a two-sided spectral
density N0/2) being input into a linear-time-invariant filter with a real valued
impulse response hR(t). Denote the output as V (t). The situation where a target
is present can be represented as the same filter with a input Y (t) = A + W (t).
A target detection decision is given by a simple threshold test at time t

V (t)
Target Present

>
<

Target Absent
γ (9.56)

(a) For the case when no target is present, completely characterize a sample of
the process V (t).

(b) For a particular time t, find a value of the threshold, γ , where the probability
that a target will be declared present when one is not present is 10−5.

(c) For the case when a target is present completely characterize a sample of
the process V (t).

(d) For the value of the threshold selected in (b) find how large A should be to
correctly detect a target present with a probability of detection greater than
0.9 for any value of t.

Problem 9.10. A real valued additive white Gaussian noise, W (t), (two-sided spec-
tral density N0/2) is input into a linear-time-invariant filter with a real valued
impulse response hR(t). Assume hR(t) represents an ideal lowpass filter with
bandwidth BT and N (t) is the output of the filter.

(a) Find RN (τ ).

(b) Choose BT such that E[N 2(t)] = 1.

(c) For the random process Z(t) = N (t) − N (t − t1) find RZ(τ ).

(d) Select a value of t1 such that E[Z2(t)] = 0.5 for the BT computed in (b).

Problem 9.11. (Adapted from PD) Prof. Fitz likes to gamble but he is so busy
thinking up problems to torment students that he can never find time to get
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to Las Vegas. So instead he decides to gamble with the students in his com-
munication classes. The game has real valued additive white Gaussian noise
(two-sided spectral density N0/2 = 1), W (t), input into a linear-time-invariant
filter with a real valued impulse response

hR(t) =

⎧⎪⎨
⎪⎩

2 0 ≤ t ≤ 0.5

−2 0.5 < t ≤ 1

0 elsewhere

(9.57)

Prof. Fitz samples the noise, N (t), at a time of his choosing, t0, and notes the
sign of the noise sample. The student playing the game gets to choose a later
time, t0 + τ, τ > 0 to sample the noise and if the sign of the noise sample is the
opposite of Prof. Fitz’s sample then the student gets out of the final exam.

(a) Calculate the output correlation function, RN (τ ).

(b) Prof. Fitz samples at t0 = 1, find E[N 2(1)].

(c) Give the probability density function of Prof. Fitz’s sample, e.g., fN (t0)(n1).

(d) If you are playing the game and Prof. Fitz samples the noise at t0 = 1, select
a sample time to optimize your odds of getting out of the test. Justify your
answer. Could you do better if you were allowed to sample the process at a
time before Prof. Fitz samples the process?

(e) If Prof. Fitz gets a realization N (1) = 2 in his sample, compute the proba-
bility of your getting out of the test for the optimized sample time you gave
in (d).

Problem 9.12. Consider the model in Figure 9.1 where the noise is zero mean
white Gaussian with a one-sided noise spectral density of N0 W/Hz and filter
has an impulse response of

hR(t) =
{

exp[−at] t ≥ 0

0 elsewhere
(9.58)

where a > 0.

(a) Find E[N 2(ts)].

(b) Find P (N (ts) ≤ 1).

(c) Find the noise equivalent bandwidth of this filter, BN .

(d) Find P (N (ts + τ ) ≤ 0|N (ts) = 1). Hint: Eq. (3.23) might be useful.

Problem 9.13. Noise in communication systems are often modeled with the sys-
tem in Figure 9.22. The noise source consists of an ideal voltage noise source
and a source resistance. If the noise source produces a voltage of N (t) where
N (t) is a stationary noise with E[N 2(t)] = PN .
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+

−
N t( )

Rs

R

SinkSource

Figure 9.22 A noise source and sink.

(a) Find the average power delivered to the sink as a function of Rs and R.

(b) What is the value of R that would maximize this power and what would be
the corresponding maximum average power delivered.

Problem 9.14. Given Figure 9.23 and W (t) being an additive white Gaussian
noise (RW (τ ) = N0/2δ(τ )).

(a) Express the probability density function (PDF) of the random variable N1(t1)
for a fixed t1 in terms of h1(t) and N0.

(b) Find the E[N1(t1)N2(t1)] for a fixed t1 in terms of h1(t), h2(t), and N0. Specify
the joint PDF of N1(t1) and N2(t1).

(c) If h1(t) is given in Figure 9.24 then find an impulse response for h2(t) such
that N1(t1) and N2(t1) for a fixed t1 are independent random variables with
equal variances Hint: The answer is not unique.

Problem 9.15. For this problem consider the canonical block diagram shown in
Figure 9.21 with si(t) = Acos(200πt) and with W (t) being an additive white
Gaussian noise with two-sided spectral density of N0/2 = 0.01. HR(f ) is a filter
with a transfer function given in Figure 9.25.

(a) What is so(t) and what is Pso?

(b) If two samples are taken from W (t), e.g., W (t1) and W (t2), what spacing in
the time samples, t2 − t1, must be maintained to have two samples that are
statistically independent random variables?

W t( )

h t1( )

h t2( ) N t2( )

N t1( )

Figure 9.23 White noise into a linear filter,
4000 trials.
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Tp

1

h t1( )

t

Figure 9.24 An example impulse
response.

(c) What is the spectral density of N (t), SN (f )?

(d) What is the noise power, E[N 2(t)]?

(e) Choose A such that the output SNR = 10.

Problem 9.16. Consider the model in Figure 9.1 where the noise is zero mean
white Gaussian with a one-sided noise spectral density of N0 W/Hz and filter
is an ideal bandpass filter of bandwidth BT that has a transfer function of

HR(f ) =
{

3 f c − BT
2 ≤ | f | ≤ f c + BT

2

0 elsewhere
(9.59)

Assume f c ≥ BT .

(a) Find SN (f ).

(b) Find E[N 2(ts)].

(c) Find RN (τ ).

(d) Find P (N (ts) ≤ 1).

(e) Find P (N (ts + τ ) ≤ 0|N (ts) = 1). Hint: Eq. (3.23) might be useful.

(f) Find the value of τ that maximizes P (N (ts + τ ) ≤ 0|N (ts) = 1).

H fR( )

f

1

200 400

Figure 9.25 Transfer function of HR(f ).
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Figure 9.26 A correlation function for a stationary noise.

Problem 9.17. A zero mean, stationary, Gaussian noise, N (t), is characterized by
the correlation function given in Figure 9.26.

(a) Give the average power of this noise.

(b) Give the joint probability density function of two samples of this noise, N (1)
and N (1.02).

(c) Find P (N (1) ≥ 4).

(d) If this noise is the output of an ideal lowpass filter with HR(0) = 1 driven
by white noise, estimate the filter bandwidth and two-sided noise spectral
density of the noise, N0/2.

Problem 9.18. Two noise processes, N1(t) and N2(t), are zero mean, stationary,
Gaussian proceses, and have the following correlation functions:

RN1 (τ ) = 100sinc
(τ

4

)
RN2 (τ ) = 50sinc(25τ ) (9.60)
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W t1( )

W t2( )

h t1( )

h t2( )

h t3( ) E t( )

N t1( )

N t2( )

N t( )
+

−Σ Σ

Figure 9.27 A system block diagram.

(a) Which random process has a greater power? Why?

(b) Two samples are taken from N2(t), N2(t1), and N2(t1+τ ). What is the small-
est value of τ such that the two samples are orthogonal random variables?

(c) For N1(t), what is the correlation coefficient corresponding to τ = 1? Give
the joint PDF of two samples of N1(t) taken 1 second apart.

(d) Find P (N1(t) < −10).

(e) Using only linear devices (amplifiers and filters), generate a random process
statistically identical to N1(t) from N2(t).

Problem 9.19. Consider the block diagram in Figure 9.27 where Wi(t) are inde-
pendent white Gaussian noises with RWi (τ ) = N0/2δ(τ ), i = 1, 2.

(a) Find fN (t0)(n).

(b) Find P (N (t0) > −1).

(c) Find fN (t0)N (t0−τ )(n1, n2).

(d) Find fN (t0)(n|N (t0 − τ ) = n1).

(e) Find the simplest expression for SE (f ).

Problem 9.20. Two random processes are defined as

N1(t) = X cos(2π fot) + Y (9.61)

and

N2(t) = X cos(2π fot) + Y sin(2π fot) (9.62)

where X and Y are independent zero mean jointly Gaussian random variables
with unity variance and fo is a deterministic constant.

(a) Are these processes Gaussian processes?

(b) For each of the processes that are Gaussian given a joint density function
of the samples of the random process taken at t = 0 and t = 1/(4 fo).

(c) Are these processes stationary? Hint: Trigonometry formulas will be useful
here.
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Thermal
Noise

W(t) N(t)
HR( f )

Figure 9.28 The noise model.

Problem 9.21. Consider an additive white Gaussian noise input into a linear-
time-invariant system as given in Figure 9.28. Suppose that

HR(f ) =
{

A | f | ≤ W

0 elsewhere
(9.63)

and that SW (f ) = N0
2 .

(a) Choose A such that σ 2
N (t) = 1.

(b) If W = 100 Hz and N (t0) = 2 find the conditional mean E[N (t0 − τ )|
N (t0) = 2]. Hint: See Section 3.3.3.

(c) If W = 100 Hz, N (t0) = 2, and τ > 0.01 find the value of τ that will minimize

var(N (t0 − τ )|N (t0) = 2) (9.64)

Problem 9.22. Often in engineering practice message signals are modeled as ran-
dom processes. Assume M(t) is a Gaussian random process with the power
spectrum given in Figure 9.29.

(a) What is the power of this signal, Pm?

(b) Find the PDF of one sample of this message signal.

(c) What is the correlation function of the message signal, RM(τ )?

(d) Find and plot the PDF of two samples of this message signal taken τ =
1/200 seconds apart.

(e) Find and plot the PDF of two samples of this message signal taken τ =
0.25/200 seconds apart.

f

1

200−200

S fM( )

Figure 9.29 The power spectrum of the message signal.



9.40 Chapter Nine

Problem 9.23. This chapter came to the conclusion that noise in a communica-
tion system is well modeled as Gaussian and stationary. In a similar modeling
exercise provide a detailed justification of whether it is appropriate to model
the following random processes as Gaussian and/or stationary

(a) The number of victories in a year for the Ohio State University men’s
American football team

(b) The number of skiers per day at the Vail Colorado ski resort

(c) The number of oxygen molecules in one liter of air in your classroom

(d) The number of women engineers graduating from Purdue University in a
year

(e) The number of cars per hour passing a point on a Los Angeles freeway

Problem 9.24. Consider a model with a zero mean Gaussian and stationary noise,
N1(t), input into a linear filter with an impulse response h(t) and a transfer
function of H (f ). Denote the output noise N2(t).

(a) Show that the cross–correlation between the input and the output of the
filter is given as

RN1 N2 (τ ) = E[N1(t)N2(t − τ )] =
∫ ∞

−∞
RN1 (τ + λ)h(λ)dλ (9.65)

(b) Show the cross spectrum between the input and output is

SN1 N2 (f ) = F{RN1 N2 (τ )} = SN1 (f )H ∗(f ) (9.66)

Problem 9.25. Active electronic devices produce more noise than passive devices
(e.g., a resistor) and this can decrease the output SNR from the device. An ideal
model of an amplifier in a communication system is given in Figure 9.30.

(a) In the ideal model of an amplifier with Ps = 10, N0 = 0.001 and with HR(f )
being an ideal lowpass filter of bandwidth, B = 1000 Hz, find the output
SNR, i.e.,

SNRI D = Psin

PN
(9.67)

H fR ( )s tin( )

W t( )

A1 s t N to( ) + ( )Σ

Figure 9.30 An idealized model of an active device.
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H fR( )s tin( )

W t( )

A1 s t N to( ) + ( )

W t1( )

Model

ΣΣ

Figure 9.31 A model of an active device accounting for the extra noise gener-
ated in the device.

(b) In fact, for an active device the output SNR is given as

SNRo = SNRID

F
(9.68)

where F > 1 is defined as the noise figure of the device. Show that this
nonideal active device can be modeled as shown in Figure 9.31 where W1(t)
is an additive white Gaussian noise independent of W (t). Find the spectral
density of W1(t) as a function of F .

(c) Figure 9.32 shows a model of two active devices cascaded in a communica-
tion system. Show that the cascaded noise figure is FT = F1 + F2−1

A2
1

, i.e.,

SNRo = SNRID

FT
= SNRID

F1 + F2−1
A2

1

(9.69)

Problem 9.26. Gaussian random variables are convenient in communication sys-
tems analysis because only a finite number of parameters are needed to fully
characterize the statistical nature of the random variables. Samples taken from
a stationary Gaussian random process require even fewer parameters to char-
acterize.

(a) If N1 and N2 are two jointly Gaussian zero mean random variables how
many parameters and what are the parameters needed to specify the joint
distribution.

H fR ( )s tin( )

W t( )

A1 s t N to( ) + ( )

W t1( )

Model 1 Model 2

W t2( )

A2Σ Σ Σ

Figure 9.32 A model for a cascade of two active devices.
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(b) If N1 = N (t) and N2 = N (t + τ ) are two jointly Gaussian zero mean
random variables obtained by sampling a stationary zero mean bandpass
Gaussian process at time t and t + τ , how many parameters and what are
the parameters needed to specify the joint distribution.

(c) If N1, N2, and N3 are three jointly Gaussian zero mean random variables
how many parameters and what are the parameters needed to specify the
joint distribution.

(d) If N1 = N (t), N2 = N (t + τ ), and N3 = N (t − τ ) are three jointly Gaussian
zero mean random variables obtained by sampling a stationary zero mean
bandpass Gaussian process at times t, t+τ , and t−τ , how many parameters
and what are the parameters needed to specify the joint distribution.

9.8 Example Solutions

Problem 9.4.

(a) Psi = A2

(b) Since the input signal is a DC signal ( f = 0) and has a Fourier transform
Si(f ) = Aδ(f ) the output is so(t) = AHR(0). Consequently, Ps = A2|HR(0)|2.

(c)

σ 2
N = N0

2

∫ ∞

−∞
|HR(f )|2df = N0

2
|HR(0)|2

∫ ∞

−∞
|HN (f )|2df (9.70)

(d)

SNR = Ps

σ 2
N

= 2A2

N0

[∫ ∞

−∞
|HN (f )|2 df

]−1

(9.71)

(e) Using the definition of BN gives

BN = 1
2|HR(0)|2

∫ ∞

−∞
|HR(f )|2df = 1

2|HR(0)|2
∫ ∞

−∞
|HR(0)|2|HN (f )|2df

(9.72)
Therefore, BN = 1

2

∫∞
−∞ |HN (f )|2 df and SNR = A2

N0 BN
.

Problem 9.20.

(a) Note that N1(t) and N2(t) are both zero mean Gaussian processes with
correlation functions

RNi (τ ) = N0

2

∫ ∞

−∞
hi(t)hi(t − τ )dt (9.73)
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Since N (t) = N1(t) + N2(t) and N1(t) is independent of N2(t) we have

σ 2
N = RN (0) = var(N (t)) = var(N1(t)) + var(N2(t))

= N0

2

∫ ∞

−∞

(|h1(t)|2 + |h2(t)|2)dt (9.74)

and

fN (t)(n) = 1√
2πσ 2

N

exp
[
− n2

2σ 2
N

]
(9.75)

(b)

P (N (t) > −1) =
∫ ∞

−1
fN (t)(n)d n = 1

2
+ 1

2
erf

(
1√

2var(N (t))

)
(9.76)

(c) Since N (t) is a zero mean process the PDF is characterized with

RN (0) = σ 2
N ρN (τ ) = RN (τ )

σ 2
N

= N0

2σ 2
N

∫ ∞

−∞
(h1(t)h1(t − τ ) + h2(t)h2(t − τ ))dt

(9.77)
Using these results in

fN (t)N (t−τ )(x, y) = 1

2πσ 2
N

√
1 − ρ2

N (τ )

× exp

(
− 1

2σ 2
N

(
1 − ρ2

N (τ )
)(x2 − 2ρN (τ )xy + y2)) (9.78)

(d) Recall that

fN (t)(x|N (t − τ ) = y) = 1

σN

√
2π
(
1 − ρ2

N (τ )
)

× exp

(
− 1

2σ 2
N

(
1 − ρ2

N (τ )
) (x − ρN (τ )y)2

)
(9.79)

(e) The effective transfer function from input 1 to the output is

HE1(f ) = H1(f )(1 − H3(f )) (9.80)

The effective transfer function from input 2 to the output is

HE2(f ) = −H2(f )H3(f ) (9.81)

Since both of the input noises, Wi(t), are independent the output power
spectrum is given as

SE (f ) = N0

2
|H1(f )(1 − H3(f ))|2 + N0

2
| − H2(f )H3(f )|2 (9.82)
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9.9 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). Each team
member should be prepared to give the presentation.

9.9.1 Project 1

Project Goals: To use your engineering knowledge of random processes to
solve a practical engineering problem.

You have a voice signal with average power of −10 dBm and bandwidth of
4 kHz that you want to transmit over a cable from one building on campus to
another building on campus. The system block diagram is shown in Figure 9.33.
The noise in the receiver electronics is accurately modeled as an AWGN with a
one-sided noise spectral density of N0 = −174 dBm/Hz. The cable is accurately
modeled as a filter with the following impulse response

hc(t) = Lpδ(t − τp) (9.83)

where Lp is the cable loss. You are using cable with a loss of 2 dB/1000 ft. How
long of a cable can be laid and still achieve at least 10 dB SNR? If the signal
was changed to a video signal with −10 dBm average power and bandwidth of
6 MHz, how long of a cable can be laid and still achieve at least 10 dB SNR?

9.9.2 Project 2

Project Goals: To use the knowledge of random process theory to identify the
characteristics of an electronic signal.

Message
Source

m t( )
Channel

Noise

Lowpass
Filter H( f )

OutputΣ

Figure 9.33 Block diagram of a baseband (cable) communication system.
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You have been given a radio receiver that was recovered from a crash site
of an alien spacecraft and are part of a project team that has been asked to
understand this radio. The technician on your project has sampled a waveform,
N (t), from the radio output at a sample rate of f s = 10 MHz and put it in
the file aliennoise.mat. Examine the file and determine whether you think the
signal can be characterized as Gaussian and/or stationary. If the process is well
modeled as Gaussian and stationary then estimate the correlation function,
RN (τ ), and the power spectral denisty, SN (f ), of this process. Determine what
bandwidth contains 99% of the signal power.
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Chapter

10
Noise in Bandpass

Communication Systems

Noise in communication systems is produced from a filtering operation on the
wideband noise that appears at the receiver input. Most communication occurs
in a fairly limited bandwidth around some carrier frequency. Since Chapter 9
showed that the input noise in a communication system is well modeled as an
additive white Gaussian noise, it makes sense to limit the effects of this noise by
filtering around this carrier frequency. Consequently, the canonical model for
noise in a bandpass communication system is given in Figure 10.1. The white
noise, W (t), models a wideband noise which is present at the receiver input.
This noise can come from a combination of the receiver electronics, man-made
noise sources, or galactic noise sources. This noise is often well modeled as a
zero mean, stationary, and Gaussian random process with a power spectral
density of N0/2 W/Hz. The filter, HR(f ), represents the frequency response of
the receiver system. This frequency response is often designed to have a band-
pass characteristic to match the transmission band and is bandpass around
the carrier frequency, f c. Chapter 9 showed that Nc(t) is a stationary Gaussian
process with a power spectral density (PSD) of

SNc (f ) = |HR(f )|2 N0

2
(10.1)

The noise, Nc(t), will consequently have all it’s power concentrated around
the carrier frequency, f c. Noise with this characteristic is denoted bandpass
noise. The average power of the noise is given as

E
[
N 2

c (t)
] = σ 2

N =
∫ ∞

−∞
SNc (f )df = N0

2

∫ ∞

−∞
|HR(f )|2df (10.2)

This noise in a bandpass communication system will then be passed through
an I/Q downconverter to produce an in-phase noise, N I (t), and a quadrature

10.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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rI (t) + NI(t)
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rQ(t) + NQ(t)

xc(t) HR( f )
I/Q
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converter

Σ

rI (ts) + NI(ts)

rQ(ts) + NQ(ts)

Figure 10.1 The canonical model for communication system analysis.

noise, N Q(t). This chapter provides the necessary tools to characterize the low-
pass noise processes, N I (t) and N Q(t), that result in this situation.

EXAMPLE 10.1
Consider a receiver system with an ideal bandpass filter response of bandwidth BT
centered at fc, i.e.,

HR(f ) =
{

A || f | − fc| ≤ BT
2

0 elsewhere
(10.3)

where A is a real, positive constant. The bandpass noise will have a spectral density of

SNc (f ) =

⎧⎨
⎩

A2N0

2
|| f | − fc| ≤ BT

2

0 elsewhere
(10.4)

Consequently

E
[
N 2

c (t)
] = σ 2

N =
∫ ∞

−∞
SNc (f )df = A2 N0 BT (10.5)

These tools will enable an analysis of the performance of bandpass commu-
nication systems in the presence of noise. This ability to analyze the effects
of noise is what distinguishes the competent communication systems engineer
from the hardware designers and the technicians they work with. The simplest
analysis problem is examining a particular point in time, ts, and character-
izing the resulting noise samples, N I (ts) and N Q(ts), to extract a parameter
of interest, e.g., average signal-to-noise ratio (SNR). Bandpass communica-
tion system performance can be characterized completely if probability density
functions (PDF) of the noise samples of interest can be identified, e.g.,

f N I (n1), f N I (t)N I (t+τ )(n1, n2), and/or f N Q(t)N I (t+τ )(n1, n2) (10.6)
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To accomplish this analysis task this chapter first introduces notation for
discussing the bandpass noise and the lowpass noise. The resulting lowpass
noise processes are shown to be zero mean, jointly stationary, and jointly Gaus-
sian. Consequently, the PDFs like those detailed in Eq. (10.6) will entirely be
a function of the second order statistics of the lowpass noise processes. These
second order statistics can be produced from the PSD given in Eq. (10.1).

EXAMPLE 10.2
If a sampled white Gaussian noise like that considered in Figure 9.7(b) with a measured
spectrum like that given in Figure 9.14(a) is put through a bandpass filter a bandpass
noise will result. For the case of a bandpass filter with a center frequency of 6500 Hz and
a bandwidth of 2000 Hz one sample path of the measured output PSD, SNc ( f , ω1, T m),
is shown in Figure 10.2(a). An estimate of the PSD using an average of 4000 sample
paths is shown in Figure 10.2(b). The validity of Eq. (10.1) is clearly evident in this
output PSD as this PSD can be viewed as the multiplication of the input white PSD and
a bandpass transfer function. One resulting sample function of this output bandpass
noise, Nc(t, ω1) is given in Figure 10.3(a). A histogram of 4000 output samples taken
at t = 0.0045 seconds of this noise process, Nc(0.0045), is shown in Figure 10.3(b).
This histogram demonstrates that a bandpass noise as is typically seen in bandpass
communication systems is well modeled as a zero mean Gaussian random process.

Point 1: In bandpass communications the input noise, Nc(t), is a stationary
Gaussian random process with power spectral density given in Eq. (10.1).
The effect of noise on the performance of a bandpass communication system
can be analyzed if the PDFs of the noise samples of interest can be charac-
terized as in Eq. (10.6).
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Figure 10.2 The measured spectral characteristics of bandpass filtered white noise.
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Figure 10.3 Further characterization of bandpass noise resulting from bandpass filtering a white Gaussian noise.

10.1 Bandpass Random Processes

A bandpass random process will have the same form as a bandpass signal.
Consequently, it can be written as

Nc(t) = N I (t)
√

2 cos(2π f ct) − N Q(t)
√

2 sin(2π f ct) (10.7)

= N A(t)
√

2 cos(2π f ct + N P (t)) (10.8)

N I (t) in Eq. (10.7) is normally referred to as the in-phase (I) component of
the noise and N Q(t) is normally referred to as the quadrature (Q) component
of the bandpass noise. The amplitude of the bandpass noise is N A(t) and
the phase of the bandpass noise is N P (t). As in the deterministic case the
transformation between the two representations are given by

N A(t) =
√

N I (t)2 + N Q(t)2 N P (t) = tan−1
[

N Q(t)
N I (t)

]

and

N I (t) = N A(t) cos(N P (t)) N Q(t) = N A(t) sin(N P (t))

A bandpass random process has sample functions which appear to be a
sinewave of frequency f c with a slowly varying amplitude and phase. An ex-
ample of a bandpass random process is shown in Figure 10.3(a). As in the de-
terministic signal case, a method of characterizing a bandpass random process
which is independent of the carrier frequency is desired. The complex envelope
representation provides such a vehicle.

The complex envelope of a bandpass random process is defined as

Nz(t) = N I (t) + j N Q(t) = N A(t) exp[ j N P (t)] (10.9)



Noise in Bandpass Communication Systems 10.5

LPF

LPF

Σ
+

π 2 π 2

2 2cos π f tc( )

NI(t) N1(t)

N2(t)

−

NQ(t)

NI(t)

−NQ(t)

Nc(t)
2 2cos π f tc( )

Figure 10.4 The transformations between bandpass noise and the baseband components.

The original bandpass random process can be obtained from the complex enve-
lope by

Nc(t) =
√

2
[Nz(t) exp[ j 2π f ct]]

Since the complex exponential is a deterministic function, the complex ran-
dom process Nz(t) contains all the randomness in Nc(t). In a similar fashion
as a bandpass signal, a bandpass random process can be generated from its I
and Q components and a complex baseband random process can be generated
from the bandpass random process. Figure 10.4 shows these transformations.
Figure 10.5 shows a bandpass noise and the resulting in-phase and quadra-
ture components that are output from a downconverter structure shown in
Figure 10.4.
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Figure 10.5 A bandpass noise and the resulting in-phase and quadrature noises. BT = 2000 Hz and fc = 6500 Hz.
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Correlation functions are important in characterizing random processes.
Autocorrelation functions were a focus of Chapter 9. For bandpass processes
the crosscorrelation function will be important as well.

Definition 10.1 Given two real random processes, N I (t) and N Q(t), the crosscorrelation
function between these two random processes is given as

RN I N Q (t1, t2) = E[N I (t1)N Q(t2)] (10.10)

The crosscorrelation function is a measure of how similar the two random pro-
cesses behave. In an analogous manner to the discussion in Chapter 9 a cross-
correlation coefficient can be defined.

The correlation function of a bandpass random process, which is derived using
Eq. (10.7), is given by

RNc (t1, t2) = E[Nc(t1)Nc(t2)]

= 2RN I (t1, t2) cos(2π f ct1) cos(2π f ct2) − 2RN I N Q (t1, t2) cos(2π f ct1)

× sin(2π f ct2) − 2RN Q N I (t1, t2) sin(2π f ct1) cos(2π f ct2)

+ 2RN Q (t1, t2) sin(2π f ct1) sin(2π f ct2) (10.11)

Consequently, the correlation function of the bandpass noise is a function of
both the correlation function of the two lowpass noise processes and the cross-
correlation between the two lowpass noise processes.

Definition 10.2 The correlation function of the complex envelope of a bandpass random
process is

RNz(t1, t2) = E[Nz(t1)N ∗
z (t2)] (10.12)

Using the definition of the complex envelope given in Eq. (10.9) produces

RNz(t1, t2) = RN I (t1, t2) + RN Q (t1, t2) + j [−RN I N Q (t1, t2) + RN Q N I (t1, t2)]
(10.13)

The correlation function of the bandpass signal, RNc (t1, t2), is derived from the
complex envelope, via

RNc (t1, t2) = 2E(
[Nz(t1) exp[ j 2π f ct1]]
[N ∗
z (t2) exp[− j 2π f ct2]]) (10.14)

This complicated function can be simplified in some practical cases. The case
when the bandpass random process, Nc(t), is a stationary random process is
one of them.

10.2 Characteristics of the Complex Envelope

10.2.1 Three Important Results

This section shows that the lowpass noise, N I (t) and N Q(t) derived from a
bandpass noise, Nc(t), are zero mean, jointly Gaussian, and jointly station-
ary when Nc(t) is zero mean, Gaussian, and stationary. These characteristics
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simplify the description of N I (t) and N Q(t) considerably. Important quantities
in this analysis will be

N1(t) = Nc(t)
√

2 cos(2π f ct)

N2(t) = −Nc(t)
√

2 sin(2π f ct) (10.15)

which are the outputs of the multipliers in the down converter in Figure 10.4.

Property 10.1 If the bandpass noise, Nc(t), has a zero mean, then N I (t) and N Q(t) both
have a zero mean.

Proof: This property’s validity can be proved by considering how N I (t) (or
N Q(t)) is generated from Nc(t) as shown in Figure 10.4. The I component of
the noise is expressed as

N I (t) = N1(t) ∗ hL(t) =
√

2
∫ ∞

−∞
hL(t − τ )Nc(τ ) cos(2π f cτ )dτ

where hL(t) is the impulse response of the lowpass filter. Neither hL(t) nor the
cosine term are random, so the linearity property of the expectation operator
can be used to obtain

E(N I (t)) =
√

2
∫ ∞

−∞
hL(t − τ )E(Nc(τ )) cos(2π f cτ )dτ = 0

The same ideas holds for N Q(t). �

This property is important since the input thermal noise to a communication
system is typically zero mean; consequently, the I and Q components of the
resulting bandpass noise will also be zero mean.

Definition 10.3 Two random processes N I (t) and N Q(t) are jointly Gaussian random
processes if any set of samples taken from the two processes are a set of joint Gaussian
random variables.

Property 10.2 If the bandpass noise, Nc(t), is a Gaussian random process then N I (t)
and N Q(t) are jointly Gaussian random processes.

Proof: The detailed proof techniques are beyond the scope of this course but are
contained in most advanced texts concerning random processes (e.g., [DR87]).
A sketch of the ideas needed in the proof is given here. A random process which
is a product of a deterministic waveform and a Gaussian random process is
still a Gaussian random process. Hence N1(t) and N2(t) are jointly Gaussian
random processes. N I (t) and N Q(t) are also jointly Gaussian processes since
they are linear functionals of N1(t) and N2(t) (i.e., N I (t) = N1(t) ∗hL(t)). �

Again this property implies that the I and Q components of the bandpass
noise in most communication systems will be well modeled as Gaussian ran-
dom processes. It is easy to deduce that many of the samples of N I (t) (and sim-
ilarly N Q(t)) are Gaussian random variables. Sampling Nc(t) at t = k/(2 f c)
where k is an integer gives Nc(k/(2 f c)) = (−1)k N I (k/(2 f c)). Since Nc(t) is a
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Figure 10.6 Histogram of samples of the random variables N I (0.045) and N Q(0.045) after downconverting a band-
pass noise process.

Gaussian random process these samples are Gaussian random variables and
consequently many samples of the lowpass processes are also Gaussian random
variables. Property 10.2 simply implies that all jointly considered samples of
N I (t) and N Q(t) are jointly Gaussian random variables.

EXAMPLE 10.3
Consider the previous bandpass filtered noise example where fc = 6500 Hz and the
bandwidth is 2000 Hz. Figure 10.6 shows histogram of samples of the random variable
N I (0.045) and N Q(0.045) (i.e., the lowpass processes sampled at t = 45 ms) after down-
conversion of a bandpass noise process. Again it is apparent from this figure that the
lowpass noise is well modeled as a zero mean Gaussian random process. It is interesting
to note that at least in this example samples from N I (t) and N Q(t) appear to have a
common distribution.

Property 10.3 If a bandpass signal, Nc(t), is a stationary Gaussian random process,
then N I (t) and N Q(t) are also jointly stationary, jointly Gaussian random processes.

Proof: Define the random process Nz1(t) = N1(t) + j N2(t) = Nc(t)
√

2 ×
exp[− j 2π f ct]. Since Nc(t) is a stationary Gaussian random process then
RNz1 (t1, t2) = 2RNc (τ ) exp[− j 2π f cτ ] = RNz1 (τ ) where τ = t1 − t2. Since Nz(t) =
Nz1(t) ∗hL(t), if Nz1(t) is stationary then the stationarity of the output complex
envelope, Nz(t), is due to Property 9.11. Using the stationarity of Nz(t) with
the result in Eq. (10.13) gives the following relationship

RNz(τ ) = RN I (t1, t2)+RN Q (t1, t2)+ j
[−RN I N Q (t1, t2)+RN Q N I (t1, t2)

]
(10.16)
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which implies that both the real and imaginary part of RNz(τ ) must only be
functions of τ so that

RN I (t1, t2) + RN Q (t1, t2) = g1(τ ) − RN I N Q (t1, t2) + RN Q N I (t1, t2) = g2(τ )
(10.17)

Alternately, since Nc(t) has the form given in Eq. (10.11) a rearrangement
(by using trigonometric identities) with t2 = t1 − τ gives

RNc (τ ) = [RN I (t1, t2) + RN Q (t1, t2)
]

cos(2π f cτ ) + [RN I (t1, t2) − RN Q (t1, t2)
]

× cos(2π f c(2t2 + τ )) + [RN I N Q (t1, t2) − RN Q N I (t1, t2)
]

sin(2π f cτ )

−[RN I N Q (t1, t2) + RN Q N I (t1, t2)
]

sin(2π f c(2t2 + τ )) (10.18)

Since Nc(t) is Gaussian and stationary this implies that the right-hand side
of Eq. (10.18) is a function only of the time difference, τ and not the absolute
time t2. Consequently, the factors multiplying the sinusoidal terms having ar-
guments containing t2 must be zero. Consequently, a second set of constraints
is

RN I (t1, t2) = RN Q (t1, t2) RN I N Q (t1, t2) = −RN Q N I (t1, t2) (10.19)

The only way for Eq. (10.17) and Eq. (10.19) to be satisfied is if

RN I (t1, t2) = RN Q (t1, t2) = RN I (τ ) = RN Q (τ ) (10.20)

RN I N Q (t1, t2) = −RN Q N I (t1, t2) = RN I N Q (τ ) = −RN Q N I (τ ) (10.21)

Since all correlation functions and crosscorrelation functions are functions of τ

then N I (t) and N Q(t) are jointly stationary. �

Point 2: If the input noise, Nc(t), is a zero mean, stationary, Gaussian ran-
dom process then N I (t) and N Q(t) are zero mean, jointly Gaussian, and
jointly stationary.

10.2.2 Important Corollaries

This section discusses several important corollaries to the important results
derived in the last section. The important result from the last section is sum-
marized as follows: if Nc(t) is zero mean, Gaussian and stationary then N I (t)
and N Q(t) are zero mean, jointly Gaussian, and jointly stationary.

Property 10.4

RN I (τ ) = RN Q (τ ) (10.22)

Surprisingly, this property, given in Eq. (10.20), implies that both N I (t) and
N Q(t) behave in a statistically identical manner. Consequently, the power of
the noise in each component is identical, i.e., E[N 2

I (t)] = E[N 2
Q(t)] = σ 2

N I
. This

is empirically confirmed by examining the histograms in Figure 10.6.
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Property 10.5

RN I N Q (τ ) = −RN I N Q (−τ ) (10.23)

This property, due to Eq. (10.21), implies RN I N Q (τ ) is an odd function with
respect to τ .

Property 10.6 RNz(τ ) = 2RN I (τ ) − j 2RN I N Q (τ )

Proof: This is shown by using Eq. (10.22) and Eq. (10.23) in Eq. (10.13). �

This implies that the real part of RNz(τ ) is an even function of τ and the
imaginary part of RNz(τ ) is an odd function of τ .

Property 10.7

RNc (τ ) = 2RN I (τ ) cos(2π fcτ ) + 2RN I N Q (τ ) sin(2π fcτ ) = 
[RNz(τ ) exp( j 2π fcτ )
]

(10.24)

Proof: This is shown by using Eq. (10.22) and Eq. (10.23) in Eq. (10.18). �

This property implies there is a simple relationship between the correlation
function of the stationary Gaussian bandpass noise and the correlation function
of the complex envelope of the bandpass noise. This relationship has significant
parallels to the relationship between bandpass and the baseband signals given
in Chapter 4.

Property 10.8 var(Nc(t)) = σ 2
N = var(N I (t)) + var(N Q(t)) = 2var(N I (t)) = var(Nz(t))

= 2σ 2
N I

Proof: This is shown by using Eq. (10.22) in Eq. (10.24) for τ = 0. �

This property states that the power in the bandpass noise is the same as
the power in the complex envelope. This power in the bandpass noise is also
the sum of the powers in the two lowpass noises which comprise the complex
envelope.

Property 10.9 For the canonical problem considered in this chapter, N I (t) and N Q(t)
are completely characterized by the functions RN I (τ ) and RN I N Q (τ ).

Proof: Any joint PDF of samples taken from jointly stationary and jointly
Gaussian processes are completely characterized by the first- and second-order
moments. Note, first that N I (t) and N Q(t) are zero mean processes. Conse-
quently, the characterization of the process only requires the identification of
the variance, σ 2

N I
= RN I (0), and the correlation coefficient between samples.

The correlation coefficient between samples from the same process is given
as ρN I (τ ) = RN I (τ )/RN I (0) while the correlation coefficient between samples
taken from N I (t) and N Q(t) is ρN I N Q (τ ) = RN I N Q (τ )/RN I (0). �
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EXAMPLE 10.4
If one sample from the in-phase noise is considered then

f N I (ni) = 1√
2πσ 2

N I

exp

(
− n2

i

2σ 2
N I

)
(10.25)

where σ 2
N I

= RN I (0).

EXAMPLE 10.5
If two samples from the in-phase noise are considered then

f N I (t)N I (t−τ )(n1, n2) = 1

2πσ 2
N I

√(
1 − ρ2

N I
(τ )
) exp

[
−(n2

1 − 2ρN I (τ )n1n2 + n2
2

)
2σ 2

N I

(
1 − ρ2

N I
(τ )
)
]

where ρN I (τ ) = RN I (τ )/RN I (0).

EXAMPLE 10.6
If one sample each from the in-phase noise and the quadrature noise are considered
then

f N I (t)N Q(t−τ )(n1, n2) = 1

2πσ 2
N I

√(
1 − ρ2

N I N Q
(τ )
) exp

[
−(n2

1 − 2ρN I N Q (τ )n1n2 + n2
2

)
2σ 2

N I

(
1 − ρ2

N I N Q
(τ )
)
]

where ρN I N Q (τ ) = RN I N Q (τ )/
√

RN I (0)RN Q (0) = RN I N Q (τ )/RN I (0).

Property 10.10 The random variables N I (ts) and N Q(ts) are independent random vari-
ables for any value of ts.

Proof: From Eq. (10.23) we know RN I N Q (τ ) is an odd function. Consequently,
RN I N Q (0) = 0. Since N I (t) and N Q(t) are jointly Gaussian and orthogonal ran-
dom variables then they are also independent. �

Any joint PDF of samples of N I (ts) and N Q(ts) taken at the same time have the
simple PDF

f N I (t)N Q(t)(n1, n2) = 1
2πσ 2

N I

exp

[
−(n2

1 + n2
2

)
2σ 2

N I

]
(10.26)

This simple PDF will prove useful in our performance analysis of bandpass
communication systems.
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Point 3: Since N I (t) and N Q(t) are zero mean, jointly Gaussian, and jointly
stationary then a complete statistical description of N I (t) and N Q(t) is avail-
able from RN I (τ ) and RN I N Q (τ ).

10.3 Spectral Characteristics

At this point we need a methodology to translate the known PSD of the band-
pass noise Eq. (10.1) into the required correlation function, RN I (τ ), and the
required crosscorrelation function, RN I N Q (τ ). To accomplish this goal we need
a definition.

Definition 10.4 For two random processes N I (t) and N Q(t) whose crosscorrelation func-
tion is given as RN I N Q (τ ) the cross spectral density is

SN I N Q (f ) = F
{

RN I N Q (τ )
}

(10.27)

Property 10.11 The PSD of Nz(t) is given by

SNz(f ) = F
{

RNz(τ )
} = 2SN I (f ) − j 2SN I N Q (f ) (10.28)

where SN I (f ) and SN I N Q (f ) are the power spectrum of N I (t) and the crosspower spec-
trum of N I (t) and N Q(t), respectively.

Proof: This is seen taking the Fourier transform of RNz(τ ) as given in Prop-
erty 10.6. �

Property 10.12 SN I N Q (f ) is purely an imaginary function and an odd function of f .

Proof: This is true since RN I N Q (τ ) is an odd real valued function (see Prop-
erty 2.6). A power spectral density must be real and positive so by examining
Eq. (10.28) it is clear SN I N Q (f ) must be imaginary for SNz(f ) to be a valid power
spectral density. �

Property 10.13 The even part of SNz(f ) is due to SN I (f ) and the odd part is due to
SN I N Q (f ).

Proof: A spectral density of a real random process is always even. SN I (f ) is
a spectral density of a real random process. By Property 10.12, SN I N Q (f ) is a
purely imaginary and odd function of frequency. �

Property 10.14

SN I (f ) = SNz(f ) + SNz(− f )
4

SN I N Q (f ) = SNz(− f ) − SNz(f )
j 4

Proof: This is a trivial result of Property 10.13 �

Consequently, Property 10.14 provides a simple method to compute SN I (f ) and
SN I N Q (f ) once SNz(f ) is known. SNz(f ) can be computed from SNc (f ) given in
Eq. (10.1) in a simple way as well.
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Property 10.15

SNc (f ) = 1
2

SNz( f − fc) + 1
2

SNz(− f − fc)

Proof: Examining Eq. (10.24) and the frequency translation theorem of the
Fourier transform, the spectral density of the bandpass noise, Nz(t), is ex-
pressed as

SNc (f ) = 2SN I (f ) ∗
[

1
2

δ( f − f c) + 1
2

δ( f + f c)
]

+ 2SN I N Q (f ) ∗
[

1
2 j

δ( f − f c) − 1
2 j

δ( f + f c)
]

where ∗ again denotes convolution. This equation can be rearranged to give

SNc (f ) = [SN I ( f − f c) − j SN I N Q ( f − f c)
]+ [SN I ( f + f c) + j SN I N Q ( f + f c)

]
(10.29)

Noting that due to Property 10.12

SNz(− f ) = 2SN I (f ) + j 2SN I N Q (f ) (10.30)

Equation (10.29) reduces to the result in Property 10.15. �

This is a very fundamental result. Property 10.15 states that the power spec-
trum of a bandpass random process is simply derived from the power spectrum
of the complex envelope and vice versa. For positive values of f , SNc (f ) is ob-
tained by translating SNz(f ) to f c and scaling the amplitude by 0.5 and for
negative values of f , SNc (f ) is obtained by flipping SNz(f ) around the ori-
gin, translating the result to − f c, and scaling the amplitude by 0.5. Likewise
SNz(f ) is obtained from SNc (f ) by taking the positive frequency PSD which is
centered at f c and translating it to baseband ( f = 0) and multiplying it by 2.
Property 10.15 also demonstrates in another manner that the average power of
the bandpass and baseband noises are identical since the area under the PSD
is the same (this was previously shown in Property 10.8).

EXAMPLE 10.7
Example 10.1 showed a receiver system with an ideal bandpass filter that had a band-
pass noise PSD of

SNc (f ) =
{

A2 N0
2 || f | − fc| ≤ BT

2

0 elsewhere
(10.31)

Moving the positive frequency portion of the spectrum at fc to baseband and doubling
the height gives

SNz(f ) =
{

A2N0 | f | ≤ BT
2

0 elsewhere
(10.32)
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Figure 10.7 The measured PSD of the complex envelope of a bandpass process resulting from bandpass filtering a
white noise.

Since there is no odd part to this PSD

SN I (f ) =
{

A2 N0
2 | f | ≤ BT

2

0 elsewhere
SN I N Q (f ) = 0 � (10.33)

Again considering the previous example of bandpass filtered white noise with fc =
6500 Hz and a bandwidth of 2000 Hz a resulting measured power spectral density of the
complex envelope is given in Figure 10.7. This measured PSD demonstrates the validity
of the analytical results given in Eq. (10.36).

EXAMPLE 10.8
Consider an example PSD that might appear in a receiver for SSB-AM transmission
given as

SNc (f ) =
{

A2 N0
2 0 ≤ | f | − fc ≤ BT

0 elsewhere
(10.34)

Moving the positive frequency portion of the spectrum at fc to baseband and doubling
the height gives

SNz(f ) =
{

A2N0 0 ≤ f ≤ BT

0 elsewhere
(10.35)
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Finding the even and odd parts of this PSD using Property 10.14 gives

SN I (f ) =
{

A2 N0
4 | f | ≤ BT

0 elsewhere
SN I N Q (f ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A2 N0
j 4 −BT ≤ f ≤ 0

−A2 N0
j 4 0 ≤ f ≤ BT

0 elsewhere
(10.36)

It is clear from this example that the random processes N I (t) and N Q(t) are in some way
correlated. The exact correlation can be computed by an inverse Fourier transform. The
other interesting characteristic resulting from this example is that the same bandpass
noise spectrum resulted in significantly different baseband noise characteristics depen-
dent on the selected value of fc in the downconverter. As one example of the different
characteristics, the baseband noise in this example has twice the bandwidth of the noise
in the previous example while the bandpass noise in each case had the same bandwidth.

Point 4: SN I (f ) and SN I N Q (f ) can be computed in a straightforward fashion
from SNc (f ) given in Eq. (10.1). An inverse Fourier transform will produce
the functions RN I (τ ) and RN I N Q (τ ). From RN I (τ ) and RN I N Q (τ ) a complete
statistical description of the complex envelope noise process can be obtained.

10.4 The Solution of the Canonical Bandpass Problem

The tools and results are now in place to completely characterize the complex
envelope of the bandpass noise typically encountered in a bandpass communi-
cation system. First, the characterization of one sample, N I (ts), of the random
process N I (t) is considered (or equivalently N Q(ts)). This case requires a six
step process summarized as

1. Identify N0 and HR(f ).

2. Compute SNc (f ) = N0
2 |HR(f )|2.

3. Compute SNz(f ).

4. Compute

SN I (f ) = SNz(f ) + SNz(− f )
4

5. σ 2
N I

= RN I (0) = ∫∞
−∞ SN I (f )df

6. f N I (ts)(n1) = 1√
2πσ 2

N I

exp
(

− n2
1

2σ 2
N I

)
= f N Q(ts)(n1)

The only difference between this process and the process used for lowpass
processes as highlighted in Section 9.6 is steps 3–4. These two steps simply are
the transformation of the bandpass PSD into the PSD for one channel of the
lowpass complex envelope noise.
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EXAMPLE 10.9
The previous examples showed a receiver system with an ideal bandpass filter had after
the completion of steps 1–4

SN I (f ) =
{

A2 N0
2 | f | ≤ BT

2

0 elsewhere
(10.37)

Consequently, σ 2
N I

= RN I (0) = A2 N0 BT
2 .

Second, the characterization of two samples from one of the channels of the
complex envelope, N I (t1) and N I (t2), is considered. This case requires a seven
step process summarized as

1. Identify N0 and HR(f ).

2. Compute SNc (f ) = N0
2 |HR(f )|2.

3. Compute SNz(f ).

4. Compute

SN I (f ) = SNz(f ) + SNz(− f )
4

5. RN I (τ ) = F−1{SN I (f )}
6. σ 2

N I
= RN I (0) and ρN I (τ ) = RN I (τ )/σ 2

N I

7. f N I (t1)N I (t2)(n1, n2) = 1
2πσ 2

N I

√
(1−ρ2

N I
(τ ))

exp
[

−1
2σ 2

N I
(1−ρ2

N I
(τ ))

(
n2

1 − 2ρN I (τ )n1n2 + n2
2

)]

The only difference between this process and the process used for lowpass
processes as highlighted in Section 9.6 is step 3–4. These two steps again are
the transformation of the bandpass PSD into the PSD for one channel of the
lowpass complex envelope noise.

EXAMPLE 10.10
The previous examples showed a receiver system with an ideal bandpass filter had after
the completion of steps 1–4

SN I (f ) =
{

A2 N0
2 | f | ≤ BT

2

0 elsewhere
(10.38)

Consequently, step 5 gives σ 2
N I

= RN I (0) = A2 N0 BT
2 and RN I (τ ) = A2 N0 BT

2 sinc(BT τ ).
This implies that ρN I (τ ) = sinc(BT τ ).
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Finally, the characterization of two samples one from each of the channels
of the complex envelope, N I (t1) and N Q(t2), is considered. This case requires a
seven step process summarized as

1. Identify N0 and HR(f ).

2. Compute SNc (f ) = N0
2 |HR(f )|2.

3. Compute SNz(f ).

4. Compute

SN I (f ) = SNz(f ) + SNz(− f )
4

SN I N Q (f ) = SNz(− f ) − SNz(f )
j 4

5. RN I N Q (τ ) = F−1
{

SN I N Q (f )
}

6. σ 2
N I

= RN I (0) and ρN I N Q (τ ) = RN I N Q (τ )/σ 2
N I

7.
f N I (t1)N Q(t2)(n1, n2) = 1

2πσ 2
N I

√(
1 − ρ2

N I N Q
(τ )
)

× exp

[
−1

2σ 2
N I

(
1 − ρ2

N I N Q
(τ )
)(n2

1 − 2ρN I N Q (τ )n1n2 + n2
2

)]

The only difference between this process and the process for two samples from
the same channel is the computation of the crosscorrelation function, RN I N Q (τ ).

EXAMPLE 10.11
The previous examples showed a receiver system with an ideal bandpass filter had after
the completion of steps 1–4

SN I (f ) =
{

A2 N0
2 | f | ≤ BT

2

0 elsewhere
SN I N Q (f ) = 0 (10.39)

Consequently, step 5 gives σ 2
N I

= RN I (0) = A2 N0 BT
2 and RN I N Q (τ ) = 0. This implies

that N I (t1) and N Q(t2) are independent random variables regardless of the values of t1
and t2.

Similarly, three or more samples from either channel of the complex envelope
could be characterized in a very similar fashion. The tools developed in this
chapter give a student the ability to analyze many of the important properties
of noise that are of interest in a bandpass communication system design.
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10.5 Complex Additive White Gaussian Noise

A complex additive white Gaussian noise can be used to accurately model band-
pass noise in communication systems. Consider a bandpass noise generated by
an ideal bandpass filter, e.g.,

HR(f ) =
{

1 f c − Bi ≤ | f | ≤ f c + Bi

0 elsewhere
(10.40)

The baseband (complex envelope) power spectrum of the bandpass noise, SNz(f ),
and signal will look like that in Figure 10.8(a). Since it is, in general, difficult
to build a filter at a carrier frequency that is spectrally compact, the noise spec-
trum will typically be wider than the signal spectrum. The baseband processing
will normally cut the noise bandwidth down to something close to W . A “white”
noise that has the PSD as given in Figure 10.8(b) will have the exact same
output noise characteristics after baseband processing because

1. the baseband processing will only pass the noise in the message bandwidth,
W , and

2. the bandpass noise has a complex envelope that has a PSD that is constant,
like the white noise, over this band.

Consequently, an accurate model for noise in a bandpass communication
system is given as

Yz(t) = rz(t) + Wz(t) (10.41)

where rz(t) is the received signal and Wz(t) is the model for the corrupting noise
where

SWz(f ) = N0 RWz(τ ) = N0δ(τ ) (10.42)

This model will be denoted complex additive white Gaussian noise in the sequel.
A complex AWGN is intended to model a bandpass noise whose bandwidth

is larger than the received signal bandwidth. The advantage of the complex

W
(a) Signal and bandpass noise spectra

BR f

SNz
( f)

Grz
( f)

N0

W
(b) Signal and complex white noise spectra

BR f

SNz
( f)

Grz
( f)

N0

Figure 10.8 Exact and model power spectral densities.
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AWGN model is that the analysis and algorithm development can proceed in
a much cleaner fashion than with a more realistic noise model while not in-
trodcing significant modeling errors. This model will be used exclusively in the
sequel and the accuracy of the approximation will be explored in the homework.

10.6 Conclusion

Bandpass communication systems will be corrupted by bandpass noise. This
chapter shows that the bandpass noise can be represented with a baseband
complex noise. This baseband noise is in many cases of interest a zero mean,
Gaussian, and stationary random process. A method to completely characterize
a bandpass noise was presented. A simplified model for bandpass noise that will
be frequently used in the sequel was also presented. With these tools in place it
is now possible to evaluate the resultant message signal reconstruction fidelity
of the various demodulation structures that have been proposed.

10.7 Homework Problems

Problem 10.1. What conditions on the bandpass filter characteristic of the
receiver, HR(f ), must be satisfied such that N I (t1) and N Q(t2) are indepen-
dent random variables for all t1 and t2 when the input is AWGN?

Problem 10.2. This problem considers noise that might be seen in a vestigial
sideband demodulator. Consider a bandpass stationary Gaussian noise at the
input to a demodulator with a spectrum given as

SNc (f ) =
{

2 f c − 1000 ≤ | f | ≤ f c + 3000

0 elsewhere
(10.43)

Assume operation is in a 1-� system.

(a) What bandpass filter, HR(f ), would produce this spectrum from a white
noise input with a two-sided noise spectral density of N0/2 = 0.5?

(b) What is the spectral density of N I (t)?

(c) What is E[N 2
I (t)]?

(d) Give the joint PDF of N I (t0) and N Q(t0) in a 1-� system for a fixed t0.

(e) Compute SN I N Q (f ).

Problem 10.3. This problem considers noise which might be seen in a single side-
band demodulator. Consider a bandpass stationary Gaussian noise at the input
to a demodulator with a spectrum given as

SNc (f ) =
{

3.92 × 10−3 f c ≤ | f | ≤ f c + 3000

0 elsewhere
(10.44)
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Assume operation is in a 1-� system.

(a) What is the spectral density of N I (t)?

(b) What is E[N 2
I (t)]?

(c) Give the joint PDF of N I (t0) and N Q(t0).

(d) Give the joint PDF of N I (t1) and N Q(t1 − τ ).

(e) Plot the PDF in (d) for τ = 0.0001 and τ = 0.001.

Problem 10.4. Consider a bandpass stationary Gaussian noise at the input to a
demodulator with a spectrum given as

SNc (f ) =
{

0.001 f c − 2000 ≤ | f | ≤ f c + 2000

0 elsewhere
(10.45)

Assume operation is in a 1-� system.

(a) Find and plot the joint density function of N I (t0) and N Q(t0), f N I (t0)N Q(t0)
(ni, nq).

(b) Consider the complex random variable Ñz(t0) = Ñ I (t0)+ j Ñ Q(t0) = Nz(t0) ×
exp(− j φp) and find a one–to–one mapping such that

Ñ I (t0) = g1(N I (t0), N Q(t0)) Ñ Q(t0) = g2(N I (t0), N Q(t0)) (10.46)

(c) Detail the inverse mapping

N I (t0) = h1(Ñ I (t0), Ñ Q(t0)) N Q(t0) = h2(Ñ I (t0), Ñ Q(t0)) (10.47)

(d) Using the results of Section 3.3.4 show that f Ñ I (t0)Ñ Q(t0)(ni,nq) = fN I (t0)N Q(t0)×
(ni, nq). In other words, the noise distribution is unchanged by a phase
rotation. This result is very important for the study of coherent receiver
performance in the presence of noise detailed in the sequel.

Problem 10.5. Show for a stationary Gaussian bandpass noise, Nc(t), that
|SN I N Q (f )| ≤ SN I (f ). If |SN I N Q ( f 0)| = SN I ( f 0) for some f 0 then this places a
constraint on either HR( f c + f 0) or HR( f c − f 0). What is this constraint?

Problem 10.6. For a stationary bandpass noise with complex envelope Nz(t) =
N I (t) + j N Q(t) that has a baseband autocorrelation function of RN I (τ ) and a
baseband crosscorrelation function of RN I N Q (τ )

(a) Find E[|Nz(t)|2].

(b) Find E[N 2
z (t)].

(c) Find E[Nz(t)N ∗
z (t − τ )].

(d) Find E[Nz(t)Nz(t − τ )].
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π/2

LPF

LPF

W(t) HR ( f )

−NQ (t)

Nc (t) 2 cos(2p fct)

NI (t)

Figure 10.9 Noise and the receiver frontend processor.

Problem 10.7. Given the block diagram in Figure 10.9 where W (t) is an AWGN
with two-sided spectral density N0/2 and HR(f ) is a bandpass filter with a
passband including f c, find the conditions on the filter HR(f ) such that

(a) N I (t) and N Q(t) have the same correlation function.

(b) RN I (τ ) = RN Q (τ ) = sin(π Bτ )
π Bτ

and RN I N Q (τ ) = 0.

Problem 10.8. Real valued additive white Gaussian noise, W (t), with a one-sided
spectral density N0 = 0.01 is input into a bandpass receiver which has a block
diagram shown in Figure 10.9. The noise power spectrum output from the down
converter is measured as

SNz(f ) =
{

0.25 | f | ≤ 100

0 elsewhere
(10.48)

(a) Find E
[|Nz(t)|2].

(b) Find SN I (f ) and SN I N Q (f ).

(c) What is |HR(f )|?
(d) Give the probability density function of one sample of N I (t), i.e., f N I (t)(n).

(e) Compute P (N I (t) > 4).

Problem 10.9. Real valued additive white Gaussian noise, W (t), with a two-
sided spectral density N0/2 is input into a demodulator for signal sideband
amplitude modulation which has a block diagram shown in Figure 10.11.
The time-invariant filter has a transfer function of

HR(f ) =
{

2 f c ≤ | f | ≤ f c + W

0 elsewhere
(10.49)

(a) Find the power spectral density of Nc(t), SNc (f )?

(b) Find SN I (f )?
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Figure 10.10 A bandpass noise model.

(c) Calculate RN I (τ ).

(d) Detail out the form for the probability density function (PDF) of one sample
from N I (t), f N I (ts)(n).

(e) Find SN I N Q (f ).

(f) Find the joint PDF of samples taken from N I (t) and N Q(t) taken at the
same time, f N I (ts)N Q(ts)(ni, nq).

Problem 10.10. Consider the model given in Figure 10.10 where W (t) is a real
AWGN with one–sided power spectral density of N0. H1(f ) and H2(f ) are two
potentially different filters. This problem investigates how the characteristics
of the bandpass noise change if the filter in the I channel is different from the
filter in the Q channel.

(a) Find the power spectral density of Ñ I (t), SÑ I
(f ), in terms of SN I (f ).

(b) Show that

RÑ I Ñ Q
(τ ) =

∫ ∞

−∞
h(λ1)
∫ ∞

−∞
RN I N Q (τ + λ2 − λ1)h2(λ2)dλ2dλ1 (10.50)

(c) Show that

SÑ I Ñ Q
(f ) = SN I N Q (f )H ∗

2 (f )H1(f ) (10.51)

(d) Will Ñ I (t) always be independent of Ñ Q(t) as when the filters are the same?
If not then give an example?

(e) Give conditions on H1(f ) and H2(f ) such that SÑ I Ñ Q
(f ) would be imaginary

and odd as is the case for SN I N Q (f ). If these conditions were satisfied would
Ñ I (t) always be independent of Ñ Q(t)?

Problem 10.11. Show that if Nz(t) is a stationary complex envelope of a bandpass
noise and Ñz(t) = Nz(t) exp[ j φp] then

(a) RÑ I
(τ ) = RÑ Q

(τ ) = RN I (τ )

(b) RÑ I Ñ Q
(τ ) = RN I N Q (τ )

Problem 10.12. Real valued additive white Gaussian noise, W (t), with a two-sided
spectral density N0/2 is input into a demodulator which has a block diagram
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W(t) HR ( f )

HL ( f )
NQ (t)

NL (t)

Nc (t) I/Q
Down-

converter

NI (t)

Figure 10.11 Demodulator block diagram.

shown in Figure 10.11. The time-invariant filter has a transfer function of

HR(f ) =
{

2 f c − 100 ≤ | f | ≤ f c + 100

0 elsewhere
(10.52)

(a) Find the power spectral density of Nc(t), SNc (f ).

(b) E[N 2
c (t)] = 2, what is N0?

(c) Find the power spectral density of N I (t), SN I (f ) when E[N 2
c (t)] = 2.

(d) Find E[N 2
I (t)] for the value of N0 obtained in (b).

(e) Assume that HL(f ) is an ideal lowpass filter with HL(0) = 1. Choose the
bandwidth of the filter such that E[N 2

L(t)] = 1
2 E[N 2

I (t)].

Problem 10.13. An interesting relationship exists between the power spectral
density of a phase noise and the distribution of the instanteous frequency de-
viation. This problem explores this relationship, which has proven useful in
practice, using the techniques introduced in this chapter and in the develop-
ment of angle modulation. Assume a random process is characterized as

Nz(t) = Ac exp[ j N p(t)] (10.53)

where N p(t) is a phase noise generated in, for example, a frequency synthesizer.

(a) Show that

RNz(t, τ ) = E[Nz(t)N ∗
z (t − τ )] ≈ A2

c E[exp( j 2π Fd (t)τ )] (10.54)

where Fd (t) = 1
2π

d
d t N p(t).

(b) If Fd (t) is a stationary random process, show that

RNz(t, τ ) ≈ RNz(τ ) ≈ A2
c�Fd (τ ) (10.55)

where �Fd (t) is the characteristic function1 of a sample of the random pro-
cess Fd (t).

1The characteristic function of a random variable was introduced in Problem 3.24 in this text
but is a common tool in the analysis of noise [LG89, Hel91].
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m(t)Yz(t) = xz(t) exp( jfp) + Nz(t)
Vz(t) = xz(t) + Nz(t)

HL( f )

exp(−jfp)

~

ˆ

Figure 10.12 A demodulator block diagram.

(c) Finally show that

SNz(f ) ≈ A2
c f Fd (f ) (10.56)

where f Fd (f ) is the PDF of the random variable Fd (t).

(d) Make an engineering assessment of the validity and the shortcomings of
the approximations in this problem.

Problem 10.14. It is clear from Example 10.7 and Example 10.8 that a baseband
noise of varying bandwidth can be produced depending on the f c that is chosen
in the downconverter. For reasonable choices of f c what are the maximum
and minimum bandwidths that a lowpass noise process would possess for a
bandpass bandwidth of BT .

Problem 10.15. In a DSB-AM receiver modeled with Figure 10.12, the following
complex envelope is received

Yz(t) = cos(200πt) exp[ j φp] + Nz(t) (10.57)

Assume m̂(t) = me(t) + Ñ I (t) and for simplicity that the bandpass noise, Nz(t)
is characterized as a white noise

SNz(f ) = N0 (10.58)

The lowpass filter has a transfer function of

HL(f ) = 1
1 + j f

f l

(10.59)

(a) Prove Ñ I (t) is a stationary random process.

(b) Compute me(t) (the signal at the filter output).

(c) Compute E[Ñ 2
I (t)] as a function of f l. Hint: Power can be computed in the

time and frequency domain.

(d) Compute the output SNR as a function of f l.

(e) What value of f l optimizes the output SNR?
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220200180−220 −200 −180 f

SNc(f)

2N0

N0/2

Figure 10.13 An example bandpass noise power spectrum.

Problem 10.16. A computer can do a lot of tedious computations that you do not
want to do by hand. To this end repeat the Problem 10.3 except with the band-
pass noise characterized with

SNz(f ) =
{

N0 | f | ≤ 4000

0 elsewhere
(10.60)

Hint: The simplest approach may not be the same as in Problem 10.15.

Problem 10.17. (JG) A WSS bandpass random process, Nc(t), has power spectral
density, SNc (f ), shown in Figure 10.13.

(a) Sketch SNz(f ), the spectral density of the complex envelope.

(b) Sketch SN I (f ), the spectral density of the in-phase processes.

(c) Sketch SN I N Q (f ), the cross spectral density between the in-phase and qua-
drature processes.

Problem 10.18. Real valued additive white Gaussian noise, W (t) with a one-sided
spectral density N0 = 0.002 is input into a bandpass receiver which has a block
diagram shown in Figure 10.14. HR(f ) is an ideal bandpass filter centered at
carrier frequency f c with bandwidth 6000 Hz, i.e.,

HR(f ) =
{

1 f c − 3000 ≤ | f | ≤ f c + 3000

0 elsewhere
(10.61)

W(t) HR ( f )
Nc(t)

fc

Hm( f ) NfI (t)
NI (t)

Hm( f ) NfQ (t)
NQ (t)

I/Q Down-
converter

Figure 10.14 Demodulator block diagram.
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The baseband filter, Hm(f ), has a cosine pulse frequency response, i.e.,

Hm(f ) =

⎧⎪⎨
⎪⎩

1 | f | ≤ 750
cos
(

π
1000 (| f | − 750)

)
750 ≤ | f | ≤ 1250

0 elsewhere
(10.62)

(a) Find SN I (f ).

(b) Find SN I N Q (f ).

(c) Find SÑ Q
(f ).

(d) Find the PDF of Ñ Q(t0).

(e) Compute P (Ñ Q(t) > 4).

Problem 10.19. Gaussian random variables are convenient in communication sys-
tems analysis because only a finite number of parameters are needed to fully
characterize the statistical nature of the random variables. Samples taken from
a stationary Gaussian bandpass random process require even fewer parameters
to characterize.

(a) If N1 and N2 are two jointly Gaussian zero mean random variables how
many parameters and what are the parameters needed to specify the joint
distribution.

(b) If N1 = N I (t) and N2 = N Q(t) are two jointly Gaussian zero mean random
variables obtained by sampling a stationary zero mean bandpass Gaussian
process at time t, how many and what are the parameters needed to specify
the joint distribution.

(c) If N1, N2, N3, and N4 are four jointly Gaussian zero mean random variables
how many parameters and what are the parameters needed to specify the
joint distribution.

(d) If N1 = N I (t), N2 = N Q(t), N3 = N I (t + τ ), and N4 = N Q(t + τ ) are
four jointly Gaussian zero mean random variables obtained by sampling a
stationary zero mean bandpass Gaussian process at times t and t + τ , how
many parameters and what are the parameters needed to specify the joint
distribution.

Problem 10.20. In communication systems where multiple users are to be sup-
ported within a common architecture, a prevalent source of interference is
adjacent channel interference (ACI). ACI occurs, for example, in a channel-
ized system when the transmitted spectra of a user extends into the channel of
an adjacent user. Consider an FM broadcast system where channels are spaced
200 kHz apart and a interference transmission spectrum given in Figure 10.15.
Assume this interference can be modeled as a stationary bandpass Gaussian
noise, Nc(t), for this problem.
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fc
ffc + 200 kHz

A

A

2

180 kHz
SNc( f )

Figure 10.15 An interference spectrum in a channelized system.

(a) Choose the value of A such that the total interference power is 10 W in a
1-� system.

(b) If this interference is processed by a radio with an ideal unity gain band-
pass filter of 180 kHz bandwidth centered at f c and then downconverted to
baseband, find the resulting SNz(f ) at the output of the radio receiver.

(c) What is the total power of this interference that appears at the output of
the radio receiver?

(d) Find SN I (f ) and SN I N Q (f ).

(e) Find E[N 2
I (t)].

10.8 Example Solutions

Problem 10.2.

(a) We know N0 = 1 and

SNc (f ) = N0

2
|Hc(f )|2 (10.63)

therefore,

|HR(f )|2 =
{

4 f c − 1000 ≤ | f | ≤ f c + 3000

0 elsewhere
(10.64)

Consequently,

HR(f ) =
{

2e j θ (f ) f c − 1000 ≤ | f | ≤ f c + 3000

0 elsewhere
(10.65)

where θ (f ) is an arbitrary phase for the filter transfer function.

(b) We know

SNc (f ) = 1
2

SNz( f − f c) + 1
2

SNz(− f − f c) (10.66)
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Therefore,

SNz(f ) =
{

4 −1000 ≤ f ≤ 3000

0 elsewhere
(10.67)

Solving for SN I (f ) gives

SN I (f ) = SNz(f ) + SNz(− f )
4

(10.68)

Therefore,

SN I (f ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 −3000 ≤ f ≤ −1000

2 −1000 ≤ f ≤ 1000

1 1000 ≤ f ≤ 3000

0 elsewhere

(10.69)

(c) E[N 2
I (t)] = ∫∞

−∞ SN I (f )df = 8000

(d) Using Problems 10.10 and 10.24

f N I (t)N Q(t)(n1, n2) = 1
16000 π

· exp

[
−n2

1 + n2
2

16000

]
(10.70)

(e) Solving for SN I N Q (f ) gives

SN I N Q (f ) = SNz(− f ) − SNz(f )
j 4

(10.71)

Therefore,

SN I N Q (f ) =

⎧⎪⎨
⎪⎩

− j −3000 ≤ f ≤ −1000

j 1000 ≤ f ≤ 3000

0 elsewhere

(10.72)

Problem 10.9.

(a) The results of Chapter 9 give the bandpass power spectral density as

SNc (f ) = N0

2
|HR(f )|2 =

{
2N0 f c ≤ | f | ≤ f c + W

0 elsewhere
(10.73)

(b) The baseband noises N I (t) and N Q(t) are zero mean, jointly stationary and
jointly Gaussian random processes. First convert the bandpass spectrum to
baseband

SNz(f ) =
{

4N0 0 ≤ f ≤ W

0 elsewhere
(10.74)
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The formula for SN I (f ) is

SN I (f ) = SNz(f ) + SNz(− f )
4

(10.75)

which gives

SN I (f ) =
{

N0 −W ≤ | f | ≤ W

0 elsewhere
(10.76)

(c) Recall that RN I (τ ) = F−1(SN I (f )) so that we have

RN I (τ ) = 2N0Wsinc(2W τ ) (10.77)

(d) Recall that N I (ts) is a zero mean Gaussian random variable with σ 2
N =

RN I (0) = 2N0W. The PDF is then given as

f N I (ts)(n) = 1√
4π N0W

exp
[
− n2

4N0W

]
(10.78)

(e) The cross spectrum is given as

SN I N Q = SNz(− f ) − SNz(f )
j 4

=

⎧⎪⎨
⎪⎩

− j N0 −W ≤ f | ≤ 0

j N0 0 ≤ f | ≤ W

0 elsewhere

(10.79)

(f) The joint PDF of N I (ts) and N Q(ts) will always be that of zero mean,
uncorrelated, jointly Gaussian random variables as RN I N Q (0) = 0. Since
the variance is again σ 2

N = RN I (0) = 2N0W the PDF is given as

f N I (ts)N Q(ts)(n1, n2) = 1
4π N0W

exp

[
−n2

1 + n2
2

4N0W

]
(10.80)

10.9 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). All team
members should be prepared to give the presentation.
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LPF

LPF

π 2

NI(t)

−NQ(t)

Nc(t)
2 2cos π f tc( )

Figure 10.16 Block diagram of an I/Q downconverter
with noise.

10.9.1 Project 1

Project Goals: To use the theory of bandpass noise to troubleshoot an anoma-
lous behaviour in a communication system.

A colleague at your company, Wireless.com, is working on characterizing the
noise in the front end of an intermediate frequency (IF) receiver that the com-
pany is trying to make its first billion on. The design carrier frequency, f c,
was not documented well by the designer (he left for another startup!). The
frequency is known to lie somewhere between f c = 2.5 kHz and f c = 8 kHz.
Your colleague is getting some very anomalous results in his testing and has
come to you since he knows you were taught communications theory by a world
renowned professor. The bandpass noise output from the receiver is processed
during testing in a programmable I/Q downconverter with a carrier frequency
f̃ c, as shown in Figure 10.16. The lowpass filter in the I/Q downconverter is pro-
grammed to have a cutoff frequency of f̃ c. The anomalous results your colleague
sees are

■ if he chooses f̃ c = 5000 Hz then the output noise, N I (t) and N Q(t), has a
bandwidth of 5000 Hz,

■ if f̃ c = 4000 Hz then the output noise, N I (t) and N Q(t), has a bandwidth of
4000 Hz.

Your colleague captured and stored a sample function of the noise and it is
available for downloading in the file noizin.mat. Examining this file will be
useful to complete this project.

(a) Explain why the output noise bandwidth changes as a function f̃ c.

(b) Assuming that DSB-AM is the design modulation for the receiver, try and
identify the probable design carrier frequency.



Chapter

11
Fidelity in Analog

Demodulation

This chapter examines the performance of all the different analog modulations
that were considered in this text in the presence of noise. This analysis allows
a comparison of the resulting fidelity of message reconstruction in terms of
the resulting signal to noise ratio (SNR). This chapter will first examine the
transmission of information without modulation and use this as a baseline for
comparison. Each modulation will then be compared to this baseline and a
figure of merit for each scheme can be computed.

11.1 Unmodulated Signals

A first evaluation that is useful is the resulting fidelity of an unmodulated mes-
sage signal reconstruction in the presence of an AWGN, W (t). This situation is
shown in Figure 11.1. This situation represents a direct connection of the mes-
sage signal over a wire/cable from the message source to the message sink. The
filter, HR(f ), represents the signal processing at the receiver to limit the noise
power. We consider this situation to give a baseline for the fidelity comparisons
in the sequel.

For analog communications the fidelity metric used in this textbook will be
SNR. Recall the output SNR in the system in Figure 11.1 is defined as

SNR = Pxz

PN
= A2 Pm

PN
(11.1)

The noise power, PN , can be calculated with methods described in Chapter 9.
Specifically

PN = σ 2
N = N0 BN |HR(0)|2 = N0

2

∫ ∞

−∞
|HR(f )|2 df (11.2)

11.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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H fR ( )A
xz(t) Yz(t)

m(t) = Am(t) + NL(t)m t( ) ∑ ˆ

W t( )
Figure 11.1 A model for baseband transmission.

For ease of discussion and comparison this chapter will consider only ideal
lowpass filters, e.g.,

HR(f ) =
{

1 | f | ≤ BT

0 elsewhere
(11.3)

Clearly the smaller BT , the smaller the noise power, but BT cannot be made too
small or else signal distortion will occur and contribute to NL(t). Again for this
chapter to simplify the presentation we will assume BT = W and consequently
signal distortion is not an issue. The output SNR is defined as

SNRo = Pxz

N0W
= A2 Pm

N0W
= SNRb (11.4)

Equation (11.4) is surprisingly simple but it is still instructive to interpret it.
In general, the noise spectral density is determined by the environment that
you are communicating in and is not something the communication system
designer has control over. For a fixed noise spectral density the SNR can be
made larger by a communication system designer by increasing the message
power, Pm, decreasing the loss in the transmission, here A, or decreasing the
filter bandwidth, W . Some interesting insights include

■ Transmitting farther distances (smaller A) will produce lower output SNR.
■ Transmitting wider bandwidth signal (video vs. audio) will produce lower

output SNR.

In general we will find the same trade-offs exist with modulated systems as
well. Note, this text denotes the output SNR achieved with baseband (unmodu-
lated) transmission as SNRb. This will be a common reference point to compare
analog communication system’s fidelity in message reconstruction.

EXAMPLE 11.1
Consider the example of a message signal given as

m(t) = cos(2π fmt) (11.5)

and a channel gain of A = 1 corrupted by a wideband noise, W (t), with a one-sided
spectral density N0 = 1/8000. For fm = 500 Hz the plot of one sample path of the input
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Figure 11.2 The input signal plus wideband noise for the example baseband transmission system.

signal plus noise, Yz(t, ω), and the input measured power spectrum, SYz(f , ω1, T m), are
given in Figure 11.2. If this signal is input into a LPF filter with a bandwidth of 1000 Hz
the output signal and spectrum are shown in Figure 11.3. It is clear from these figures
that the variance of the noise is reduced and the time characteristics of the noise are
also modified. In this example the output SNR = 6 dB.
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Figure 11.3 The output signal plus filtered noise for the example baseband transmission system.
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11.2 Bandpass Demodulation

Now let us consider the SNR evaluation of bandpass modulated message signal
in the presence of an AWGN. This situation is shown in Figure 11.4. The signal
components and the noise components were characterized in the prior chapters
so now an integration of this information is needed to provide a characterization
of the SNR of bandpass communication systems. Again for ease of discussion
and comparison this chapter will consider only ideal bandpass filters with a
bandwidth exactly matched to the transmitted signal bandwidth, e.g.,

HR(f ) =
{

1 fc − BT
2 ≤ | f | ≤ fc + BT

2

0 elsewhere
(11.6)

The output complex envelope has the form

Yz(t) = xz(t) exp( j φp) + Nz(t) (11.7)

where Nz(t) = NI (t) + j NQ(t). The power of the transmitted signal, xz(t),
will again be denoted Pxz . The resulting lowpass noise at the output of the
downconverter is well characterized via the tools developed in Chapter 10. For
example, for the filter given in Eq. (11.6) it can be shown that

SNI (f ) =
⎧⎨
⎩

N0

2
| f | ≤ BT

2

0 elsewhere
(11.8)

and SNI NQ (f ) = 0. An inverse Fourier transform gives RNI (τ) = N0 BT
2 ×

sinc(BT τ ). The variance of the lowpass noise is var(NI (t)) = σ 2
NI

= N0 BT
2 and

the joint PDF is

f NI (t)NQ(t)(n1, n2) = 1
2πσ 2

N
exp

[
− (n2

1 + n2
2

)
2σ 2

N

]
= 1

πN0 BT
exp

[
− (n2

1 + n2
2

)
N0 BT

]

(11.9)

W t( )

Channel
rc(t)

fc

Yc(t) = rc(t) + Nc(t)

YQ(t) = rQ(t) + NQ(t)

YI(t) = rI(t) + NI(t)
xc(t) HR( f ) I/Q Down-

converterΣ

Figure 11.4 A model for bandpass modulated transmission.
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Figure 11.5 Plots of the joint PDF of NI (t) and NQ(t) for N0 BT = 2.

A plot of the density function for N0 BT = 2 is shown in Figure 11.5. The input
SNR to the demodulator is defined as

SNRi = Pxz

PNz

= Pxz

N0 BT
= SNRb

W
BT

= SNRbνB (11.10)

Consequently, the input SNR to the demodulator is both a function of the
baseband SNR and the spectral efficiency of the transmission. This is important
to note that broadcast FM typically has a lower input SNR than does broadcast
AM since FM’s spectral efficiency is worse than AM’s spectral efficiency.

11.2.1 Coherent Demodulation

Many of the analog modulations considered in this text are demodulated
with coherent demodulation structures and it is worth examining the noise
characteristics of coherent demodulation structures. The coherent demodu-
lator has a block diagram as given in Figure 11.6. The derotated noise,
Ñz(t) = Nz(t) exp(− j φp) in the coherent demodulator has the same statistical
characteristics as Nz(t). This is easy to show mathematically by

RÑz
(τ ) = E[Ñz(t)Ñ ∗

z (t − τ )] = E[Nz(t) exp(− j φp)N ∗
z (t − τ ) exp( j φp)]

= E[Nz(t)N ∗
z (t − τ )] = RNz(τ ) (11.11)
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m̂ t( )Yz(t) = xz(t) exp( jfp) + Nz(t)
Vz(t) = xz(t) + Nz(t)

exp(−jfp)

~
Message
Recovery

Figure 11.6 The coherent demodulation structure.

Equation (11.11) shows that rotating the noise does not change the statistical
characteristics of the noise. Intuitively this makes sense because in examining
the PDF plotted in Figure 11.5, the joint PDF of the lowpass noise is clearly
circularly symmetric. Any rotation of this PDF would not change the form of the
PDF. This is mathematically proven in Problem 10.4. This circularly symmetric
noise characteristic and the results of Chapter 10 will allow us to rigorously
characterize the performance of coherent demodulation schemes.

11.3 Coherent Amplitude Demodulation

11.3.1 Coherent Demodulation

Given the tools developed so far the fidelity analysis of coherent AM demodu-
lation systems is straightforward. Using the results of Section 11.2.1 we know
that the baseband derotated noise is going to be zero mean, stationary, and
Gaussian with a PSD given as

SÑ I
(f ) =

⎧⎨
⎩

N0

2
| f | ≤ BT

2

0 elsewhere
(11.12)

Coherent DSB-AM

DSB-AM uses coherent demodulation. Recall the complex envelope form of
DSB-AM is xz(t) = Acm(t) so consequently the representative block diagram
for a DSB-AM demodulator in the presence of noise is given in Figure 11.7. The
output of the real operator has the form V I (t) = Acm(t) + Ñ I (t) and the output
spectrum of the signal and the noise is shown in Figure 11.8(a). This signal

Yz(t) = Acm(t) exp( jfp) + Nz(t)
Vz(t) = xz(t) + Nz(t)

exp(−jfp)

m̂ t( )
~

Re[•] HL( f )

Figure 11.7 The coherent demodulation structure for DSB-AM.
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Figure 11.8 The DSB-AM demodulator noise processing.

and noise model is exactly the same form as seen in Section 11.1, consequently
the filter, HL(f ), is subject to the same trade-offs between minimizing the noise
power and minimizing the signal distortion.

The filter, HL(f ), maximizes the SNR without signal distortion by being a
lowpass filter of bandwidth W. For simplicity in discussion the lowpass fil-
ter will be assumed to be an ideal lowpass filter and to have the transfer
function

HL(f ) =
{

1 | f | ≤ W

0 elsewhere
(11.13)

The resulting message estimate for DSB-AM has the form m̂(t) = Acm(t) +
NL(t). The distorting noise, NL(t), is produced by a lowpass filtering of Ñ I (t)
as shown in Figure 11.7(b). This output noise has a PSD given as

SNL(f ) = SÑ I
(f ) |HL(f )|2 = SNI (f ) |HL(f )|2 =

⎧⎨
⎩

N0

2
| f | ≤ W

0 elsewhere
(11.14)

The output noise power is var(NL(t)) = N0W and the output SNR is

SNRo = A2
c Pm

N0W
= Pxz

N0W
= SNRb (11.15)

Recall the ET is the transmission efficiency defined as SNRo = ET SNRb, so
that it is clear here that ET = 1 so that coherent demodulation of DSB-AM has
the same performance as an unmodulated signal. Since DSB-AM has ET = 1,
two interesting insights are

1. The output SNR is exactly the same as the case where the signal was trans-
mitted unmodulated. This implies that a coherent bandpass modulation and
demodulation process can result in no loss of performance compared to base-
band transmission while greatly expanding the spectrum that can be used
for transmission.
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2. Again the two things that affect the output SNR are the transmitted power1

and the message signal bandwidth. Consequently, transmitting video will
cost more in terms of resources (transmitted power) than transmitting voice
for the same level of output performance.

Coherent SSB-AM

SSB-AM also uses coherent demodulation. Recall the complex envelope form of
SSB-AM is xz(t) = Ac(m(t)+ j m(t)∗hQ(t)), so, consequently, the representative
block diagram of SSB-AM in noise is very similar to that in Figure 11.7. The
output of the real operator has the form V I (t) = Acm(t) + Ñ I (t). This form is
exactly the same form as DSB-AM. The resulting message estimate for DSB-
AM has the form m̂(t) = Acm(t) + NL(t) where for the bandpass filter given in
Eq. (11.6)

SNL(f ) = SÑ I
(f ) |HL(f )|2 =

⎧⎨
⎩

N0

2
| f | ≤ W

0 elsewhere
(11.16)

The output noise power is var(NL(t)) = N0W and the output signal to noise
ratio is

SNRo = A2
c Pm

N0W
(11.17)

Recall that the transmitted power of SSB-AM is Pxz = 2A2
c Pm so this implies

that

SNRo = Pxz

2N0W
= SNRb

2
(11.18)

With this method of signal processing for demodulation of SSB-AM it is clear
that ET = 0.5 and it appears, at first glance, that SSB-AM is less efficient in
using the transmitted signal power than is an unmodulated system.

This loss in efficiency and fidelity of the message reconstruction can be reco-
vered by better signal processing in the receiver. The methodology to improve
this efficiency is apparent when examining the signal and noise spectrum of
an upper sideband transmission shown in Figure 11.9. The bandpass filter in
Eq. (11.6) is passing all signal and noise within BT/2 Hz of the carrier frequency.
This bandwidth is required in DSB-AM but clearly the receiver filter can be
reduced in bandwidth and have a form

HR(f ) =
{

1 fc ≤ | f | ≤ fc + BT
2

0 elsewhere
(11.19)

1Also the channel attenuation but we have chosen to normalize this to unity to simplify the
discussion
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Figure 11.9 The signal and noise spectrum in SSB-AM reception.

The bandpass noise PSD then becomes

SNc (f ) =

⎧⎪⎨
⎪⎩

N0

2
fc ≤ | f | ≤ fc + BT

2

0 elsewhere
(11.20)

Using the results of Chapter 10 gives

SNI (f ) = SNz(f ) + SNz(− f )
4

=

⎧⎪⎨
⎪⎩

N0

4
| f | ≤ BT

2

0 elsewhere
(11.21)

The effect of the choosing a filter that only passes the frequencies where the
modulated signal is present instead of a filter like that in Eq. (11.6) is a reduc-
tion by a factor of two in the output noise spectral density. By choosing the LPF
to have bandwidth W the output SNR is then given as

SNRo = 2A2
c Pm

N0W
= 2Pxz ET

N0W
= Pxz

N0W
= SNRb (11.22)

The output SNR is exactly the same as the case where the signal was trans-
mitted unmodulated so that ET = 1. This implies SSB-AM can also result in
no loss of performance compared to a baseband or unmodulated transmission
using only the W Hz of bandwidth.

11.4 Noncoherent Amplitude Demodulation

LC-AM uses noncoherent demodulation. Recall the complex envelope form of
LC-AM is xz(t) = Ac(1 + am(t)) with a chosen to allow distortion-free envelope
detection. Consequently, the representative block diagram of LC-AM demodu-
lation in noise is given in Figure 11.10. Noting

Yz(t) = exp( j φp)( Ac[1 + am(t)] + Nz(t) exp(− j φp))

= exp( j φp)( Ac[1 + am(t)] + Ñz(t))

= exp( j φp)( As(t) + Ñz(t)) (11.23)
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Yz(t) = Ac[1 + am(t)] exp[jfp] + Nz(t)
YD(t)

m̂ t( )DC
Block

YA(t)
|•| HL( f )

Figure 11.10 The noncoherent demodulation structure for LC-AM.

where As(t) is the amplitude modulated signal. This representation is inter-
esting because the noise Ñz(t) can be viewed as having the real component
in-phase with the received signal and the imaginary component in quadrature
with the received signal. A vector diagram of the output complex envelope from
the downconverter at one point in time, t = ts, is given in Figure 11.11. Since
As(t) = Ac[1+am(t)] is a real valued function, the phase of the received signal,
rz(t), is entirely due to φp. The value of Y A(ts) is represented in Figure 11.11
by the length of the vector Yz(ts). Considering this model, the output of the
envelope detector has the form

Y A(t) = |Yz(t)| =
√

( Ac[1 + am(t)] + Ñ I (t))2 + Ñ 2
Q(t)

=
√

(As(t) + Ñ I (t))2 + Ñ 2
Q(t) (11.24)

Using the results of Section 3.3.4, a transformation of random variables could
be accomplished and the output could be completely characterized as a Ricean

NI(ts)

NQ(ts)

Yz(ts)
YQ(t)

YI(t)

As(ts)

fp

~
NQ(ts)

~
NI(ts)

rz(ts)

Nz(ts)

Figure 11.11 A vector diagram representing one time sample of Yz(t).
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random variable [DR87]. While rigorous the procedure lacks intuition into the
effects of noise on noncoherent AM demodulation and will not be pursued in
this text.

To gain some insight into the operation of a LC-AM system a large SNR
approximation is invoked. At high SNR, Ac � |Ñ I (t)| and Ac � |Ñ Q(t)| which
implies (see Problem 2.13) that

Y A(t) ≈
√

(Ac[1 + am(t)] + Ñ I (t))2 = Ac(1 + am(t)) + Ñ I (t) (11.25)

Consequently, at high SNR only the noise in-phase with the carrier will make a
difference in the output envelope and the output looks much like that given in
for DSB-AM with the exception that the signal format is different. The output
of the DC block will be yD(t) = Acam(t) + Ñ I (t) = me(t) + Ñ I (t) and with a
lowpass filter bandwidth of W and using the same tools as above the output
SNR is

SNRo = Pme

PÑ I

= A2
c a2 Pm

N0W
(11.26)

Recall the definition of the message to carrier power ratio (MCPR) introduced
in Chapter 6 so that

SNRo = A2
c MCPR
N0W

(11.27)

Since

Pxz = A2
c (1 + MCPR) = A2

c

(
1 + a2 Pm

)
(11.28)

this implies that

SNRo = SNRb
MCPR

1 + MCPR
= Pme

Pxz

SNRb (11.29)

This implies that ET = MCPR
1+MCPR = Pme

Pxz
or, in words, the transmission effi-

ciency of LC-AM is the ratio of the power delivered at the demodulator output
to the transmitted power. The important thing to remember is that MCPR � 1
for LC-AM to enable envelope detection so that the transmission efficiency
of LC-AM is also small. Consequently, at high SNR the only loss in perfor-
mance in using a noncoherent demodulator for LC-AM is due to the wasted
power allocated to the carrier signal. The average MCPR of commercial
LC-AM is usually less than 10% so the loss in SNR that occurs in using
LC-AM with envelope detection versus DSB-AM with coherent detection is
greater than 10 dB! This 10 dB lower fidelity is only compensated by the much
lower complexity of the envelope detector. This trade-off of fidelity versus com-
plexity was deemed acceptable in the days before transistors. Today no compe-
tent communication engineer would give up 10 dB for so little gain in ease of
implementation.
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As SNRi gets smaller a threshold effect will be experienced in envelope detec-
tion. The threshold effect occurs at SNRs below 10 dB so the analysis present
in this text is valid above a 10 dB input SNR and the details of the threshold
effect should be considered carefully when operating at lower SNR. This impact
of large noise and the resulting performance characteristics are not considered
in this introductory text but many excellent references cover this topic. One
example is [SBS66].

11.5 Angle Demodulations

The analysis of the performance of angle modulation demodulation algorithms
is quite complicated and a rich literature exists (e.g., [SBS66, Ric48]). The tack
that will be taken in this section is to simplify the analysis to provide the student
a good overview of the effects of noise on demodulation.

11.5.1 Phase Modulation

Phase modulation (PM) uses a noncoherent direct phase demodulator. Recall
the complex envelope of the received PM signal is

rz(t) = Ac exp[ j (kpm(t) + φp)] = Ac exp( j ϕs(t)) (11.30)

where ϕs(t) represents the overall received phase of the signal. Consequently,
the representative block diagram of PM demodulation in noise is given in
Figure 11.12. The output complex envelope from the downconverter at one point
in time, t = ts, is represented as in Figure 11.13 for an angle modulated signal.
The output of the phase detector has the form

Y P (t) = tan−1(Y Q(t), Y I (t)) = kpm(t) + φp + ϕe(t) = ϕs(t) + ϕe(t) (11.31)

where ϕe(t) is the phase noise produced by the corrupting noise. Defining N̆z(t)=
Nz(t) exp (− j ϕs(t)) in a similar way as was done for coherent demodulation it
can be shown that

ϕe(t) = tan−1(N̆Q(t), Ac + N̆I (t)). (11.32)

Again using the results of Section 3.3.4, a transformation of random variables
could be accomplished and the output could be completely characterized [DR87].
While rigorous the procedure lacks intuition into the effects of noise on nonco-
herent PM demodulation.

Yz(t) = Ac[ j(kpm(t) + fp] + Nz(t)
YD(t)

m̂ t( )Phase
Unwrap

YP(t) DC
Block

arg (•) HL( f )

Figure 11.12 The noncoherent demodulation structure for PM.



Fidelity in Analog Demodulation 11.13

NI(ts)

NQ(ts)

Yz(ts)YQ(t)

YI(t)

Ac

Yp(ts)

js(ts)

je(ts)

~
NQ(ts)

~
NI(ts)

rz(ts)

Nz (ts)

Figure 11.13 A vector diagram representing one time sample of Yz(t) for angle
modulation.

Again to gain some insight into the operation of a PM system a large SNR
approximation is invoked. At high SNR Ac � |N̆I (t)| and Ac � |N̆Q(t)|, which
implies (see Problem 2.13) that

ϕe(t) ≈ tan−1

(
N̆Q(t)

Ac

)
≈ N̆Q(t)

Ac
(11.33)

It is important to note that the inverse tangent in Eq. (11.33) is the more
common one argument inverse tangent function. The important insight gained
from this high SNR approximation is that the phase noise produced is a function
of the noise in quadrature to the modulated signal. At high SNR the output
phase noise is approximately Gaussian, zero mean (i.e., E[N̆Q(t)] = 0) and the
output noise variance is a function of both the input noise and the input signal
(i.e., E[ϕ2

e (t)] = E[N̆ 2
Q(t)]/A2

c ). The following approximation is also valid at high
SNR [SBS66]

RN̆Q
(t, τ ) = RNQ (τ ) = RNI (τ ) (11.34)

Consequently, the output phase noise is Gaussian, zero mean and has an ap-
proximate PSD of Sϕe (f ) = SNI (f )/A2

c . The signal and noise spectrum are as
shown in Figure 11.14(a).
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W

(a) Signal and noise spectrum. (b) Noise model.

SNI
( f )

Sje
( f ) =

kp
2|M( f )|2

f

N0
2Ac

2

BT
2

Ac
2

je(t) NL(t)HL( f )

Figure 11.14 The PM demodulator noise processing.

The effect of the noise due to the remainder of the processing needed to recover
the message can also be characterized. The DC block removes the term due to
φp and this section will assume the DC block is very small notch in frequency
and does not impact the noise power significantly. Since BT > 2W for PM
the noise power can be reduced by filtering the output of the DC block. The
model for the noise processing in PM is modeled with Figure 11.14(b). Assuming
the lowpass filter is ideal and has a bandwidth of W then output message
estimate has the form m̂(t) = kpm(t) + NL(t) where for the bandpass filter
given in Eq. (11.6)

SNL(f ) = Sϕe (f ) |HL(f )|2 = SNI (f )
A2

c
|HL(f )|2 =

⎧⎨
⎩

N0

2A2
c

| f | ≤ W

0 elsewhere
(11.35)

The output noise power is var(NL(t)) = N0W/A2
c and the output signal to noise

ratio is (recall Pxz = A2
c for PM)

SNRo = A2
c k2

p Pm

N0W
= k2

p Pm
Pxz

N0W
= k2

p PmSNRb (11.36)

The transmission efficiency is ET = k2
p Pm. The resulting SNR performance for

PM has four interesting insights

1. Again two parameters that affect SNRo are the transmitted power and the
message signal bandwidth (much like AM systems). In addition, there is a
third parameter ET = k2

p Pm that can be chosen by the designer.

2. At high SNR the effective performance can be improved an arbitrary amount
by increasing kp. If k2

p Pm > 1, then using a nonlinear modulation like PM
allows the designer to actually get a performance better than that achieved
at baseband.

3. Recall kp also increases the output bandwidth of a PM signal. Hence PM
allows an engineer to trade spectral efficiency for SNR performance. Such a
trade-off is not possible with AM.



Fidelity in Analog Demodulation 11.15

+ Nz(t)Yz(t) = Ac exp
YD(t)

m̂ t( )Phase
Unwrap

YP(t) d
dt

arg
(•)

HL( f )j k f m λ( )dλ + φp
−∞

t

∫
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Figure 11.15 The noncoherent demodulation structure for FM.

4. For large values of kp phase unwrapping becomes increasingly difficult. Con-
sequently, there is a practical limit to the size of kp and hence a limit to the
gain in SNR one can achieve compared to an unmodulated system.

As SNRi gets smaller a threshold effect will be experienced in PM demod-
ulation and that will not be discussed in this introductory text. An interested
reader should, for example, see [SBS66].

11.5.2 Frequency Modulation

FM has a noncoherent demodulation structure much like that of PM. Recall
the complex envelope of the received FM signal is

rz(t) = Ac exp
[

j
(

kf

∫ t

−∞
m(λ)dλ + φp

)]
= Ac exp( j ϕs(t)) (11.37)

where ϕs(t) represents the overall received phase of the signal. The demodula-
tion structure for FM is shown in Figure 11.15. The output of the phase detector
has the form

Y P (t) = tan−1(Y Q(t), Y I (t)) = kf

∫ t

−∞
m(λ)dλ + φp + ϕe(t) = ϕs(t) + ϕe(t)

(11.38)
Again defining N̆z(t) = Nz(t) exp (− j ϕs(t)) it can be shown that

ϕe(t) = tan−1(N̆Q(t), Ac + N̆I (t)) (11.39)

Again a complete statistical characterization is possible but lacks the intuition
that we want to achieve in this course.

The effect of the noise due to the remainder of the processing needed to
recover the message can also be characterized using similar approximations as
was done for PM. We can use the same high SNR approximations as with PM
to gain insight into the performance of FM. Recall at high SNR

ϕe(t) ≈ tan−1

(
N̆Q(t)

Ac

)
≈ N̆Q(t)

Ac
(11.40)

so that the noise at the output of the direct phase detector is well modeled as
Gaussian, zero mean and has a PSD of Sϕe (f ) = SNI (f )/A2

c . Since the deriva-
tive operation is a linear system the processing after the phase conversion
nonlinearity can be represented as the cascade of two linear systems as shown
in Figure 11.16(a). The derivative operation removes the phase offset, φp so
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je(t)
Nf (t)Hd ( f )

NL(t)
HL( f )

(a) Processing block diagram

0
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(b) Noise spectrum

SNL
( f )
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( f )

BT

2

BT

2
− −W −W

Figure 11.16 Noise processing in an FM demodulator.

that YD(t) = kf m(t) + dϕe(t)/dt = kf m(t) + Nf (t). The derivative is a linear
system with a transfer function of

Hd (f ) = j 2π f (11.41)

so at high SNR the output power spectrum of Nf (t) is approximated as

SNf (f ) = SNI (f )
A2

c
|Hd (f )|2 =

⎧⎪⎨
⎪⎩

2N0π
2 f 2

A2
c

| f | ≤ BT
2

0 elsewhere
(11.42)

This output spectrum is plotted in Figure 11.16(b). Interestingly the derivative
operation has colored the noise (PSD is not flat with frequency) as the derivative
operation tends to accentuate high frequencies and attenuate low frequencies.
The next section will demonstrate how engineers used this colored noise to
their advantage in high fidelity FM based communications. The final output
after the lowpass filter can also be characterized using the tools developed in
this course. The final output after an ideal filter with a bandwidth of W has the
form m̂(t) = kf m(t) + NL(t) where

SNL(f ) =

⎧⎪⎨
⎪⎩

2N0π
2 f 2

A2
c

| f | ≤ W

0 elsewhere
(11.43)

The resulting signal power is Ps = k2
f Pm and the noise power is given as

PN =
∫ ∞

−∞
SNL(f )df = 2N0π

2

A2
c

∫ W

−W
f 2df = 4N0π

2W 3

3A2
c

(11.44)
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so that the resulting output SNR is

SNRo = 3A2
c k2

f Pm

4N0π2W 3 = 3k2
f Pm

4π2W 2

Pxz

N0W
= 3k2

f Pm

4π2W 2 SNRb (11.45)

Here it is clear that ET = 3k2
f Pm

4π2W 2 . Since kf is a parameter chosen by the designer
the transmission efficiency of FM is again selectable. Recalling that kf = 2π f k ,
where f k is the frequency deviation constant (measured in Hz/V), gives a more
succinct form for the output SNR as

SNRo = 3k2
f Pm

4π2W 2 SNRb = 3 f 2
k Pm

W 2 SNRb (11.46)

The resulting SNR performance for FM has two interesting insights

1. At high SNR the effective performance can improve an arbitrary amount
by increasing f k . Recall f k also increases the output bandwidth of a FM
signal. Hence FM also allows an engineer to trade spectral efficiency for
SNR performance. Edwin Armstrong was the first person to realize that this
trade-off was possible.

2. The output noise from an FM demodulator is not white (flat with frequency).
The sequel will demonstrate how this colored noise characteristic can be
exploited.

As SNRi gets smaller a threshold effect will be experienced in FM demod-
ulation but that will not be discussed in this introductory text. An interested
reader should, for example, see [SBS66].

11.6 Improving Fidelity with Pre-Emphasis

The insights gained in analyzing the noise in the previous section have helped
engineers understand techniques to improve the output SNR in angle demodu-
lations. The three insights that led to this improved technique are

1. The noise at the output of the differentiator is not white so that noise power
is larger at higher frequencies.

2. The power of the noise tends to be distributed differently over frequency than
the power of the signal. A fairly typical example of this different distribution
is shown in Figure 11.17.

3. The received signal power, Pxz = Prz , is not a function of the message signal.

Consequently, if one can process the signal at the transmitter and receiver
in such a way that the signal is unchanged and that the high frequency com-
ponents of the noise are de-emphasized then a significant SNR advantage can
be gained. The way to achieve this gain is shown in Figure 11.18 and has
been denoted pre-emphasis and de-emphasis in the communications literature.
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Figure 11.17 Examples of the signal and noise spectrum at the output of an FM
demodulator.

The idea is to pre-emphasize the high frequencies of the signal before FM
modulation with a linear filter, HE (f ). This pre-emphasis will not change the
transmitted signal power which will still be Pxz = A2

c . This pre-emphasis will
impact the transmitted spectrum some as this adding gain to the high frequency
components of the message spectrum could increase the peak frequency devia-
tion. At the receiver the de-emphasis filter, HD(f ), is chosen to give an overall
unity gain to the message signal, e.g.,

|HE (f )HD(f )| = 1 | f | ≤ W (11.47)

Denoting the input and output of the de-emphasis filter as

m̂E (t) = mE (t) + NL(t) m̂(t) = m(t) + ND(t) (11.48)

it is clear this de-emphasis filter will further decrease the output noise power
since the PSD of ND(t) will be given as

SND (f ) = SNL(f ) |HD(f )|2 (11.49)

The actual amount of SNR gain will be a function of the specific filter transfer
functions and the spectral characteristics of the message signal. In practical
systems this gain is typically over 10 dB. Some specific examples will be explored
in the homework.

It is interesting to note that commercial analog “FM” broadcast in the United
States uses pre-emphasis and de-emphasis. Since a pre-emphasis circuit effec-
tively is behaving like a differentiator, the true transmitted signal in broadcast

yc(t)xc(t) Channel
Angle

Demodulator
Angle

Modulator
mE(t)m(t) HD( f )HE( f )

m̂(t)m̂E(t)

Figure 11.18 Block diagram of pre-emphasis and de-emphasis in FM systems.
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radio is actually a hybrid of phase modulation and frequency modulation. It is
interesting that this modulation is known in popular culture as FM while, in
fact, it is not a true frequency modulation of the message signal.

11.7 Final Comparisons

A summary of the important characteristics of analog modulations is given in
Table 11.1. At the beginning of Chapter 5 the performance metrics for ana-
log communication systems were given as: complexity, fidelity, and spectral
efficiency.

In complexity the angle modulations offer the best characteristics. Trans-
mitters for all of the analog modulations are reasonable simple to implement.
The most complicated transmitters are needed for VSB-AM and SSB-AM. The
complexity is needed to achieve the bandwidth efficiency. The angle modula-
tions have a transmitted signal with a constant envelope. This characteristic
makes designing the output power amplifiers much simpler since the linear-
ity of the amplifier is not a significant issue. Receivers for LC-AM and angle
modulation can be implemented in simple noncoherent structures. Receivers
for DSB-AM and VSB-AM require the use of a more complex coherent struc-
ture. SSB-AM additionally will require a transmitted reference for automatic
coherent demodulation and operation.

In spectral efficiency SSB-AM offers the best characteristics. SSB-AM is
the only system that achieves 100% efficiency. DSB-AM and LC-AM are 50%
efficient. VSB-AM offers performance somewhere between SSB-AM and
DSB-AM. Angle modulations are the least bandwidth efficient. At best they
achieve EB = 50%, and often much less.

In terms of fidelity there is a variety of options. Coherent demodulation offers
performance at the level that could be achieved with baseband transmission.
Noncoherent demodulation schemes can have a threshold effect at low SNR but
above threshold provide very good performance. The only difference between
coherent demodulation and noncoherent demodulation of LC-AM at high SNR
is the transmission inefficiency needed to make envelope detection possible.

TABLE 11.1 A comparison of the trade-offs in analog modulation

Spectral TX RX Fidelity
Modulation Efficiency Complexity Complexity

DSB-AM 50% moderate moderate ET = 1

LC-AM 50% moderate small ET ≈ MCPR
Experiences a threshold effect

VSB-AM > 50% large large 0.5 ≤ ET ≤ 1

SSB-AM 100% large large 0.5 ≤ ET = 1

PM < 50% small moderate Can trade-off BW for ET by choice of kp
Experiences a threshold effect

FM < 50% small moderate Can trade-off BW for ET by choice of kf
Experiences a threshold effect
Colored noise in demodulation
can be exploited
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Angle modulation when operated, above threshold offers a trade-off between
output SNR at the demodulator and the transmitted signal bandwidth. In gen-
eral, angle modulations offer the ability to trade bandwidth efficiency for output
SNR. This ability is not available in AM modulation and is the reason FM is
used for high fidelity broadcast in the United States. Finally, the noise spec-
trum at the output of an FM demodulator is nonwhite. This nonwhite spectral
characteristic can be taken advantage of by appropriate signal processing to im-
prove the output SNR even further. This idea of pre-emphasis and de-emphasis
is an excellent example of communication engineers getting significant perfor-
mance advantages for little cost in complexity by simply understanding a little
communication theory.

11.8 Homework Problems

Problem 11.1. For DSB-AM with a coherent demodulation, if the receiver phase
reference has an error of φe compute the output SNR. How big can φe be and yet
limit the degradation in SNR to less than 3 dB from the optimum performance?

Problem 11.2. Consider a bandpass Gaussian noise at the input to a demodulator
with a spectrum given as

SNc (f ) = 0.01 fc − 200 ≤ | f | ≤ fc + 300

= 0 elsewhere (11.50)

in the system given in Figure 11.4. Assume that the modulation is DSB-AM with

rc(t) = Acm(t)
√

2 cos(2π fct + φp) (11.51)

where Ac = 1 and the message signal has a W = 60 Hz bandwidth and power
Pm = 10 W. Using the signals Y I (t) and Y Q(t) as inputs and assuming you
know φp

(a) Define Ñz(t) = Nz(t) exp(− j φp). Give the joint PDF of Ñ I (t0) and Ñ Q(t0),
f Ñ I (t0)Ñ Q(t0)(n1, n2) in a 1-� system for a fixed t0.

(b) Find the best demodulator structure that leaves the signal undistorted and
maximizes the SNR.

(c) Give the maximum SNR.

Problem 11.3. The following complex envelope is received

Yz(t) = (cos(200πt) + sin(20πt)) exp[ j π/7] + Nz(t) (11.52)

The bandpass noise is characterized with

SNz(f ) =
{

0.005 | f | ≤ 4000

0 elsewhere
(11.53)
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(a) What kind of modulation is being used and what is the message signal (up
to a constant).

(b) Sketch the block diagram of the demodulation processing assuming that
the demodulator knows φp = π/7.

(c) If the lowpass filtering in the message recovery portion of the demodula-
tor is ideal and unit gain with 4000 Hz bandwidth compute the output
SNR.

(d) What ideal lowpass filter bandwidth would optimize the output SNR?

(e) Could an ideal bandpass filter at the output of the demodulator improve
performance? If so give the optimum filter specifications and the resulting
SNR.

Problem 11.4. In discussing noise in angle modulation we had defined a derotated
noise

N̆z(t) = Nz(t) exp (− j ϕs(t)) (11.54)

This problem will examine the approximations made in the text and see how
they can be justified. Assume the bandpass filter at the receiver front end is
ideal and has a bandwidth of BT = 2( f p + W ) and is symmetric around fc so
that RNI NQ (τ ) = 0.

(a) Find RNI (τ ).

(b) Show that N̆Q(t) = NQ(t) cos(ϕs(t)) − NI (t) sin(ϕs(t)).

(c) Compute RN̆Q
(t1, τ ) = E[N̆Q(t1)N̆Q(t1 − τ )].

(d) Since the result in (c) is a function of ϕs(t1) − ϕs(t1 + τ ) show that ϕs(t1) −
ϕs(t1 + τ ) ≈ 2π fd (t1)τ .

(e) Show that only when the instantaneous frequency deviation is large, will
RN̆Q

(t1, τ ) be much different than RNQ (τ ).

(f) Plot RN̆Q
(t1, τ ) and RNQ (τ ) for fd (t1) = f p and fd (t1) = f p/2.

Problem 11.5. A student from another university claims that the optimal receiver
for SSB-AM is given in Figure 11.19. The student argues that the quadrature

Yz(t) = xz(t)exp( jfp) + NZ(t)
me(t) + NT(t)

exp( jfp)

Re [•]

Im [•]

ΣΣ

H2( f )

HL( f )
Vz(t) = xz(t) + Nz(t)

~

Figure 11.19 An alternative demodulator for SSB-AM.
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component contains information related to the message signal and you should
use this information in the optimum demodulator. You begin to doubt the edu-
cation you received and set about to verify whether Prof. Fitz is right in what
he presented in this chapter or if the other student got a better education at
the other university. For this problem assume the filter at the front end of the
radio is given as Eq. (11.19) and that the noise output from H2(f ) is denoted
N̆Q(t).

(a) Show that for the case of upper sideband transmission via SSB-AM if H1(f )
is a lowpass filter of bandwidth W and that

H2(f ) =
{

j sgn(f ) | f | ≤ W

0 elsewhere
(11.55)

then me(t) = 2Acm(t). (It doesn’t look good for Prof. Fitz as the signal in the
alternative demodulator is twice as big what Prof. Fitz presented!)

(b) Denote N̆I (t) as the output of H1(f ) and N̆Q(t) as the output of H2(f ) and
show that

var(NT (t)) = var(N̆I (t)) + var(N̆Q(t)) + 2RN̆I N̆Q
(0) (11.56)

(c) Compute E[N̆ 2
I (t)].

(d) Compute E[N̆ 2
Q(t)].

(e) What is SN̆I N̆Q
(f )? (Feel free to use the results in Problem 10.10.)

(f) What is RÑ I N̆Q
(0)?

(g) What is the output SNR? Which structure would you choose for implement-
ing a SSB-AM demodulator Figure 11.19 or Figure 11.7 and why?

Problem 11.6. This problem considers the demodulation of stereo broadcast con-
sidered in Problem 7.24.

(a) Postulate a demodulation structure for stereo broadcast that has as outputs
m̂S (t) and m̂D(t). Assume a coherent demodulation for the DSB-AM signal
is possible2.

(b) Using the assumption that the power of the sum and difference signals are
both Pm calculate the output SNR for the estimation of mS (t).

(c) Using the assumption that the power of the sum and difference signals are
both Pm calculate the output SNR for the estimation of mD(t). The output
SNRs are different, why?

(d) Using these results postulate a mechanism to trigger the stereo indicator
light based on the SNR differences seen on the two channels.

2This coherent demodulation is achieved by processing the pilot tone.
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Problem 11.7. Consider an FM system with W = 15 kHz, Pm = 1, max |m(t)| = 3,
and an input noise characterized as

SW (f ) = 10−6 (11.57)

Assume the receiver filter is an ideal bandpass filter with a bandwidth equal
to Carson’s bandwidth.

(a) Define the bandpass SNR for an angle modulated signal to be

SNRbp = A2
c

E
[
N 2

c (t)
] (11.58)

and find the value of Ac (as a function of f k) needed to provide SNRbp =
10 dB (so that the demodulator will be operating above threshold and the
small noise approximation is valid).

(b) With the Ac as specified in (a) choose an f k such that SNRo = 30 dB.

(c) Broadcast radio in the United States was originally designed with only one
audio channel of 15 kHz such that D = 5, for the system parameters given
in this problem with Ac as specified in (a) what would the SNRo for this
original broadcast standard?

Problem 11.8. Assume a communication system uses DSB-AM and the received
signal is corrupted by a white Gaussian noise with a one-sided noise spectral
density of N0 = 10−6. Specify the optimum demodulator and find the received
signal power, Pxz , that would be needed to achieve a SNR = 10 dB for

(a) W = 4 kHz

(b) W = 15 kHz

(c) W = 4.5 MHz

Problem 11.9. A simple pre-emphasis filter which is commonly used in practice
is given by

Hpe(f ) = 1 + j f
f0

(11.59)

where f0 = 2.1 kHz. The corresponding de-emphasis filter is a simple lowpass
filter having the form

Hd e(f ) = 1
1 + j f

f0

(11.60)

(a) Defining Ipde as the noise power improvement ratio when using pre-
emphasis/de-emphasis, calculate Ipde for this filter combination. Sorry to
say this will require a little calculus!
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xz(t) Yz(t)mE(t) m̂ t( )DSB-AM
Modulator
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Demodulator
m(t)

∫(Σ)dt

Figure 11.20 A pre-emphasis and de-emphasis system for DSB-AM.

(b) For the case of mono FM broadcast ( f p = 75 kHz, W = 15 kHz) and an
bandpass SNR of

Pxz

BT N0
(11.61)

calculate the output signal to noise ratio with and without pre-emphasis/de-
emphasis.

(c) For the same parameters as in (b), calculate the value of

SNRb = Pxz

W N0
(11.62)

Recall that this is the optimum output SNR for an AM system.

(d) What is the performance improvement of FM modulation (above threshold)
with and without pre-emphasis/de-emphasis over DSB-AM modulation?

Problem 11.10. You have just started your job at Asprocket Systems and you and
a senior Asprocket engineer have been given the job of improving the perfor-
mance of a DSB-AM radio station that will be deployed by the Outer Boehtavian
government for news spinning (propaganda). The senior engineer said that one
way to improve noise performance is to use pre-emphasis and de-emphasis in
the radios and proposed the system shown in Figure 11.20. You have a bad feel-
ing about this as in your high powered education you were never taught about
pre-emphasis and de-emphasis being used in AM systems. Analyze the system
design by the senior Asprocket engineer and decide whether it is useful or not.
Justisty your answers by computing the output SNR = A2

c Pm

PN
and comparing that

to SNRb = Pxz
PN

. For simplicity of computation assume m(t) is a random process
with a power spectrum

SM(f ) =
⎧⎨
⎩

Pm

2W
| f | ≤ W

0 elsewhere
(11.63)

Problem 11.11. (JG) Consider the baseband communication system, shown in
Figure 11.21, where the signal and noise are both modeled as zero mean,

M̂ t( )M t( )

N t( )

Xz(t)Ac Σ

Figure 11.21 A baseband noise system.
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Yz(t)Ac
Xz(t)

N(t)

M̂ t( )M t( ) Σ H2( f )H1( f )

Figure 11.22 A baseband noise system with transmitter and receiver
filtering.

WSS, random processes with power spectral densities SM(f ) and SN (f ),
respectively.

SM(f ) =
{ 1

2W | f | < W

0 | f | > W
SN (f ) =

⎧⎪⎪⎨
⎪⎪⎩

aN0 | f | < W
2

bN0
W
2 < | f | < W

0 | f | > W

(11.64)

(a) What is the SNR in the received signal M̂(t)?

(b) The system is modified by including transmit and receive filters as shown
in Figure 11.22. Design H2(f ) to whiten the noise process for | f | < W .

(c) Given your choice of H2(f ), design H1(f ) to achieve distortionless
transmission.

(d) What is the SNR improvement in the new system versus the old system?

Problem 11.12. Consider a situation where a message signal is modeled as a
stationary Gaussian random process with a PSD given in Figure 11.23. Assume
this signal is corrupted by an additive white Gaussian noise with a one–sided
spectral density of N0. This combined signal plus noise is put into an ideal
lowpass filter that has a bandwidth of W . Choose W to optimize the output
SNR and give the value of this optimum SNR.

Problem 11.13. Consider the situation presented in Example 11.1. Replace the
LPF with another filter that would achieve an output with SNR = 12 dB.

−200 200

1

f

SM( f )

Figure 11.23 The power spectrum of the message signal.
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11.9 Example Solutions

(a) The modulation is DSB-AM. Recall that Yz(t) = xz(t) exp[ j φp] + Nz(t) and
the message signal is real. Since there is no time varying angle the signal
is clearly not an angle modulated. There is no DC offset in the complex
envelope so it is not LC-AM. The received signal spectrum is two sided so
no quadrature modulation was implemented. If DSB-AM has been imple-
mented then the message signal is m(t) = A(cos(200πt) + sin(20πt)) where
A = 1/Ac.

(b) See Figure 11.7 with φp = π/7.

(c) Using the results of Chapter 9 it is known that

SNL(f ) = SNI (f )|HL(f )|2 (11.65)

The results of Chapter 10 we have

SNI (f ) = SNz(f ) + SNz(− f )
4

(11.66)

and finally

SNL(f ) = SNI (f )|HL(f )|2 =
{

.005
2 , | f | ≤ 4000

0, elsewhere

Consequently, since the noise power is given as

PN = E
[
N 2

L(t)
] = ∫ ∞

−∞
SNL(f )df = 20. (11.67)

The output signal power is easily computed using Parseval’s theorem to be
Ps = 0.5 + 0.5. The resulting SNR = 0.05.

(d) Since the message bandwidth is 100 Hz, so the ideal lowpass filter has
100 Hz bandwidth. The new output noise spectral density is

SNL = SNI |HL(f )|2 =
{

.005
2 , | f | ≤ 100

0, elsewhere

and the resulting noise power is

PN = E
[
N 2

L(t)
] = ∫ ∞

−∞
SNL(f )df = 0.5. (11.68)

The resulting SNR in this case is SNR = 2.
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(e) The message bandwidth is 100 Hz, but we don’t have any signal from 0 to
10 Hz, if we use a bandpass filter from 10 to 100 Hz we can improve SNR.

SNL = SNI |HL(f )|2 =
{

.005
2 , 10 ≤ | f | ≤ 100

0, elsewhere

S N R = 0.5 + 0.5
0.35

= 2.22

Problem 11.5. This architecture was actually proposed in another textbook and
supposedly used in practice. The analysis of this problem is a classic example
of how understanding the theory of random processes can ensure that you are
not fooled by incorrect hueristic arguements in engineering. The answer is
“yes”, there is information in the quadrature channel of a SSB-AM demodulated
signal about the message but in terms of possible achieved SNR it is redundant
information.

(a) Denote the noiseless signal out of H1(f ) as m1(t) then m1(t) = Acm(t). Also
denote the noiseless signal out of H2(f ) as m2(t) then the output Fourier
transform is given as

M2(f ) = Ac H2(f )Mh(f ) = Ac ( j sgn(f )) (− j sgn(f )) M(f ) = Ac M(f )
(11.69)

Consequently, me(t) = m1(t) + m2(t) = 2Acm(t).

(b) Since NT (t) = N̆I (t) + N̆Q(t) it is straightforward to show that

E
[
N 2

T (t)
] = E

[
(N̆I (t) + N̆Q(t))2]

= E
[
N̆ 2

I (t)
]+ E
[
N̆ 2

Q(t)
]+ 2E[N̆I (t)N̆Q(t)]

= var(N̆I (t)) + var(N̆Q(t)) + 2RN̆I N̆Q
(0) (11.70)

(c) From the text we have that

SÑz
(f ) =

{
N0 0 ≤ f ≤ W

0 elsewhere
(11.71)

and

SÑ I
(f ) = SÑ Q

(f ) =
⎧⎨
⎩

N0

4
−W ≤ f ≤ W

0 elsewhere
(11.72)

Since from Chapter 9 it is known that

SN̆I
(f ) = SÑ I

(f ) |H1(f )|2 (11.73)
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this implies that

var(N̆I (t)) =
∫ ∞

−∞
SN̆I

(f )df = N0W
2

(11.74)

(d) Similarly,

SN̆Q
(f ) = SÑ I

(f ) |H2(f )|2 (11.75)

so that

var(N̆Q(t)) =
∫ ∞

−∞
SN̆Q

(f )df = N0W
2

(11.76)

(e) From Chapter 10 it is known that

SN̆I N̆Q
(f ) = SNz(− f ) − SNz(f )

j 4
=
⎧⎨
⎩

j N0sgn(f )
4

−W ≤ f ≤ W

0 elsewhere
(11.77)

Problem 10.10 gives the result

SN̆I N̆Q
(f ) = SÑ I Ñ Q

(f )H ∗
2 (f )H1(f ) =

⎧⎨
⎩

j N0sgn(f )
4

− j sgn(f ) −W ≤ f ≤ W

0 elsewhere

(11.78)

=
⎧⎨
⎩

N0

4
−W ≤ f ≤ W

0 elsewhere
(11.79)

(f) Recall that

RN̆I N̆Q
(0) =

∫ ∞

−∞
SN̆I N̆Q

(f )df = N0W
2

(11.80)

(g) The output SNR is

SNRo = Pme

var(NT (t))
= 4A2

c Pm

2N0W
= 2A2

c Pm

N0W
(11.81)

This output SNR is exactly the same as for the demodulation architecture
given in the text and yet it is more complicated than the architecture given
in class. Consequently, a good engineer would prefer the architecture given
in class.
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11.10 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter) The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). All team
members should be prepared to give the presentation.

11.10.1 Project 1

Project Goals: To examine the validity of the large SNR approximation that
was made in the analysis of the demodulation fidelity of LC-AM.

Consider a received signal of the form

Yz(t) = As + Nz(t) (11.82)

where S N R = A2
s

2σ 2
NI

. As a minimum plot a sample histogram with at least

10,000 points of the resulting values of the random variable Y A(t) for S N R =
10 dB and S N R = 0 dB. Make an assessment of the SNR where the approxi-
mation given in Eq. (11.25) is valid.

11.10.2 Project 2

Project Goals: To examine the validity of the large SNR approximation that
was made in the analysis of the demodulation fidelity of angle modulations.

Consider a received signal of the form

Yz(t) = As + Nz(t) (11.83)

where S N R = A2
s

2σ 2
NI

. As a minimum plot a sample histogram with at least 10,000

points of the resulting values of the random variable Y P (t) for S N R = 10 dB
and S N R = 0 dB. Make an assessment of the SNR where the approximation
given in Eq. (11.33) is valid.
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Chapter

12
Digital Communication Basics

The problem that is of interest in this text is point-to-point binary data com-
munications. The system model for such a communication system is given in
Figure 12.1. A source of binary encoded data with a total of Kb bits is present
and it is desired to transmit this data to a binary data sink across a physical
channel. The data output by the source is represented by a Kb × 1 dimen-
sional vector, �I , whose components take values 0,1. The 2Kb different words
will be enumerated with an index i = 0, . . . , 2Kb − 1. It should be noted that
in general each of these Kb bit words is not equally likely to be sent. A proba-
bility πi will be associated with the sending of each word. This information
vector to be sent is then mapped into one of 2Kb analog waveforms repre-
sented by the waveform xi(t). Denote Tp as the largest support of all the
xi(t), then the transmission rate or bit rate of the system is Wb = Kb/Tp bits
per second. The transmitted waveform is put through a channel of some sort
and corrupted by noise or interference. The composite received signal, Yc(t), is
then used to estimate which one of the possible vectors led to the transmitted
waveform. This estimate is denoted �̂I and this estimate is passed to the data
sink.

It should be noted that point-to-point data communications is but the simplest
abstraction of the data communications reality. This point-to-point communi-
cation is often referred to as physical layer communications. There are many
higher layers of abstraction in data communication. These higher layers deal
with concepts like how do multiple users access a shared communication media,
how is a communication path established in a multiple hop network, how do ap-
plications communicate across the network. These issues are typically covered
in the curriculum in a course on communication networks. Typical textbooks
that explore the details of communication networks are [KR04, LGW00, Tan02].
The student interested in the details of networked communication should take
these courses or read these textbooks.

12.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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Yc(t)Rc(t)Xc(t) Channel
Binary Data

Sink
Binary Data

Source
Signal

Demodulator
Data

Modulator

W(t)

Σ I
^

I

Figure 12.1 A model for point-to-point data communication.

12.1 Digital Transmission

In exactly the same way as in analog communication, digital communication has
a modulator and demodulator. The modulator produces an analog signal that
depends on the digital data to be communicated. This analog signal is trans-
mitted over a channel (a cable or radio propagation). The demodulator takes
the received signal and constructs an estimate of the transmitted digital data.
There are two types of digital communications that are implemented in practice:
Baseband data communications as exemplified by compact disc recordings or
magnetic recording (e.g., computer hard drives) and carrier modulated data
communications as exemplified by computer voiceband modems or radio mod-
ems used in wireless local area computer networks. In this text we want to
have a unifying framework that enables the material that is learned to apply
to either baseband or bandpass data communications. As with analog commu-
nications, the complex envelope notation is used to achieve this goal. The only
caveat that needs to be stated is that baseband data communication will al-
ways have a zero imaginary component, while for bandpass communications
the imaginary component of the complex envelope might be nonzero.

12.1.1 Digital Modulation

Definition 12.1 Digital modulation is a transformation of �I into a complex envelope,
Xz(t).

This transformation is equivalent to transforming m(t) into a bandpass
signal, Xc(t). In a slight deviation for digital communications, as compared to
analog communications, the transmitted waveform will be considered a random
process. The randomness in this transmitted waveform will be the random
information bits, �I , that are being transmitted. The digital modulation
process, Xz(t) = �m( �I ) is represented in Figure 12.2. It should be emphasized

xz(t) xc(t)Γm (•) I/Q
Up-converter

I

Figure 12.2 The digital modulation process. Note the IQ
upconverter is given in Figure 4.4.
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that digital communication is achieved by producing and transmitting analog
waveforms. There is no situation where communication takes place that this
transformation from digital to analog does not occur. Similarly, it should be
emphasized that the modulator must be capapble of generating 2Kb continuous
time waveforms to represent each of the possible binary data vectors produced
by the binary data source. When necessary, the possible data vector will be enu-
merated as �I = i. i ∈ {0, . . . , 2Kb − 1} and the possible transmitted waveforms
will be enumerated with Xz(t) = xi(t).

EXAMPLE 12.1
Transmission of two bits requires 22 = 4 waveforms. An example of a signal set that
can transmit 2 bits of information is given as

x0(t) =

⎧⎪⎨
⎪⎩

sin

(
4πt
Tp

)
0 ≤ t ≤ Tp

0 elsewhere

x1(t) =
{

1 0 ≤ t ≤ Tp

0 elsewhere
(12.1)

x2(t) =

⎧⎪⎨
⎪⎩

− sin

(
πt
Tp

)
0 ≤ t ≤ Tp

0 elsewhere

x3(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2t
Tp

0 ≤ t ≤ Tp/2

2 − 2t
Tp

Tp/2 ≤ t ≤ Tp

0 elsewhere

(12.2)

The transmission rate of this signal set is Wb = 2/Tp .

12.1.2 Digital Demodulation

Definition 12.2 Digital demodulation is a transformation of Yc(t) into estimates of
the transmitted bits, �̂I .

Demodulation takes the received signal, Yc(t), and downconverts this signal
to the baseband signal, Yz(t). The baseband signal is then processed to produce
an estimate of the transmitted data vector, �I . This estimate will be denoted �̂I .
Again, for this part of the text the channel output is always assumed to be

Rc(t) = Lp Xc(t − τp)

where Lp is the propagation loss and τp is the propagation time delay. Define
φp = −2π f cτp so that the channel output is given as

Rc(t) =
√

2Lp X A(t − τp) cos (2π f c(t − τp) + X P (t − τp))

= 
[
√

2Lp Xz(t − τp) exp [ j φp] exp [ j 2π f ct]] (12.3)
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Yz(t)
Yc(t) Γd (•)I/Q

Down-converter
Î

Figure 12.3 The digital demodulation process. Note the IQ down-
converter is given in Figure 4.4.

It is obvious from Eq. (12.3) that the received complex envelope is Rz(t) =
Lp Xz(t − τp) exp[ j φp]. It is important to note that a time delay in a carrier
modulated signal will produce a phase offset. The demodulation process con-
ceptually is a down conversion to baseband and a reconstruction of the trans-
mitted signal from Yz(t). The block diagram for the demodulation process is
seen in Figure 12.3.

Demodulation is the process of producing an �̂I from Yz(t) via a function
�d (Yz(t)). The remainder of the discussion on digital communications in this
text will focus on identifying �m( �I ) (modulators) and �d (Yz(t)) (demodulators)
and assessing the fidelity of message reconstruction of these modulators and
demodulators in the presence of noise. It is worth noting at this point that the
word modem is actually an engineering acronym for a device that was both a
modulator and a demodulator. The term modem has become part of the English
language and is now synonymous with any device that is used to transmit
digital data (computer modem, cable modem, wireless modem, etc.).

12.2 Performance Metrics for Digital Communication

In evaluating the efficacy of various designs in this text the performance met-
rics commonly applied in engineering design must be examined. The most com-
monly used metrics for digital communications are

■ Fidelity – This metric typically measures how often data transmission errors
are made given the amount of transmitted power.

■ Complexity – This metric almost always translates directly into cost.
■ Bandwidth Efficiency – This metric measures how much bandwidth a modu-

lation uses to implement the communication.

12.2.1 Fidelity

Fidelity in digital communication is reflected in how often transmission errors
occur as a function of the SNR. Transmission errors can be either bit errors
(1 bit in error) or frame errors (any error in a message or packet). The application
often determines the appropriate error metric. With data transmission at a
fixed transmit power, Pxc , the reliability of any data communication can be
increased by lowering the speed of the data communication. A lower speed
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transmission normally implies the signal bandwidth will be smaller so that
the receiver bandwidth will be smaller and consequently the SNR can be made
higher. Data communication engineers strive for a SNR measure that is not
an explicit function of the transmission bandwidth. The accepted measure in
engineering practice is the ratio of the average received energy per bit over the
noise spectral density, Eb/N0.

Definition 12.3 The average energy per bit for a received signal, Rz(t), where Kb bits
are transmitted is

Eb = E
[
ERz

]
Kb

= 1
Kb

E

[∫ ∞

−∞
|Rz(t)|2 dt

]
= L2

p

Kb
E

[∫ ∞

−∞
|Xz(t)|2 dt

]
(12.4)

Hence throughout this text we shall parameterize performance by Eb/N0 as
that is the industry standard. It should be noted that the expectation or average
in Eq. (12.4) is over the random transmitted data bits. Since the random trans-
mitted bits are discrete random variables the expectation will be a summation
versus the probability of each of the possible transmitted words. Consequently,
the general form for the average received energy per bit is

Eb = L2
p

Kb

2Kb−1∑
i=0

πi

[∫ ∞

−∞
|xi(t)|2 dt

]
= L2

p

Kb

2Kb−1∑
i=0

πi Ei (12.5)

where Ei is the energy of waveform xi(t) and πi is the probability that the i th
word was transmitted.

EXAMPLE 12.2
For the waveforms considered in Example 12.1 with equal likely a priori bits, the average
energy per bit is

Eb = L2
p (E0 + E1 + E2 + E3)

8
= Tp L2

p
(
0.5 + 1 + 0.5 + 0.5

)
8

= 5Tp L2
p

16
(12.6)

12.2.2 Complexity

Complexity is a quantity that requires engineering judgment to estimate. Often
the cost of a certain level of complexity changes over time. A good example of
this trade-off changing over a short period of time was seen in the land mobile
telephony market in the 1990s when early in the decade many people resisted
a move to a standard based on code division multiple access technologies based
on the cost and complexity of the handheld phones. By the end of the decade
the proposed telecommunication standards had become much more complex
but the advances in circuit technology allowed low cost implementations.
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12.2.3 Bandwidth Efficiency

The bandwidth efficiency of a communication system is typically a measure of
how well the system is using the bandwidth resource. In this text the bit rate
of communication is denoted Wb bits/second and the transmission bandwidth
is denoted BT . Bandwidth costs money to acquire and the owners of this band-
width want to communicate at as high a data rate as possible. Examples are
licenses to broadcast radio signals or the installation of copper wires to connect
two points. Hence bandwidth efficiency is very important for people who try to
make money selling communication resources. For instance, if one communica-
tion system has a bandwidth efficiency that is twice the bandwidth efficiency of
a second system then the first system can support twice the users on the same
bandwidth. Twice the number of users implies twice the revenue. The measure
of bandwidth efficiency for digital communications that will be used in this text
is denoted spectral efficiency and is defined as

ηB = Wb

BT
bits/s/Hz

The goal of this section is to associate a spectral characteristic or a signal
bandwidth with a digital modulation. This spectral characteristic determines
the bandwidth that a radio needs to have to support the transmission, as well
as the spectral efficiency of a digital transmission scheme. The way this will
be done in this text is to note that if the data being transmitted is known
then the transmitted signal, xz(t), is a deterministic energy signal. The spectral
characterization of deterministic energy signals is given by the energy spectrum

Gxz(f ) = |Xz(f )|2 = F {Vxz(τ )
} = F

{∫ ∞

−∞
xz(t)x∗

z (t − τ )dt
}

(12.7)

Building upon this spectral characterization in the same way as was done for
Gaussian random processes (see Chapter 9), the function that will be used
throughout this text to describe the spectral characteristics of a transmitted
digitally modulated signal is the average energy spectrum per bit.

Definition 12.4 The average energy spectrum per bit for a digitally modulated signal,
Xz(t), where Kb bits are transmitted is

DXz(f ) = E[GXz(f )]
Kb

(12.8)

This definition of average energy spectrum per bit (measured in Joules per bit
per Hertz) is consistent with the definition of power spectral density for random
processes as given in Definition 9.5 (measured in Joules per second per Hertz).
It should be noted that the expectation or average in Eq. (12.8) is over the
random transmitted data bits. Since the random transmitted bits are discrete
random variables the expectation will be a summation versus the probability
of each of the possible transmitted words. Consequently, the general form for
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the average energy spectrum per bit is

DXz(f ) = 1
Kb

2Kb−1∑
i=0

πiGxi (f ) (12.9)

It should be noted that the use of the Rayleigh energy theorem gives

Eb = L2
p

∫ ∞

−∞
Dxz(f )df (12.10)

so that Dxz(f ) can also be interpreted as the spectral density of the transmitted
energy per bit. The transmission bandwidth of a digitial communication signal,
denoted BT , can be obtained from the average energy spectrum per bit, DXz(f ).

EXAMPLE 12.3
For the waveforms considered in Example 12.1 the individual energy spectrum of each
waveform is given as

Gx0 (f ) = T 2
p

4
|sinc( f Tp − 2) exp[− j π f Tp] − sinc( f Tp + 2) exp[− j π f T ]|2 (12.11)

Gx1 (f ) = T 2
p sinc( f Tp)2

Gx2 (f ) = T 2
p

4
|sinc( f Tp − 0.5) exp[− j π f Tp + j π/2]

−sinc( f Tp + 0.5) exp[− j π f T − j π/2]|2

Gx3 (f ) = T 2
p

2

(
sinc

(
f Tp

2

))4

With equal likely a priori bits, the average energy per bit is

DXz(f ) = 1
8

3∑
i=0

Gxi (f ). (12.12)

This energy spectrum is plotted in Figure 12.4. This text will often use the 3 dB energy
bandwidth, B3, as a way to quantify the spectral occupancy of a digital modulation. The
3 dB bandwidth of this 4-ary modulation is B3 = 0.86/Tp and consequently the spectral
efficiency is ηB = 2.32 bits/s/Hz.

12.2.4 Other Important Characteristics

Many times in communication applications other issues besides bandwidth effi-
ciency, complexity, and performance are important. For example, for a handheld
mobile device the size, weight, and battery usage are important for the user.
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Figure 12.4 The average energy spectrum per bit for the signal set in Example 12.1.

Often in wireless communications energy efficiency of the algorithms are of
paramount importance. Often to increase the talk time for a mobile phone an
algorithm will give up performance for using less energy. One important issue
in mobile devices is the linearity of final amplifier before the antenna. A high
power linear amplifier is both expensive and consumes larger amounts of cur-
rent, so this is not a desirable characteristic for a mobile device. On the other
hand, high power is often needed to communicate with a remote base station
or a satellite. Likewise nonlinear amplifiers, which are more energy efficient,
often produce unacceptable distortion or spectral regrowth. In many handheld
devices modulations are chosen to minimize the requirement on the linearity
of the power amplifier. These issues will not be a major focus of this text like
the bandwidth efficiency, complexity, and fidelity, but are mentioned as they
are often involved in performance trade-offs for system design in practice.

12.3 Some Limits on Performance of Digital
Communication Systems

Digital communications is a relatively unique field in engineering in that there
is a theory that gives some performance limits for data transmission. The body
of work that provides us with these fundamental limits is information theory.
The founder of information theory was Claude Shannon [Sha48] and Shannon
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had built his theory on other seminal work that included [Har28]. While this
text cannot derive all the important results from information theory it will
attempt to highlight the important results in information theory that relate to
the material in this text: physical layer transmission of digital information. A
course in information theory is highly recommended [CT92] to students who
want a deep level of understanding of data communications.

An important contribution of Claude Shannon was to identify that every
channel had an associated capacity, C and reliable (in fact error-free) transmis-
sion is possible on the channel when Wb < C. A channel of significant interest
for a majority of this text is the channel which experiences an additive white
Gaussian noise (AWGN) distortion. For this AWGN channel when the signal
uses a transmission bandwidth BT , Shannon identified the capacity as [Sha48]

C = BT log2(1 + SNR). (12.13)

This immediately leads to a constraint on the spectral efficiency that can be
reliably achieved

ηB < log2(1 + SNR) (12.14)

Equation (12.14) unfortunately states that to achieve a linear increase in spec-
tral efficiency a communication engineer must provide exponentially greater
received SNR. Hence in most communication system applications the spectral
efficiencies achieved are usually less than 15 bits/s/Hz (often much less).

Further insight into the problem is gained by reformulating Eq. (12.14). First,
the received noise power is directly a function of the transmission bandwidth.
If we assume an ideal bandpass filter of bandwidth BT , the results of Chapter 9
give the noise power and SNR as

PN = N0 BT SNR = Ps

N0 BT
(12.15)

Recall that most communication system engineers like to quantify performance
with Eb/N0 and that Ps = EbWb so that Eq. (12.14) becomes

ηB < log2

(
1 + Eb

N0

Wb

BT

)
= log2

(
1 + Eb

N0
ηB

)
(12.16)

The achievable spectral efficiency versus Eb/N0 is represented in Figure 12.5.
The line in Figure 12.5 represents the solutions to the equation

ηB = log2

(
1 + Eb

N0
ηB

)
(12.17)

For a given Eb/N0, information theory indicates that reliable communication
at spectral efficiencies below the line in Figure 12.5 are achievable while spec-
tral efficiencies above the line are not achievable. Throughout the remainder of
the text the goal will be to give an exposition on how to design communication
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Figure 12.5 Maximum achievable spectral efficiency.

systems that have operating points which can approach this ultimate perfor-
mance given in Figure 12.5.

The results in Figure 12.5 provide some interesting insights for how com-
munication systems should be designed. In situations where bandwidth is the
most restricted resource the goal then is to drive the received Eb/N0 to as
large a value as possible. For example, many telecommunication systems have
designed operating points where Eb/N0 > 10 dB. In situations where Eb is the
most restricted resource it is possible to still achieve reliable communication by
reducing the spectral efficiency. For example, communications with deep space
probes is limited by the amount of power that can be received. Communication
systems for deep space communication are designed most often to have rela-
tively low bit rates and by setting ηB < 1. Also you can see from Figure 12.5 that
there is a limit on how small Eb/N0 can be made and still maintain reliable
communications. This minimum is Eb/N0 = ln 2 = −1.59 dB. These results
from information theory provide benchmarks by which we can calibrate perfor-
mance as we progress in our understanding of digital communication theory.

12.4 Conclusion

In the roughly 50 years since Shannon proposed his mathematical theory of
communication, engineers have been hard at work trying to achieve the implied
limits given by Shannon’s work. An example of a progression of the technology
for voiceband computer modems in shown in Table 12.1. It should be noted
that a voiceband modem can support a transmission bandwidth of BT = 3.2 −
4 kHz. Data communications started with modems of modest performance and
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TABLE 12.1 The evolution of computer voiceband modems

Modem Standard Year Data Rate ηB

V.21 1962 300 bps 0.09375
V.22 1970 1200 bps 0.375
V.22bis 1976 2400 bps 0.75
V.32 1984 9600 bps 3.0
V.32bis 1991 14400 bps 4.5
V.34 1995 28800 bps 9.0
V.90 1998 56000 bps 17.5

complexity. The performance of modems evolved in an ever increasing trajectory
of performance and complexity. As the capability to process signals in electronic
circuits dropped in price, engineers quickly used that added ability to make cost-
effective modems that had increasing bandwidth efficiency and performance.
The remainder of this text will try to give some flavor of the journey that has
happened in the broader field of data communications in pursuit of Shannon’s
bound as the cost of producing high performance circuitry has dropped.

12.5 Homework Problems

Problem 12.1. You have been asked to build a digital communication system that
transmits Kb = 3 bits of information. The specification given to you by your
supervisor is to achieve at least a Wb = 1 Mbits/s transmission rate.

(a) How many different waveforms are needed to transmit Kb = 3 bits of infor-
mation?

(b) Specify a set of waveforms that will transmit Kb = 3 bits with a transmission
rate of Wb = 1 Mbits/s.

(c) Assume each of the 3-bit words are equally likely and compute the 3 dB
bandwidth of the transmission specified in your answer to (b).

(d) What is the spectral efficiency of your design in (b)?

Problem 12.2. Show that the minimum Eb/N0 needed to support reliable com-
munication is (

Eb

N0

)
min

= ln 2 (12.18)

Problem 12.3. The touch-tone dialing in a telephone is a form of data communi-
cation. When a key is pressed on a telephone two tones are generated, i.e.,

xi(t) = Acos(2π f i(1)t) + Acos(2π f i(2)t) (12.19)

This type of modulation is referred to as dual tone multiple frequency (DTMF)
modulation. The DTMF tones can send Kb = 4 bits even though there are
only 12 keys on the phone. The modulation mappings are shown in Table 12.2.
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TABLE 12.2 The dual tone multiple frequency (DTMF)
modulation mappings

fi(2)

fi(1) 1209 Hz 1336 Hz 1477 Hz 1633 Hz

i = 0 i = 1 i = 2 i = 3
697 Hz ABC DEF

1 2 3 A
i = 4 i = 5 i = 6 i = 7

770 Hz GHI JKL MNO
4 5 6 B

i = 8 i = 9 i = 10 i = 11
852 Hz PRS TUV WXY

7 8 9 C
i = 12 i = 13 i = 14 i = 15

941 Hz oper
∗ 0 # D

To simplify the problem assume Tp = 1 second and each word of the 16 total
words that can be transmitted is equally likely. Note also that the modulation
is given as a real signal.

(a) Plot the transmitted signal when person tries to call the operator (i = 13)
for A = 1 over the interval [0, 0.1].

(b) Transmission on telephone lines are often thought of as having f c = 1200 Hz.
Give the simplest form of the complex envelope when a person tries to call
the operator (i = 13).

(c) What is Eb as a function of A.

(d) Find and plot DXz(f ).

Problem 12.4. Frequency shift keying is a modulation that sends the word of
information by transmitting a carrier pulse of one of M = 2Kb frequencies. This
is an obvious simple signalling scheme and one used in many early modems.
The signal set is given as

xi(t) =
{

Aexp[ j 2π fd (2i − M + 1)t] 0 ≤ t ≤ Tp

0 otherwise
(12.20)

where fd is known as the frequency deviation. The frequency difference be-
tween adjacent frequency pulses in the signal set is 2 fd . For the problem as-
sume Kb = 3, fd = 1, Tp = 1, and that each of the eight words is equally likely
to be transmitted.

(a) Plot the transmitted signal when �I = 4 with f c = 10.

(b) What is Eb as a function of A.

(c) Find and plot DXz(f ).
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Problem 12.5. Phase shift keyed modulation sends the word of information by
transmitting a carrier pulse of one of M = 2Kb phases. This is an obvious simple
signalling scheme and one used in many modems. The first form of the signal
set one might consider is given as

xi(t) =

⎧⎪⎨
⎪⎩

Aexp
[

j
π(2i + 1)

M

]
0 ≤ t ≤ Tp

0 elsewhere

(12.21)

The phases have been chosen uniformly spaced around the unit circle. This is
known as natural mapping PSK. For the problem assume Kb = 3, Tp = 1, and
that each of the eight words is equally likely to be transmitted.

(a) Plot the transmitted signal when �I = 4 with f c = 10.

(b) What is Eb as a function of A.

(c) Find and plot DXz(f ).

Problem 12.6. The U.S. National Aeronautics and Space Administration (NASA)
sent the Pathfinder probe to the planet Mars. This probe had a 10-W transmitter
and this resulted in a received signal power on Earth of Ps = −145 dBm.
Assume the receiver noise spectral density is N0 = −170 dBm/Hz.

(a) What is the highest transmission rate that could possibly be achieved
between the probe on Mars and the receiver on Earth?

(b) If NASA did not want to interfere with other transmissions in space and
wanted to be bandwidth efficient and achieve ηB = 1 bit/s/Hz, what is the
highest transmission rate that can be achieved?

Problem 12.7. In a communication system the received average power is
Ps = −80 dBm and the noise spectral density is N0 = −170 dBm/Hz. An English
text message has 128 possible characters.

(a) What is the lower bound to shortest time that a 4-character text message
could be sent in this communication system?

(b) If this text message system was to be sent over a commercial system with a
requirement of achieving at least ηB = 2 bits/s/Hz what is the lower bound
to the shortest transmission time that can be achieved.

Problem 12.8. A satellite communication system can support two types of users:
(1) voice and (2) video. Voice users need to support transmission rates of Wb =
5 kbps and video users need to support transmission rates of Wb = 4 Mbps.
The demodulation protocols are such that each user needs Eb/N0 = 4 dB to
achieved the desired fidelity.

(a) The voice and video user will need a different average signal power to sup-
port their application. Give the ratio of the required received average signal
power of the two users.
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(b) The different received signal powers discussed in (a) are achieved by giving
each user a different size antenna. If the power gain of an antenna is pro-
portional to the area of the antenna and the voice user has an antenna 0.5 m
in diameter, how large, in diameter, will the antenna for the video user have
to be?

Problem 12.9. If the telephone network was well modeled by an AWGN channel
with BT = 3.2 kHz and an Eb/N0 = 30 dB what information transmission rate
could reliably be supported? Given the information in Table 12.1 could the tele-
phone network be accurately modeled as an AWGN channel with BT = 3.2 kHz
and an Eb/N0 = 30 dB?

12.6 Example Solutions

Problem 12.10. Rewriting Eq. (12.17) gives

2ηB =
(

1 + Eb

N0
ηB

)
(12.22)

or equivalently

Eb

N0
= 2ηB − 1

ηB
(12.23)

The lowest received energy per bit that allows reliable communication is(
Eb

N0

)
min

= lim
ηB →0

= 2ηB − 1
ηB

(12.24)

Using L’Hopital’s rule this reduces to(
Eb

N0

)
min

= ln 2 (12.25)

12.7 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). Each team
member should be prepared to make the presentation on the due date.
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12.7.1 Project 1

Project Goals: Design a signal set that achieves a specified data rate and
spectral efficiency.

The standard computer modem in 1962 was capable of a Wb = 300 bps trans-
mission rate on an analog telephone line. The analog telephone line for this
project is assumed to pass frequencies 600 ≤ f ≤ 3000. Design a digital modu-
lation for Kb = 4 capable of transmitting at greater or equal to Wb = 300 bps
with 98% of the average energy per bit contained in the range 600 ≤ f ≤ 3000.
The following items need to be submitted with your solution to verify your
design

(a) A time plot of the bandpass waveform, x12(t), that will be sent when �I = 12.

(b) A plot of the bandpass average energy spectrum.

(c) Computer code that computes the average energy per bit in 600 ≤ f ≤ 3000.
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Chapter

13
Optimal Single Bit

Demodulation Structures

13.1 Introduction

In this chapter we consider the transmission and demodulation of one bit of
information transmitted on an all-pass channel. This chapter will demonstrate
how statistical decision theory is useful in the design of digital communications.
The treatment here is less rigorous than one might see in an engineering book
on detection (e.g., [Poo88]). The treatment given here is my synthesis of ideas
already presented by many authors before. A particular favorite of mine is
[Web87].

Here a set of notation is formulated. The bit of information will be denoted
I with I = 0, 1. The discussion will assume that the bit to be sent is a random
variable with P (I = 0) = π0 and P (I = 1) = π1. The transmitted waveform is
Xz(t). If I = 0 then Xz(t) = x0(t) and if I = 1 then Xz(t) = x1(t). The support1

of x0(t) and x1(t) is in the interval [0, Tp]. In other words the signals x0(t) and
x1(t) are both energy waveforms no longer than Tp in length. Consequently the
bit rate is defined to be Wb = 1/Tp.

EXAMPLE 13.1
Figure 13.1 shows an example of two waveforms for one bit transmission. These two
waveforms are explicitely given as

x0(t) =

⎧⎪⎨
⎪⎩

sin

(
4πt
Tp

)
0 ≤ t ≤ Tp

0 elsewhere

x1(t) =
{

1 0 ≤ t ≤ Tp

0 elsewhere
(13.1)

1The support of a function is the domain of the function where the range is nonzero valued.

13.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.



13.2 Chapter Thirteen

0

x1(t)
x0(t)

0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time, t/Tp

x i
(t

)

Figure 13.1 An example of two possible waveforms used to transmit one bit of infor-
mation.

For the channel that was considered in the analog portion of the text the
output received signal can be accurately modeled with

Yz(t) = Lp Xz(t − τp) exp[ j φp] + Wz(t) (13.2)

where Wz(t) is a complex additive white Gaussian noise (AWGN) with SWz(f ) =
N0 that models a thermal noise at the receiver front end2, Lp is the propaga-
tion loss, τp is the propagation delay, and φp is a propagation induced phase
shift. This book will be focused on coherent digital communications. Coherent
communications implies that the receiver knows perfectly the distortion that
can occur in transmission (with the model in Eq. (13.2) the exact value of Lp,
τp, and φp). For coherent communication, the model in Eq. (13.2) can compli-
cate the ideas of digital modulation and demodulation design so we will adopt
a simpler one, i.e.,

Yz(t) = Xz(t) + Wz(t) (13.3)

The model in Eq. (13.3) assumes the transmitted signal is received undistorted.
There is little loss in generality in considering this model for coherent commu-
nications since each of the parameters Lp, τp, and φp in Eq. (13.2) has a simple

2See Section 10.5 for a motivation of this noise model.
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Figure 13.2 The problem formulation for hypothesis testing.

separable change for the optimal demodulator. A homework problem explores
this difference. The energy per bit in this simple binary transmission example is

Eb = π0 E0 + π1 E1 (13.4)

13.1.1 Statistical Hypothesis Testing

Digital communications borrows a vast majority of its theory from the well-
developed theory of statistical hypothesis testing. A hypothesis test comes about
when a person is faced with the problem of making a definite decision with
respect to an uncertain hypothesis which is known only through its observable
consequences. A statistical hypothesis test is an algorithm based on a set of
observations to decide on the alternative (for or against the hypothesis) which
minimizes certain risks [Leh86].

The general statistical hypothesis testing problem formulation is given in
Figure 13.2. In general there is some system that disrupts the ability to make
decisions. The output of that system is the raw observations. These raw obser-
vations are processed in some way to make the decision. The decision making
process is usually formulated by getting either an analytical or an empirical
understanding of how likely each hypothesis is and how the observations relate
to the hypothesis.

EXAMPLE 13.2
Imagine you have just been hired at Westwood University as the men’s basketball coach.
Half the team, upset about the firing of the previous coach, quit the team and you have
a big game against your archrival, Spoiled Children Institute of Technology (SCIT), in
three days. You are desperate to find Division I basketball players and have started
searching around campus (hypothesis: basketball player or no basketball player). Your
assistant coach had the brilliant insight that basketball players tend to be taller than
average and you decided to base your entire decision on the height of individuals (de-
cision statistic: height). The assistant went out and measured 100 basketball players
and 100 nonbasketball players and gave you the histograms in Figure 13.3. Given the
problem formulation three questions can be asked

1. If a person is 5′4′′ tall (64 inches) could he be a basketball player? The answer is
yes but it is highly unlikely so you would probably decide against asking a 5′4′′-tall
person to join the team.
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Figure 13.3 Histograms of the height of nonbasketball players and basketball players.

2. If a person is 7′0′′ tall (84 inches) could he not be a basketball player? Again the
answer is “yes” but it is highly unlikely so you would probably invite all 7′0′′ people
to join the team.

3. If a person is 6′0′′ tall (72 inches) would you invite him to be on the team? There
seems to be about an equal probability, judging from Figure 13.3, that a nonbasketball
playing person would be 6′0′′ tall as there is that a basketball player would be 6′0′′
tall. The best decision would likely be that 6′0′′ tall person not be invited since there
are many more nonbasketball playing people than basketball players and hence it is
more probable that a 6′0′′-tall person is not a basketball player.

This example shows intuitively how decisions are made, how statistics are formed and
how the probability of each hypothesis should impact the decision. These elements are
all in the digital communications problem.

It is clear from the previous example of trying to decide on basketball players
that both what is observed in a statistical test and what are the prior distribu-
tions on the possible outcomes can both significantly impact the decision that is
made. To capture these characteristics statisticians have defined two important
quantities.



Optimal Single Bit Demodulation Structures 13.5

Definition 13.1 The a priori probability is the probability associated with a possible
hypothesis before any experiments are completed.

EXAMPLE 13.3
For the binary signaling in Example 13.1 it will be assumed that each bit value is equally
likely a priori, i.e., π0 = π1 = 0.5.

EXAMPLE 13.4
Continuing with Example 13.2, a rough estimate would be that the probability a ran-
domly chosen person on the Westwood University campus is a Division I basketball
player is π0 = 0.001.

Definition 13.2 The a posteriori probability (APP) is the probability associated with a
possible hypothesis that takes into account any observed experimental outcomes and
the a priori probability.

A priori probabilities and a posteriori probabilities have a prominent role in
the theory of digital communications and in fact form the basis of most modern
data modem technology.

13.1.2 Statistical Hypothesis Testing in Digital Communications

The optimum structure for demodulation of known transmitted signals in the
presence of the white noise (i.e., the model in Eq. (13.3)) is shown in Figure 13.4.
The structure consists of a linear filter where the real output of this linear filter
is sampled and subject to a threshold test. The justification for why this struc-
ture is optimum will be left to a course on detection theory (e.g., [Poo88]). Linear
filters, samplers, and threshold tests are some of the most common electrical
components available. The fact that the combination of a linear-time-invariant
filter, a sampler, and a threshold test forms the best single bit digital commu-
nications demodulator is quite striking. The sample time can be arbitrary but

Sampler
Re[•]H( f ) Filter

g

Threshold
Test

Yz(t)
Vz(t) VI (t)

Tp

Î

Figure 13.4 The optimum demodulator for a single bit transmission in AWGN.
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here is chosen to be at Tp, the end of the transmitted pulse. Hopefully after
the entire optimum demodulation structure is examined in detail the reasons
for this selection will become clear. For clarity, a threshold test is a component
that provides the following logical operation: if

V I (Tp) > γ then Î = 1 (13.5)

else

V I (Tp) ≤ γ then Î = 0 (13.6)

Threshold tests or comparators are easily implemented in electronic circuits.

Definition 13.3 A statistic is any processing of data to produce a number that represents
the data but is of lower dimensionality than the original data.

This definition matches with how statistics are used in a wide variety of appli-
cations (e.g., mean and variance of grades). In the case considered here V I (Tp)
is one number that represents the entire continuous time received waveform,
Yz(t) and is a statistic for deciding about I .

Definition 13.4 A sufficient statistic is a statistic where making a decision or estimate
based only on the statistic results in no loss in information/performance in estimation
or detection compared to using the full data record.

In the binary detection problem, an optimal decision about I can be made by
only considering V I (Tp), consequently V I (Tp) is a sufficient statistic for the
entire observed waveform, Yz(t).

13.1.3 Digital Communications Design Problem

The digital communications design problem consists of identifying the compo-
nents of the optimal demodulator such that a good trade-off can be achieved
between fidelity, complexity, and spectral efficiency. The approach taken in
this text to understanding this trade-off for single bit demodulation is to work
through five simple design tasks

1. Given x0(t), x1(t) and H (f ), design the optimum threshold test (find γ ).

2. Given x0(t) and x1(t) and H (f ) with the optimum threshold test, compute
fidelity of the bit estimation. The fidelity metric of interest will be the prob-
ability of making a bit decision error.

3. Given x0(t) and x1(t), design the filter, H (f ) that minimizes the bit error
probability (BEP).

4. Given the optimum demodulator, design x0(t) and x1(t) to optimize the fi-
delity of the message reconstruction.

5. Design x0(t) and x1(t) to have desired spectral characteristics.
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13.2 Minimum Probability of Error Bit Demodulation

The goal in this section is to address Design Task 1. We are looking to fix x0(t),
x1(t), and H (f ) and find a threshold, γ , that gives the optimum error probabil-
ity. Our criterion for optimal demodulation will be based on which bit is more
probable given an observed output from the receiver, V I (Tp) = vI . Recall this
text maintains the convention that capital letters denote random variables and
lower case letters will denote observed realizations of those random variables.
This situation of trying to map a random variable into one of two possible de-
cisions on a bit is a situation where this convention is necessary to clarify the
actual underlying mathematics. V I (Tp) and Î are random variables but the
optimum mapping from the observations V I (Tp) = vI to the decision Î (vI ) is a
deterministic function.

EXAMPLE 13.5
Consider the signals shown in Figure 13.1 with a truncated ideal lowpass filter with
design bandwidth of BT = 4/Tp , i.e.,

h(t) =
{

2BT sinc (2BT (t − τh)) 0 ≤ t ≤ 2τh

0 elsewhere
(13.7)

where τh = 3/Tp . Note for simplicity of displaying the signals at various points of the
demodulator we have chosen both the transmitted signals and the filter to be real val-
ued. The signals and the noiseless output of the filter are plotted in the Figure 13.5. The
vertical line represents a sampling time when the waveforms are relatively easy to dis-
tinguish and this sample time will be used in this example as we examine Design Task 1.

The decision will be made based on which value of the transmitted bit is more
probable (likely) given the observed value vI . This type of demodulation is
known as maximum a posteriori bit demodulation (MAPBD). A MAPBD com-
putes the a posteriori probability (APP) for each possible hypothesis and then
chooses the hypothesis whose APP is largest. The MAPBD chooses the most
likely hypothesis after both the a priori information and the observations are
analyzed. MAPBD can be shown to be the minimum probability of error de-
modulation scheme by using the theory of Bayes detection [Leh86, Web87].
Mathematically this can be stated as

P (I = 1|vI )
Î =1
>

<
Î =0

P (I = 0|vI ) (13.8)

This decoding rule first computes the APP of each possible value of the trans-
mitted bit, P (I = i|vI ), i = 0, 1, and then makes a decision based on which
APP is the largest. This procedure of computing an APP based on the observed
channel outputs is a common theme in modern digital communications.
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Figure 13.5 The transmitted signals and the noiseless output of H (f ) for Example 13.5.

These probabilities can be computed with Bayes rule (mixed form)

P (I = 1|vI ) = f V I |I (vI |I = 1)P (I = 1)
f V I (vI )

P (I = 0|vI ) = f V I |I (vI |I = 0)P (I = 0)
f V I (vI )

(13.9)

where f V I |I (vI |I = i) is the conditional PDF of V I (Tp) when I = i is transmit-
ted and f V I (vI ) is the unconditional PDF of V I (Tp). When discussing detection
problems the notation π0 = P (I = 0) and π1 = P (I = 1) is often used [Poo88]
and this text will adopt this notation as well. When the common term present
in Eq. (13.9) is cancelled from both sides of Eq. (13.8) the decoding rule becomes

f V I |I (vI |I = 1)π1

Î =1
>
<

Î =0

f V I |I (vI |I = 0)π0 (13.10)

Figure 13.6 shows the block diagram for this MAPBD threshold test. The form-
ing of the threshold test is essentially the finding of which of two decision
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Figure 13.6 The maximum a posteriori bit demodulator.

statistics are larger. This is a common theme that will weave itself through the
remainder of the text. To prepare the reader for this thread, the decision test
in Eq. (13.10) can be restated as

Î = arg max
i=0,1

f V I |I (vI |I = i)πi (13.11)

The optimum test can often be simplified from the form given in Eq. (13.10)
but the discussion throughout the course will often return to a demodulator
format based on the form in Eq. (13.10). Another form of the test that is often
used is known as the likelihood ratio test [Poo88] given as

f V I |I (vI |I = 1)
f V I |I (vI |I = 0)

Î =1
>
<

Î =0

π0

π1
(13.12)

From a practical point of view this maximum a posteriori bit demodulator
is not interesting if the computation of f V I |I (vI |I = i), i = 0, 1 is not sim-
ple. Fortunately, the form of the receiver for the single bit demodulator can be
significantly simplified.

13.2.1 Characterizing the Filter Output

The filter output is straightforward to characterize since conditioned on the
transmitted signal, the input is a known signal plus white Gaussian noise. If
I = 0 and denoting h(t) as the filter impulse response, then

Vz,0(t) =
∫ ∞

−∞
(x0(τ ) + Wz(τ ))h(t − τ )dτ

=
∫ ∞

−∞
x0(τ )h(t − τ )dτ +

∫ ∞

−∞
Wz(τ )h(t − τ )dτ

= m0(t) + Nz(t). (13.13)
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The term m0(t) represents the output of the filter when x0(t) is input. Recall
Nz(t) is a Gaussian random process that is characterized with

RNz(τ ) = N0Vh(τ ) = N0

∫ ∞

−∞
h(t)h∗(t − τ )dt and SNz(f ) = N0|H (f )|2

(13.14)
Likewise if I = 1 then

Vz,1(t) =
∫ ∞

−∞
(x1(τ ) + Wz(τ ))h(t − τ )dτ

=
∫ ∞

−∞
x1(τ )h(t − τ )dτ +

∫ ∞

−∞
Wz(τ )h(t − τ )dτ

= m1(t) + Nz(t) (13.15)

where m1(t) represents the output of the filter when x1(t) is input.
Output time samples of this filter are easily characterized. If I = 0, the

sample taken at time Tp is given as

V0,z(Tp) = m0(Tp) + Nz(Tp)

and the real part of this sample is given as

V0, I (Tp) = m0, I + N I (Tp)

where m0, I = 
[m0(Tp)]. Consequently, when I = 0, V I (Tp) is a Gaussian
random variable (RV) with a PDF given as

f V I |I (vI |I = 0) = 1√
2πσ 2

N I

exp

[
− (vI − m0, I )2

2σ 2
N I

]
(13.16)

where σ 2
N I

= var(N I (Tp)). Since N I (Tp) is the output of a linear filter it is easy
to show using the results from Chapters 9 and 10 that 2σ 2

N I
= ∫∞

−∞ N0|H (f )|2df.
In a similiar fashion

f V I |I (vI |I = 1) = 1√
2πσ 2

N I

exp

[
− (vI − m1, I )2

2σ 2
N I

]
(13.17)

where m1, I = 
[m1(Tp)]. Consequently, the MAPBD given in Eq. (13.10) re-
quires the computation of two Gaussian PDFs having the same variance but
different means. The means of these two PDFs are a function of the demod-
ulation filter and the two possible transmitted signals representing the two
possible values of the bit.
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Figure 13.7 Sample paths of the filter outputs for each of the possible transmitted signals and
histograms of the filter output samples.

EXAMPLE 13.6
Continuing with Example 13.5, Figure 13.7 shows a sample path of V0(t) (top left) and
a sample path of V1(t) (bottom left) with Eb/N0 = 10 dB. These sample paths clearly
behave like a signal, mi(t), plus a noise. The same sample point as considered in Example
13.5 is again shown with the vertical line. Histograms of the sampled filter output for
4000 random trials of this experiment when each of the two hypotheses are true (I = 0 at
the top right and I = 1 at the bottom right) are also shown Figure 13.7. This histogram
shows empirically that the Gaussian PDF is correct model for f V I |I (vI |I = i).

13.2.2 Uniform A Priori Probability

There are many ways to simplify the receiver structure from this point but the
one that provides the most intuition and is most practical is to assume a uniform
a priori probability (i.e., π0 = π1 = 0.5). Uniform a priori probabilities often
arise in practice since this is the goal of source coding [CT92]. Uniform a priori
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Figure 13.8 An example of the resulting test given by Eq. (13.18). m0, I = 1,
m1, I = 6, and σ 2

N I
= 2.

probabilities also produce a threshold test which is not a function of the a priori
probabilities. The form of the optimal test when the a priori probability is not
uniform is explored in the homework. When π0 = 0.5, the optimum decoder,
often denoted the maximum likelihood bit demodulator (MLBD), is

1√
2πσ 2

N I

exp

[
− (vI − m1, I )2

2σ 2
N I

]
Î =1
>
<

Î =0

1√
2πσ 2

N I

exp

[
− (vI − m0, I )2

2σ 2
N I

]
(13.18)

Consequently, this MLBD computes two Gaussian PDFs (having the same vari-
ance and different means) and makes a decision based on which of the two
PDFs takes a higher value. This is the maximum likelihood principle [Poo88].
The monotonic nature of the Gaussian PDF implies that this results in a sim-
ple threshold test on vI (Tp). Figure 13.8 shows pictorially how this decoder
operates.

The MLBD has a very interesting geometric interpretation. Cancelling com-
mon terms and taking log3 gives

(vI − m1, I )2
Î =0
>
<

Î =1

(vI − m0, I )2 (13.19)

Recall the definition of Euclidean distance in an N dimensional vector space.

3Taking the log does not change the decision rule as log(x) is a monotonic function.
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Definition 13.5 Euclidean distance in an N dimensional vector space between two points
�x and �y is

δE (�x, �y) =

√√√√ N∑
i=1

(xi − yi)2 (13.20)

For simplicity of notation the squared Euclidean distance is also defined.

Definition 13.6 The squared Euclidean distance in an N dimensional vector space be-
tween two points �x and �y is

�E (�x, �y) =
N∑

i=1

(xi − yi)
2 (13.21)

Consequently, the MLBD can be rewritten as

�E (vI , m1, I )
Î =0
>
<

Î =1

�E (vI , m0, I ) (13.22)

This implies that the maximum likelihood bit decision is based on whether vI
is geometrically closer to m1, I or m0, I . This geometric interpretation of decision
rules will arise several more times in the context of demodulation for digital
communications.

The decoder can further be simplified to a very simple threshold test. As-
suming m1, I > m0, I , completing square, and doing some algebra reduces the
optimum decision rule to

vI

Î =1
>
<

Î =0

γ = m1, I + m0, I

2
(13.23)

The MLBD compares the observed filter output, vI with a threshold which is
the arithmetic average of the two filter outputs corresponding to the possi-
ble transmitted signals in the absence of noise. For the example considered in
Figure 13.8 where m0, I = 1, m1, I = 6, and σ 2

N I
= 2 the optimum threshold is

γ = 3.5. It is interesting to note that the noise variance does not enter into the
MLBD structure. It will be left as a student exercise to compute the threshold
test for the case m1, I < m0, I . It is equally simple. The block diagram for the
simplest form for the MLBD is shown in Figure 13.9.

Re[•]

γ

+
−

H( f )Yz(t)
Vz(t) VI (t)

Tp

Î

Figure 13.9 The simple form of the MLBD.
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EXAMPLE 13.7
For Example 13.1 it is apparent by examining Figure 13.7 that m0(Tp) = −0.98 and
m1(Tp) = 1.09. These values result in a threshold test given as

vI

Î =1
>
<

Î =0

γ = 0.055 (13.24)

Design Task 1 is complete; we have found the optimum threshold test given
x0(t), x1(t), and H (f ) for the uniform prior distribution case. Results for a
nonuniform prior distribution are similiar.

13.3 Analysis of Demodulation Fidelity

Recall Design Task 2 is given x0(t) and x1(t) and H (f ) with the MLBD threshold
test, γ , compute the fidelity of the message reconstruction for the optimum
demodulator. The fidelity metric of interest will be the probability of making a
bit decision error and this is often referred to as the bit error probability (BEP).

Definition 13.7 Bit error probability (BEP) is

PB (E) = P ( Î �= I )

The BEP can be computed using total probability as

PB (E) = P ( Î = 1|I = 0)π0 + P ( Î = 0|I = 1)π1 (13.25)

Recall that when m1, I > m0, I , the MAPBD has the form

vI

Î =1
>
<

Î =0

γ (13.26)

so that

P ( Î = 1|I = 0) = P (V I (Tp) > γ |I = 0) (13.27)

and

P ( Î = 0|I = 1) = P (V I (Tp) < γ |I = 1) (13.28)

Since conditioned on I , V I (Tp) is a Gaussian RV with known mean and
variance, the probabilities in Eqs. (13.27) and (13.28) are simple to compute.
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Figure 13.10 The tails of the Gaussian distribution that are the conditional bit
error probability. This is for a test given by Eq. (13.18) with m0, I = 1, m1, I = 6,
and σ 2

N I
= 2.

These probabilities in Eqs. (13.27) and (13.28) are simply the area under the
tails of two Gaussian PDFs. Examples of the tails are illustrated in Figure 13.10.

13.3.1 Erf Function

This text will compute the probability that a Gaussian RV lies in an interval
using the erf() and erfc() functions [Ae72]. While probabilities of this form are
expressed using different functions by various authors, this text uses the erf()
and erfc() because it is commonly available in math software packages (e.g.,
Matlab).

Definition 13.8 The erf function is

erf(z) = 2√
π

∫ z

0
e−t2

dt (13.29)

The cumulative distribution function of a Gaussian RV, X , with mean mX and
variance σ 2

X is then given as

FX (x) = 1
2

+ 1
2

erf
(

x − mX√
2σX

)
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Figure 13.11 The erfc() and two approximations.

Three properties of the erf function important for finding probabilities associ-
ated with Gaussian RVs are given as

erf(∞) = 1

erfc(z) = 1 − erf(z)
erf(−z) = −erf(z)

Some approximations to the erfc(x) are available and they provide insight
into the probability of error in digital communications. Two upperbounds are

erfc(x) ≤ exp[−x2] = a1(x) (13.30)

erfc(x) ≤ 1√
πx

exp[−x2] = a2(x) (13.31)

These approximations and erfc(x) are plotted in Figure 13.11.

13.3.2 Uniform A Priori Probability

Considering the case of the uniform a priori probabilities (π0 = π1 = 0.5) with
the MLBD demonstrates the simplicity of this probability of error calculation.
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Examining Eq. (13.27) and using Eq. (13.16) gives

P ( Î = 1|I = 0) =
∫ ∞

γ

f V I |I (vI |I = 0)d vI

=
∫ ∞

γ

1√
2πσ 2

N I

exp

[
− (vI − m0, I )2

2σ 2
N I

]
d vI (13.32)

This probability can be simplified using the following change of variables

t = vI − m0, I√
2σN I

dt = d vI√
2σN I

(13.33)

to give

P ( Î = 1|I = 0) = 1
2

erfc

(
γ − m0, I√

2σN I

)
= 1

2
erfc

(
m1, I − m0, I

2
√

2σN I

)
(13.34)

where the value for γ given in Eq. (13.23) is used to get the last expression.
Similiar manipulations give

P ( Î = 0|I = 1) = 1
2

erfc

(
m1, I − m0, I

2
√

2σN I

)
(13.35)

and consequently the BEP is also

PB (E) = 1
2

erfc

(
m1, I − m0, I

2
√

2σN I

)
(13.36)

Design Task 2 is complete; we have found the BEP of the MLBD given x0(t),
x1(t) and H (f ) for the uniform prior distribution case. Results for a nonuniform
prior distribution are similiar.

EXAMPLE 13.8
Continuing Example 13.1 it is apparent that

PB (E) = 1
2

erfc

(
2.07

2
√

2σN I

)
(13.37)

Recall that

σ 2
N I

= N0

2

∫ ∞

−∞
|h(t)|2dt (13.38)

Some observations about the MLBD performance are in order here.
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Definition 13.9 The effective signal–to–noise (SNR) ratio for MLBD is

η =
(

m1, I − m0, I

2
√

2σN I

)2

= (m1, I − m0, I )2

8σ 2
N I

Note the following

■ PB (E) = 1
2 erfc(

√
η).

■ PB (E) is monotone decreasing in η, in fact Eq. (13.30) indicates PB (E) be-
haves like 1

2 exp[−η] for moderately large η.
■ Maximizing η will minimize PB (E).
■ For a fixed x0(t) and x1(t) the only quantity that affects the value of η, which

is under control of the communication system designer, is the filter response
(h(t) or H (f )).

13.4 Filter Design

Considering the BEP characteristic highlighted in the previous section leads to
Design Task 3. This task is stated; given x0(t) and x1(t) design the filter, H (f ),
that minimizes the BEP or equivalently maximizes η.

13.4.1 Maximizing Effective SNR

To solve this problem η must be expressed in terms of H (f ). To this end note

2σ 2
N I

= N0

∫ ∞

−∞
|H (f )|2df (13.39)

and

m1(Tp) − m0(Tp) =
∫ ∞

−∞
(x1(λ) − x0(λ))h(Tp − λ)dλ

= F−1{(X1(f ) − X0(f ))H (f )}|t=Tp

=
∫ ∞

−∞
(X1(f ) − X0(f ))H (f ) exp[ j 2π f Tp]df (13.40)

To get a more compact notation we define

b10(t) = x1(t) − x0(t) B10(f ) = X1(f ) − X0(f )

Consequently,

η =
(

m1, I − m0, I

2
√

2σN I

)2

=
(
{∫∞

−∞ B10(f )H (f ) exp[ j 2π f Tp]df
})2

4N0
∫∞

−∞ |H (f )|2df
(13.41)

It should be noted that both the signal power (the numerator of Eq. (13.41))
and the noise power (the denominator of Eq. (13.41)) are a function of H (f ).
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The form of H (f ) that maximizes the effective SNR is not readily apparent
in examining Eq. (13.41) but desired results can be obtain by using Schwarz’s
inequality.

Theorem 13.1 (Schwarz’s Inequality) For two functions X (f ) and Y (f ) where∫∞
−∞ |X (f )|2df < ∞ and

∫∞
−∞ |Y (f )|2df < ∞.

∣∣∣∣
∫ ∞

−∞
X (f )Y ∗(f )df

∣∣∣∣
2

≤
∫ ∞

−∞
|X (f )|2df

∫ ∞

−∞
|Y (f )|2df

where equality holds only if X (f ) = AY (f ) where A is a complex constant.

Making the assignment

X (f ) = H (f ) Y (f ) = B∗
10(f ) exp[− j 2π f Tp] (13.42)

and noting

(
(X ))2 ≤ |X |2 = (
(X ))2 + (�(X ))2 (13.43)

Schwarz’s inequality results in the following inequality for the effective SNR

η =
(
{∫∞

−∞ B10(f )H (f ) exp[ j 2π f Tp]df
})2

4N0
∫∞

−∞ |H (f )|2df
≤ 1

4N0

∫ ∞

−∞
|B10(f )|2df (13.44)

η can be maximized by selecting (the equality condition in Schwarz’s Inequality)

H (f ) = CB∗
10(f ) exp[− j 2π f Tp] (13.45)

where C is a real constant. It should be noted that the constant now needs to
be real so that

�
{∫ ∞

−∞
B10(f )H (f ) exp[ j 2π f Tp]df

}
= 0 (13.46)

such that

(


{∫ ∞

−∞
B10(f )H (f ) exp[ j 2π f Tp]df

})2

=
∣∣∣∣
{∫ ∞

−∞
B10(f )H (f )

× exp[ j 2π f Tp]df
}∣∣∣∣

2

(13.47)

Schwarz’s inequality has provided two powerful results: the optimum filter
(Eq. (13.45)) and the maximum effective signal to noise ratio (Eq. (13.44)) for
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binary digital communications. From the perspective of BEP the constant C
makes no difference so without loss of generality the remainder of the discussion
will assume C = 1. (C cancels out of the SNR given in Eq. (13.41)).

13.4.2 The Matched Filter

Since the optimum filter has the form in the frequency domain given in
Eq. (13.45) the impulse response is given as

h(t) = F−1{B∗
10(f ) exp[− j 2π f Tp]} = b∗

10(Tp − t) = x∗
1(Tp − t) − x∗

0(Tp − t)
(13.48)

For MLBD the effective signal is b10(t) = x1(t) − x0(t) and the optimum filter
impulse response is effectively a time reversed, time shifted, conjugate of this
effective signal. This filter is known as the matched filter since it is matched
to the effective signal and the form for this SNR maximizing filter was first
identified by North [Nor43]. Design Task 3 is complete; given x0(t) and x1(t),
the filter, H (f ) that minimizes the BEP has been found.

EXAMPLE 13.9
Consider the matched filter for the signals shown in Figure 13.1, the matched filter is
shown in Figure 13.12. It should be noted that having the sample time at Tp makes
the matched filter a causal filter. The two possible transmitted signals and the noise-
less outputs from the matched filter are plotted in the Figure 13.13. The vertical line
represents t = Tp .
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Figure 13.12 The effective signal, b10(t) and the matched filter impulse response, b∗
10(Tp − t) for the two example

waveforms considered in Figure 13.1.
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Figure 13.13 The transmitted signals and the noiseless output of matched filter for Example 13.9.

13.4.3 MLBD with the Matched Filter

More insight into digital communication receiver design can be achieved by
looking in detail at the resulting demodulation structure when using a matched
filter demodulator. First examine the matched filter output,

Vz(Tp) =
∫ ∞

−∞
Yz(τ )h(Tp − τ )dτ =

∫ ∞

−∞
Yz(τ )(x∗

1(τ ) − x∗
0(τ ))dτ (13.49)

Examining Eq. (13.49) shows that the optimum filter correlates the input sig-
nal plus noise, Yz(t), with the conjugate of the difference between the possible
transmitted signals. Consequently, the optimum filter is often denoted and im-
plemented as a correlation operation.

The output noise, Nz(t), is the same regardless of which bit is transmitted so
it will be characterized first. Recall the output noise is given as

Nz(Tp) =
∫ ∞

−∞
Wz(τ )h(Tp − τ )dτ =

∫ ∞

−∞
Wz(τ )(x∗

1(τ ) − x∗
0(τ ))dτ (13.50)
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Since Wz(t) is a complex AWGN, the output noise, Nz(Tp) will be a complex
Gaussian RV. Using standard theory the ouput variance of this RV is given as

2σ 2
N I

= N0

∫ ∞

−∞
|h(τ )|2dτ = N0

∫ ∞

−∞
|x∗

1(Tp − τ ) − x∗
0(Tp − τ )|2dτ

= N0

(∫ ∞

−∞
|x1(τ )|2dτ +

∫ ∞

−∞
|x0(τ )|2dτ − 2


{∫ ∞

−∞
x1(τ )x∗

0(τ )dτ

})

= N0

(
E1 + E0 − 2


{∫ ∞

−∞
x1(τ )x∗

0(τ )dτ

})
(13.51)

In a similiar fashion the conditional means of the matched filter outputs for
the two possible transmitted signals, m1(Tp) and m0(Tp), are easily derived. If
I = 1 then

m1(Tp) =
∫ ∞

−∞
x1(τ )h(Tp − τ )dτ =

∫ ∞

−∞
x1(τ )(x∗

1(τ ) − x∗
0(τ ))dτ

= E1 −
∫ ∞

−∞
x1(τ )x∗

0(τ )dτ (13.52)

The conditional mean of the decision statistic when I = 1 is

m1, I = E1 − 

{∫ ∞

−∞
x1(τ )x∗

0(τ )dτ

}
(13.53)

Likewise, if I = 0 then

m0(Tp) =
∫ ∞

−∞
x0(τ )h(Tp − τ )dτ =

∫ ∞

−∞
x0(τ )[x∗

1(τ ) − x∗
0(τ )]dτ

=
∫ ∞

−∞
x0(τ )x∗

1(τ )dτ − E0 =
(∫ ∞

−∞
x1(τ )x∗

0(τ )dτ

)∗
− E0 (13.54)

The conditional mean of the decision statistic when I = 0 is

m0, I = 

{∫ ∞

−∞
x1(τ )x∗

0(τ )dτ

}
− E0 (13.55)

The optimum decision threshold with matched filter processing is

γ = m1, I + m0, I

2
= E1 − E0

2
(13.56)

Consequently, when matched filter processing is utilized all important quan-
tities in the receiver are a function of the energy of the two signals used to
represent the bit values, E1 and E0, and

∫∞
−∞ x1(τ )x∗

0(τ )dτ .
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Since the quantity
∫∞

−∞ x1(τ )x∗
0(τ )dτ appears many times throughout discus-

sions of digital communications systems a definition will be introduced to sim-
plify the notation.

Definition 13.10 The signal correlation coefficient between two deterministic signals,
xi(t) and xj (t), is

ρi j =
∫∞

−∞ xi(τ )x∗
j (τ )dτ√

Ei E j

Using this definition gives

2σ 2
N I

= N0(E1 + E0 − 2
√

E1 E0
{ρ10}) (13.57)

m1, I = E1 −
√

E1 E0
{ρ10} (13.58)

m0, I =
√

E1 E0
{ρ10} − E0 (13.59)

Using these simplified forms for the important parameters in the MLBD with
matched filter processing allows us to gain some insight into the signal design
problem.

EXAMPLE 13.10
Continuing with Example 13.9, Figure 13.14 shows a sample path of V0(t) (top left)
and a sample path of V1(t) (bottom left) for the matched filter with Eb/N0 = 10 dB.
These sample paths clearly behave like a signal, mi(t), plus a noise. A histogram of
4000 samples of the filter output are also shown Figure 13.14. This histogram shows
imperically that the Gaussian PDF is correct model for f V I |i(vI |I = i). Since the decision
threshold is halfway between the two means of the Gaussian PDF this figure also shows
that the matched filter produces a better bit error performance than the nonoptimal
filter considered in Example 13.8. It should also be noted that E0 = 0.5Tp , E1 = Tp ,
and ρ10 = 0 and consequently m1, I = E1 and m0, I = −E0 and these results are reflected
in the histograms of the matched filter output signals shown in Figure 13.14.

13.4.4 More Insights on the Matched Filter

Two questions often arise with students after they read the previous sections.
The two questions are

1. Why is the 
[•] operator needed in the demodulator?

2. Could you do better by looking at more than one sample?

Understanding the answer to these questions and the optimal demodulator
is obtained by looking at the characteristics of the signals at the matched fil-
ter outputs. First let’s break the matched filter into two filters as shown in
Figure 13.15 and ignore the noise to gain some insight. The two filters are now



13.24 Chapter Thirteen

−4 −2 0 2 4
0

50

100

150

200

250

300

Possible Values of V1(Tp)

N
um

be
r 

of
 O

cc
ur

re
nc

es

0 1 2 3 4

−1

−0.5

0

0.5

1

Time, t/Tp

v 1
(t

)

0 1 2 3 4

−1

−0.5

0

0.5

1

Time, t/Tp

v 0
(t

)

−4 −2 0 2 4
0

50

100

150

200

250

300

Possible Values of V0(Tp)

N
um

be
r 

of
 O

cc
ur

re
nc

es

Figure 13.14 Sample paths of the matched filter outputs for each of the possible transmitted signals
and histograms of the matched filter output samples.

matched to each of the two possible transmitted waveforms and the output
signals when xj (t) is transmitted are

v0, j (t) =
∫ Tp

0
xj (λ)x∗

0(Tp − t + λ)dλ (13.60)

v1, j (t) =
∫ Tp

0
xj (λ)x∗

1(Tp − t + λ)dλ (13.61)

+
−

Tp

VI(t)Vz(t)

γ

x0
*(Tp − t)

x1
*(Tp − t) +

−
Re[•]ΣYz(t)

Î

Figure 13.15 The two filter representation of the matched filter to the effective signal.
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Note that at t = Tp

vj , j (Tp) =
∫ Tp

0
|xj (λ)|2dλ (13.62)

so that the signal received at each time is derotated into a positive real signal
before the integration is performed. So in the filter matched to the transmitted
signal, it is clear the output sample will be vj j (Tp) = E j + j 0, while in the filter
not matched to the signal sent the output sample will be vj̄ j (Tp) = ρ j j̄

√
E j E j̄ .

Recall that |ρ j j̄ | ≤ 1 so vj j (Tp) can be viewed as the signal of interest out of
the matched filter and vj̄ j (Tp) can be viewed as an interference. The signal
of interest is a real valued signal since the matched filter perfectly derotates
the signal to which it is matched. This perfect derotation characteristic of the
matched filter is why only the real part of the output of the matched filter is
sufficient for optimum demodulation.

It is also clear in looking at Eq. (13.60) that the matched filter uses the entire
received signal to produce the decision statistic. Since the received signal is
correlated with a version of the transmitted signal, the matched filter output is
essentially a combination of the received signal over the entire support of the
transmitted signal. The optimal filter is taking a large number of samples of
the input signal from the channel over the support of the transmitted signal
and combining them in an optimal manner. This view of the matched filter
processing makes it apparent why only one sample out of the matched filter
is needed. Consequently, using the matched filter demodulator makes the real
part of the matched filter output sampled at t = Tp a sufficient statistic for
demodulation. The simplicity and optimality of the demodulator are striking.

13.5 Signal Design

Design Task 4, the signal design task, can now be addressed. This signal design
task is stated as: given the optimum demodulator, design x0(t) and x1(t) to op-
timize BEP. The results of the previous section indicate that BEP of the binary
detector is a function of E1, E0, and ρ10. Fidelity of digital communication sys-
tems is most often quantified by the average energy per transmitted bit given as

Eb = E1 + E0

2

Throughout the remainder of the text Eb will be used in characterizing
fidelity of message reconstruction.

To bring further insight to the discussion it is useful to introduce a definition.

Definition 13.11 The Euclidean square distance between two continuous time signals,
xi(t) and xj (t) is

�E (i, j ) =
∫ ∞

−∞
|xi(t) − xj (t)|2dt
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It should be noted that

�E (i, j ) =
∫ ∞

−∞
|xi(t)|2dt +

∫ ∞

−∞
|xj (t)|2dt −

∫ ∞

−∞
xi(t)x∗

j (t)dt

−
∫ ∞

−∞
xj (t)x∗

i (t)dt (13.63)

= Ei + E j − 2
√

Ei E j 
{ρi j } (13.64)

The BEP optimization and signal design task can now be formulated using the
Euclidean square distance. The effective SNR with matched filter processing
can be expressed with the Rayleigh energy theorem as

η = 1
4N0

∫ ∞

−∞
|B10(f )|2df = 1

4N0

∫ ∞

−∞
|b10(t)|2dt (13.65)

Using the concept of the Euclidean square distance this effective SNR reduces
to

η = 1
4N0

∫ ∞

−∞
|x∗

1(Tp − t) − x∗
0(Tp − t)|2dt = �E (1, 0)

4N0
(13.66)

Consequently, the BEP for matched filtering processing is given as

PB (E) = 1
2

erfc

⎛
⎝
√

�E (1, 0)
4N0

⎞
⎠ (13.67)

The preceding results demonstrate that the only parameter necessary to con-
sider to optimize a binary signal set is the square Euclidean distance between
the two possible transmitted signals. Equivalently, the square Euclidean dis-
tance is determined by the signal energies and the signal correlation coefficient.

Some examples will help illustrate the ideas of signal design. The “unedu-
cated” masses typically think that digital communications occurs with the
following waveforms

x1A(t) =

⎧⎪⎨
⎪⎩
√

2Eb

Tp
0 ≤ t ≤ Tp

0 elsewhere

(13.68)

x0A(t) = 0 (13.69)

This particular signal set has E1 = 2Eb, E0 = 0, and ρ10 = 0. The resulting
squared Euclidean distance is �E (1, 0) = 2Eb and the BEP is given as

PB (E) = 1
2

erfc

(√
Eb

2N0

)
(13.70)
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BEP can be improved by increasing the energy in x0(t) and simultaneously
decreasing the ρ10. For example the binary set of waveforms

x0B (t) =

⎧⎪⎨
⎪⎩
√

Eb

Tp
0 ≤ t ≤ Tp

0 elsewhere

(13.71)

x1B (t) =

⎧⎪⎨
⎪⎩

−
√

Eb

Tp
0 ≤ t ≤ Tp

0 elsewhere

(13.72)

has E1 = Eb, E0 = Eb, and ρ10 = −1 and �E (1, 0) = 4Eb. For the same average
energy, signal set B provides the same BEP as signal set A in an environment
where the noise spectral density is twice as high. As communication engineers
we are interested in the performance of the systems we design for varying
noise levels hence signal set B is denoted as having a 3-dB performance gain
over signal set A. Figure 13.16 shows the resulting square Euclidean distance
versus signal energy for a fixed ρ10 and with Eb = 1. It is clear the signal
set considered in Eq. (13.71) and Eq. (13.72), E1 = E0 = Eb and ρ10 = −1
and �E (1, 0) = 4Eb, provides the best BEP performance. The situation where
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Figure 13.16 Square Euclidean distance versus E1. Eb = 1.
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x0(t) = −x1(t) is common in digital communications and it often referred to as
antipodal signaling. Also, in general, higher energy and lower signal correla-
tion will produce better BEP.

EXAMPLE 13.11
Returning to the signal set introduced in Example 13.1 it is apparent that

E0 = Tp

2
E1 = Tp ρ10 = 0 (13.73)

It is apparent that �E (1, 0) = 1.5Tp and the BEP for the optimum demodulator for this
signal set is

PB (E) = 1
2

erfc

(√
1.5Tp

4N0

)
(13.74)

Design Task 4 is complete; we have found the best signal designs for matched
filter MLBD. The interesting characteristics of the signal design problem is
that BEP is only a function of the squared Euclidean distance and that the
resulting optimum signal design is not unique. There are an infinite number
of signal sets that achieve the same BEP. Further optimization will have to be
accomplished considering other parameters besides BEP.

13.6 Spectral Characteristics

The final design task is to understand the relationship between the digital com-
munication waveforms and the resulting bandwidth. For single bit transmission
the average energy spectral density is straightforward to compute. Given the
framework used here and the definition of the average energy spectrum density
given in Eq. (12.8) it is apparent that

DXz(f ) = π0Gx0 (f ) + π1Gx1 (f ) (13.75)

For example, for the signal set considered in the last section given as

x0(t) =

⎧⎪⎨
⎪⎩
√

Eb

Tp
0 ≤ t ≤ Tp

0 elsewhere

(13.76)

x1(t) =

⎧⎪⎨
⎪⎩

−
√

Eb

Tp
0 ≤ t ≤ Tp

0 elsewhere

(13.77)

has

Gx1 (f ) = EbTp

(
sin(π f Tp)

π f Tp

)2

Gx0 (f ) = EbTp

(
sin(π f Tp)

π f Tp

)2

(13.78)
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Figure 13.17 The average energy spectrum. π0 = π1 = 0.5.

The resulting energy spectrum for this case is plotted in Figure 13.17 for both
linear scale and dB scale for EbTp = 1. It should be noted that the bandwidth
in any definition is inversely proportional to the length of the pulse. Engineer-
ing intuition says that faster transmission rates (smaller Tp) requires more
bandwidth. The average energy spectrum gives a way to quantify engineering
intuition.

EXAMPLE 13.12
Returning to Example 13.1 the individual energy spectrum are given as

Gx0 (f ) = T 2
p

4
|sinc ( f Tp − 2) exp[− j π f Tp] − sinc ( f Tp + 2) exp[− j π f T ]|2 (13.79)

Gx1 (f ) = T 2
p sinc ( f Tp)2

The average energy spectrum for π0 = 0.5 is plotted in Figure 13.18.
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Figure 13.18 The average energy spectrum per bit for the signal set in Example 13.1.

13.7 Examples

The chapter is concluded by considering two obvious and classical examples of
carrier modulated digital communication: binary frequency shift keying (BFSK)
and binary phase shift keying (BPSK).

13.7.1 Frequency Shift Keying

BFSK modulation sends the bit of information by transmitting a carrier pulse
of one of two frequencies. This is an obvious simple signalling scheme and one
used in many early modems. The signal set is given as

x0(t) =

⎧⎪⎨
⎪⎩
√

Eb

Tp
exp[ j 2π fd t] 0 ≤ t ≤ Tp

0 elsewhere

(13.80)

x1(t) =

⎧⎪⎨
⎪⎩
√

Eb

Tp
exp[− j 2π fd t] 0 ≤ t ≤ Tp

0 elsewhere

(13.81)
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Figure 13.19 The vector diagram for the two BFSK waveforms for 0 ≤ t ≤ Tp . fd Tp = 0.25 and
Eb = Tp .

where fd is known as the frequency deviation. The frequency difference be-
tween the two carrier pulses is 2 fd . It is apparent that each waveform in a
BFSK signal set has equal energy and in this example the energy has been
set to E1 = E0 = Eb. The vector diagram for the two waveforms for BFSK
with fd = 0.25/Tp and Eb = Tp is shown in Figure 13.19. The plots of the
bandpass waveforms for fd = 1/Tp and f c = 3/Tp and Eb = Tp are shown in
Figure 13.20. This subsection will consider the optimum demodulator and the
design of optimum signal sets for BFSK.

BFSK is interesting to investigate as the resulting characteristics are counter
to many engineer’s intuition. The matched filter impulse response is given as

h(t) = x∗
1(Tp − t) − x∗

0(Tp − t)

= j 2

√
Eb

Tp
sin(2π fd (Tp − t)) 0 ≤ t ≤ Tp

= 0 elsewhere (13.82)
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Figure 13.20 The bandpass BFSK waveforms. fd Tp = 1, fcTp = 3, and Eb = Tp .

Note since 
{x1(t)} = 
{x0(t)} the optimum demodulator only uses the imagi-
nary part of the received signal to differentiate between the two bits, i.e.,

V I (Tp) = −2

√
Eb

Tp

∫ Tp

0
Y Q(t) sin(2π fd t)dt (13.83)

For π0 = π1 = 0.5 (MLBD), the optimum threshold is given as

γ = E1 − E0

2
= 0 (13.84)

Consequently, the threshold test is very simple for the MLBD of a BFSK mod-
ulation, i.e.,

∫ Tp

0
Y Q(t) sin(2π fd t)dt

Î =0
>
<

Î =1

0 (13.85)

The important parameter for determining the BEP of the optimum demodula-
tor is the square Euclidean distance. The only parameter that is not specfied in
the BFSK model is the frequency difference between the two tones in the mod-
ulation. The parameter fd determines this difference and also will determine
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the Euclidean distance. In general,

�E (1, 0) = E1 + E0 − 2
{
√

E1 E0ρ10}
For BFSK E0 = E1 = Eb and

ρ10 =
∫∞

−∞ x1(t)x∗
0(t)dt

Eb
= 1

Tp

∫ Tp

0
exp[− j 4π fd t]dt

= sin(4π fd Tp)
4π fd Tp

− j
cos(4π fd Tp) − 1

4π fd Tp
(13.86)

Consequently, the Euclidean distance is given as

�E (1, 0) = 2Eb

(
1 − sin(4π fd Tp)

4π fd Tp

)
(13.87)

and the BEP performance is

PB (E) = 1
2

erfc

⎛
⎝
√

�E (1, 0)
4N0

⎞
⎠ = 1

2
erfc

(√
Eb

2N0

(
1 − sin(4π fd Tp)

4π fd Tp

))

(13.88)
Figure 13.21 has a plot of the resulting correlation and the Euclidean distance
as a function of fd.

−0.5

0

0.5

1

1.5

2

2.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
fdTp

∆E (1, 0)

ρ10

Figure 13.21 Correlation coefficient and Euclidean squared dis-
tance for BFSK.
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The frequency deviation, fd , significantly affects the BEP. The best BEP is
obtained for fd ≈ 3

8Tp
which produces 
{ρ10} ≈ −0.21. In other words, the

performance of coherent BFSK is optimized when the two frequencies used in
the modulation are different by approximately 0.75/Tp Hz. This performance
with �E (1, 0) = 2.42Eb is 2.2 dB from the optimal modulation, i.e., �E (1, 0) =
4Eb. Hence BFSK is not a modulation of choice when the highest fidelity of
message reconstruction is the driving constraint. Often engineering intuition
leads one to believe that BEP is optimized when the frequency difference is
large. At large frequency offsets the signal set converges to being orthogonal
(
{ρ10} = 0) and this produces 0.8 dB degradation in the BEP compared to the
optimal BFSK. Orthogonal BFSK is often used for a variety of practical reasons.
Coherent demodulation for ρ10 = 0 produces a BEP of

PB (E) = 1
2

erfc

(√
Eb

2N0

)
(13.89)

The BEP is plotted versus Eb/N0 in Figure 13.22 for the case of minimum BEP
unconstrained signaling (denoted BPSK4), minimum BEP BFSK and orthog-
onal BFSK. The minimum fd that still achieves an orthogonal signal set is
fd = 0.25/Tp. This form of BFSK modulation has some practical advantages
when transmitting more than one bit of information and hence has been dubbed
minimum shift keying (MSK) modulation. This modulation will be examined
in more detail in the sequel.

The spectral efficiency of BFSK can be evaluated by looking at the average
energy spectral density per bit. Recall the average energy spectral density per
bit is given for binary modulations as

DXz(f ) = π0Gx0 (f ) + π1Gx1 (f ) (13.90)

The energy spectrum of the two individual waveforms is given as

Gx0 (f ) = EbTp

(
sin(π( f − fd )Tp)

π( f − fd )Tp

)2

Gx1 (f ) = EbTp

(
sin(π( f + fd )Tp)

π( f + fd )Tp

)2

(13.91)

The resulting energy spectrum for BFSK is plotted in Figure 13.23 for various
fd for EbTp = 1. The bandwidth of the BFSK signal is a function of both fd and
Tp. A smaller Tp produces a wider bandwidth while a larger fd produces a wider

4Why, will be apparent next section.
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bandwidth. It should be noted that with this form of BFSK the transmission
rate is Wb = 1/Tp. In examining Figure 13.23 the bandwidth of BFSK for the
optimal BEP is about BT = 1.5/Tp (i.e., 3 dB bandwidth) so that the spectral
efficiency of the optimal BEP form of BFSK is about ηB = 0.67 bit/s/Hz. MSK
has BT = 1.0/Tp (i.e., 3 dB bandwidth) and ηB = 1.0 bit/s/Hz.
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The advantages of BFSK are summarized as

■ Very simple to generate. Simply gate one of two oscillators on depending on
the bit to be sent.

■ Simple demodulation structure.

The disadvantages of BFSK are summarized as

■ BEP is not optimum.
■ Best BEP performance requires a spectral efficiency of less than 1 bit/s/Hz.

13.7.2 Phase Shift Keying

BPSK modulation sends the bit of information by transmitting a carrier pulse
of one of two phases. The signal set is given as

x0(t) =
√

Eb

Tp
0 ≤ t ≤ Tp

= 0 otherwise (13.92)

x1(t) =
√

Eb

Tp
exp[ j θ] 0 ≤ t ≤ Tp

= 0 otherwise (13.93)

where θ is known as the phase deviation. It is apparent that each waveform in
a BPSK signal set has equal energy that has here been set to E1 = E0 = Eb.
The vector diagram for the two waveforms for BPSK with θ = π and Eb = Tp is
shown in Figure 13.24. The plots of the bandpass waveforms for θ = π , Eb = Tp,
and f c = 3/Tp are shown in Figure 13.25.

This subsection will consider the optimum demodulator and the design of
optimum signal sets for BPSK. The matched filter impulse response is given as

h(t) = x∗
1(Tp − t) − x∗

0(Tp − t)

=
√

Eb

Tp
(exp(− j θ ) − 1) 0 ≤ t ≤ Tp

= 0 otherwise (13.94)
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Figure 13.24 The vector diagram for the two BPSK waveforms for 0 ≤ t ≤ Tp . θ = π
and Eb = Tp .
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The voltage for the threshold test is

V I (Tp) = 

{

(exp(− j θ ) − 1)

√
Eb

Tp

∫ Tp

0
Yz(t)dt

}

= (cos(θ ) − 1)

√
Eb

Tp

∫ Tp

0
Y I (t)dt + sin(θ )

√
Eb

Tp

∫ Tp

0
Y Q(t)dt (13.95)

For π0 = π1 = 0.5 (MLBD), the optimum threshold is given as

γ = E1 − E0

2
= 0 (13.96)

Conseqeuntly, the threshold test is very simple (compare to zero) for the MLBD
of a BPSK modulation.

The important parameter for determining the BEP of the optimum demodu-
lator is the square Euclidean distance. The only parameter that is not specfied
in the BPSK model is the phase difference between the two signals. The pa-
rameter θ determines the Euclidean distance. Recall again,

�E (1, 0) = E1 + E0 − 2
{
√

E1 E0ρ10}

For BPSK E0 = E1 = Eb and

ρ10 = exp( j θ ) (13.97)

Consequently, the Euclidean distance is given as

�E (1, 0) = 2Eb(1 − cos(θ ))

and the BEP performance is

PB (E) = 1
2

erfc

⎛
⎝
√

�E (1, 0)
4N0

⎞
⎠ = 1

2
erfc

(√
Eb

2N0
(1 − cos(θ ))

)
(13.98)

It is obvious that optimum BEP is obtained for θ = π . The optimum signal set
has x1(t) = −x0(t). Frankly, in BPSK modulation there is no reason to choose
anything other than θ = π so in the sequel this particular modulation will
be denoted as BPSK. This signal set gives optimum BEP performance. The
optimum threshold test simplifies to

∫ Tp

0
Y I (t)dt

Î =0
>
<

Î =1

0 (13.99)



Optimal Single Bit Demodulation Structures 13.39

The BEP is

PB (E) = 1
2

erfc

(√
Eb

N0

)
(13.100)

The bit error probability is plotted versus Eb/N0 in Figure 13.22. The spectral
efficiency of BPSK can be evaluated by looking at the average energy spectral
density and this is plotted in Figure 13.17. It should be noted that with this
form of BPSK the transmission rate is Wb = 1/Tp. In examining Figure 13.17
the bandwidth of BPSK is about BT = 1/Tp (i.e., 3 dB bandwidth) so that the
spectral efficiency of BPSK is about ηB = 1 bit/s/Hz.

The advantages of BPSK are summarized as

■ Very simple to generate
■ Simple demodulation structure
■ Optimum BEP performance

The one disadvantage of the BPSK signal set discussed in this section is
that the spectral characteristics might not be all that is desired. Methods to
improve the spectral characteristics will be discussed in the homework and in
Chapter 16.

13.7.3 Discussion

This section introduced two example modulations to transmit 1 bit of infor-
mation: BFSK and BPSK. These two modulations are the most common used
binary modulations in engineering practice. BPSK has the advantages in BEP
performance and spectral efficiency. BFSK has some advantages in complex-
ity that become more striking when synchronization issues are considered. As
a final point it is worth comparing the performance of these two modulations
with the upperbounds provided by information theory (see Section 12.3). For the
discussion in this text we will denote reliable communication as being an error
rate of 10−5. BPSK requires approximately Eb/N0 = 9.5 dB to achieve reliable
communication while the optimum error probability form of BFSK requires
approximately Eb/N0 = 11.7 dB. MSK (the orthogonal form of FSK) achieves
reliable communications at Eb/N0 = 12.5 dB. These three operating points
and the upperbound on the possible performance are plotted in Figure 13.26. It
is clear from this figure that BPSK and BFSK result in performance far from
the upperbound but that should not concern the reader as there is still a lot of
communication theory to explore.
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Figure 13.26 A comparison of the spectral efficiency of BPSK and BFSK with the
upperbound.

13.8 Homework Problems

Problem 13.1. Consider a binary digital communication system with equally
likely bits that is corrupted by an additive white Gaussian noise of two-sided
spectral density of N0/2. The two possible transmitted signals are of the form

x0(t) =
√

Eb

Tp
exp[ j (2π f0t + θ0)] 0 ≤ t ≤ Tp

= 0 elsewhere

x1(t) =
√

Eb

Tp
exp[ j (2π f1t + θ1)] 0 ≤ t ≤ Tp

= 0 elsewhere (13.101)

(a) For f0 = 10 Hz, θ0 = 0 and f c = 50 Hz plot xc(t) when I = 0.

(b) Give the average energy spectrum per bit Dxz(f ) (as a function of f0 and
f1).

(c) Detail out the optimum demodulator. Give impulse responses for any filters
and specify any threshold tests.

(d) Compute ρ10.

(e) If f0 = f1 = 0, choose values for θ0 and θ1 to optimize the BEP.

(f) If θ0 = 0 and θ1 = 90◦ choose values for f0 and f1 to optimize the BEP.
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Problem 13.2. For MAPBD with m0, I = 1, m1, I = 6, and σ 2
N I

= 2 (see Figure 13.8)

(a) Find the simplest form for MAPBD as a function of π0. Hint: It is also a
threshold test.

(b) Compute and plot the PB (E) as a function of π0.

(c) Note that π0 = 0.5 corresponds to MLBD. Plot the BEP performance if the
MLBD was used for π0 �= 0.5 and compare to the results in (b).

(d) Let σ 2
N I

be arbitrary and interpret the resulting MAPBD derived in a) when
σ 2

N I
gets large (large noise in observation) and when σ 2

N I
gets small (little

noise in observation). Does the detector characteristics follow intuition?
Why?

Problem 13.3. Consider BFSK considered in Section 13.7.1, and find the exact
frequency separation which optimizes BEP. Note, it is not exactly fd = 3

8Tp
.

Problem 13.4. Consider BFSK considered in Section 13.7.1 on an AWGN channel,
and specify for π0 �= 0.5.

(a) The optimum demodulator

(b) The optimum demodulator BEP

(c) Dxz(f )

Consider the special case of π0 = 0.25 and Eb/N0 = 10 dB in detail and produce
numeric results for parts (b) and (c).

Problem 13.5. In Problem 2.12 three pulse shapes were presented. Assume 1 bit
is to be transmitted on an AWGN channel and π0 = 0.5.

(a) Pick two out of the three pulse shapes to represent the possible value of the
bit being transmitted in a single shot binary system such that the probabil-
ity of bit error is minimized. Give the resulting correlation coefficient and
probability of error when the one-sided noise spectral density is N0.

(b) Antipodal signalling is the optimal binary communications design. Choose
one of the three pulse shapes to use in an antipodal binary communication
system that would make the most efficient use of bandwidth? Justify your
answer.

Problem 13.6. Ethernet uses a biphase modulation to transmit data bits. Biphase
modulation is a baseband linear modulation where each bit, I , is transmit-
ted with x0(t) = u(t) or x1(t) = −u(t) where the pulse shape, u(t) given in
Figure13.27. Assume an AWGN channel and equally likely data bits.

(a) Compute the resulting BEP.

(b) If 1/Tp = 10 MHz and the Ethernet signal at the transmitter has a peak
value of 1 volt (assume a 1-� system) and the value of N0 = −160 dBm/Hz,
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Figure 13.27 The pulse used in Ethernet.

find the amount of cable loss, Lc, that can be tolerated and still achieve
a 10−9 error rate. Note these conditions imply that in Figure 13.27

√
Eu/Tp

= Lc.

(c) Compute the average energy spectrum per bit for the Ethernet modulation.

(d) Postulate why this pulse shape was chosen for transmission over cables.

Problem 13.7. Recall that VSB modulation has the form xz(t) = xI (t) + j (hv(t)∗
xI (t)). Assume that xI (t) is chosen from a BPSK signal set where the duration
of the carrier pulse is given as T and that the support for the quadrature
modulation xQ(t) = hv(t) ∗ xI (t) is given as Tp > T . Find the simplest form of
the optimum demodulator and compute the resulting BEP.

Problem 13.8. A bandpass binary digital communication system with equally
likely bits was designed to have xz(t) = diu(t) where d0 = 1 and d1 = −1.
The hardware implementation resulted in the actual transmitted modulation
symbols being d0 = 1 and d1 = exp[ j 7π

8 ].

(a) If the demodulator was built to be optimum for the design waveforms, what
would be the resulting probability of error.

(b) Give the optimum demodulation structure for the actual transmitted wave-
forms.

(c) Give the BEP for the optimum demodulator for the actual transmitted wave-
forms.

Problem 13.9. It is possible to construct a binary signaling set with ρ10 �= −1
which has better BEP than a signal set with ρ10 = −1. Construct two signal
sets (one with ρ10 �= −1 and one with ρ10 = −1) with the same Eb such that the
ρ10 �= −1 signal set has a better BEP when the corrupting noise in an AWGN
than the ρ10 = −1 signal set.
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Problem 13.10. In this problem we consider a form of binary combined phase and
frequency modulation. Assume equally likely data bits and an AWGN at the
receiver that corrupts the transmission. The two possible baseband transmitted
signals are

x0(t) =
√

Eb

Tp
exp
[

j πt
4Tp

]
0 ≤ t ≤ Tp

= 0 elsewhere (13.102)

x1(t) =
√

Eb

Tp
exp
[
− j πt

4Tp
+ j θ
]

0 ≤ t ≤ Tp

= 0 elsewhere (13.103)

(a) For f c = 4/Tp plot the bandpass signal corresponding to x0(t).

(b) Find the demodulator that minimizes the probability of bit error for a single
bit transmission given

Yz(t) = Xz(t) + Wz(t)

where Wz(t) is a complex additive white Gaussian noise of one-sided spectral
density N0.

(c) Give an exact expression for the BEP in terms of Eb, θ , and N0 for this
signal set and optimum demodulator. What is the value of θ that minimizes
the probability of error?

(d) Compute the average energy spectrum per bit. What is the spectral effi-
ciency using the 3 dB bandwidth?

Problem 13.11. You are called in by Nokey to be a consultant to the design of a
binary digital communications system for use in an AWGN channel. With the
assumpion of equally likely bits, one waveform chosen was

x0(t) =
√

2 sin
(

2πt
Tp

)
0 ≤ t ≤ Tp

= 0 elsewhere

The engineers at Nokey are hotly debating between the following two wave-
forms as the second waveform.

x1a(t) =
√

2 cos
(

2πt
Tp

)
0 ≤ t ≤ Tp

= 0 elsewhere
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Figure 13.28 The optimal demodulator for the signal model in Eq. (13.2).

and

x1b(t) = −1 0 ≤ t ≤ Tp

2
= 0 elsewhere

(a) Select the better of the two waveforms for bit error performance and give
the reasons for your selection.

(b) Give the optimum demodulation structure for both pairs of waveforms.
Detail out the matched filter response(s) and threshold tests for each pos-
sible pair of waveforms.

(c) Which set of waveforms would have better spectral characteristics? Explain
why.

Problem 13.12. Show that optimum demodulation for the signal model given in
Eq. (13.2) is given by the system shown in Figure 13.28. Compute the value of
γ (Lp).

Problem 13.13. In certain situations it is useful to hop to many different frequen-
cies during transmission of a bit (e.g., to avoid intentional or unintentional
jamming). Consider such a communication system where two hops are made
during one bit transmission so that the transmitted signal has the form

Xz(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dz

√
Eb

Tp
exp[ j 2π f1t] 0 ≤ t ≤ Tp

2

Dz

√
Eb

Tp
exp[ j 2π f 2t] Tp

2 < t ≤ Tp

0 elsewhere

(13.104)

where Dz = di for I = i. Assume each bit value is equally likely and that the
received signal is of the form

Yz(t) = Xz(t) + Wz(t) (13.105)
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where Wz(t) is a complex additive white Gaussian noise of one-sided spectral
density N0.

(a) Detail out the optimum demodulator and simplify as much as possible.

(b) Give the BEP as a function of d0, d1, f1, and f 2.

(c) Optimize the BEP with a selection of d0, d1, f1, and f 2 under the constraint
that Eb = (E0 + E1)/2.

(d) Is it possible to select frequencies f1 and f 2, f1 �= f 2 such that X P (t) is
continuous. If yes, give an example.

(e) Find and plot Dxz(f ) for f1 = −2/Tp and f 2 = 1.5/Tp.

Problem 13.14. In this problem we consider a form of baseband binary modula-
tion where the signals are restricted to be real and positive valued. Assume
equally likely data bits and an additive white Gaussian noise at the receiver
that corrupts the transmission. Two possible sets of baseband transmitted sig-
nals are signal set A

x0A(t) = CA 0 ≤ t ≤ Tp

= 0 elsewhere (13.106)

x1A(t) = 0 (13.107)

and signal set B

x0B (t) = CB cos
(

πt
2Tp

)
0 ≤ t ≤ Tp

= 0 elsewhere (13.108)

x1B (t) = CB sin
(

πt
2Tp

)
0 ≤ t ≤ Tp

= 0 elsewhere (13.109)

(a) What is the average energy per bit for these two signal sets (e.g., Eb( A) and
Eb(B )) as a function of CA and CB ?

(b) Find the demodulator that minimizes the probability of bit error for each
signal set for Eb = 1 in a single bit transmission given

Yz(t) = Xz(t) + Wz(t)

where Wz(t) is an additive white Gaussian noise of one-sided spectral den-
sity N0.

(c) Which signaling scheme produces better BEP for Eb( A) = Eb(B ) = 1. Quan-
tify the increase in SNR which would be necessary in the worse performing
scheme to give the two schemes equal BEP.
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(d) How much loss in BEP performance is incurred for the best of these two
schemes compared to the case of optimum signaling with Eb = 1 where the
signals are allowed to take positive and negative values. Give an example
set of two waveforms that achieves this optimum BEP.

(e) Find the average energy spectrum per bit for signal set A. Give a signal
set defined over the same interval [0, Tp] with the same BEP as signal set
A but with better spectral characteristics. Be specific about exactly which
spectral characteristics are better.

Problem 13.15. This problem is concerned with the transmission of 1 bit of in-
formation, I , by the waveforms x0(t) and x1(t) that have energy Ẽx0 and Ẽx1 ,
respectively, during the time interval [0, Tp]. Assume demodulation is to be
done in the presence of an additive white Gaussian noise, Wz(t), with one-sided
spectral density of N0. A common impairment in radio circuits is a DC off-
set added to the signal (most often in either analog up or down conversion).
Consequently, the received signal has the form

Yz(t) = C + xi(t) + Wz(t) (13.110)

where C is a known complex constant.

(a) If C = 0 what are the optimum waveforms when the received average
energy per bit is constrained to be Eb? Sketch the maximum likelihood
bit demodulator. Give the probability of bit error as a function of Eb and
N0.

(b) For C �= 0 find the received E1 and the received E0 and the average received
energy per bit, Eb, as a function of C.

(c) Consider a maximum likelihood bit demodulator. For C �= 0 what are the
optimum waveforms when the received energy per bit is constrained to be
Eb? Sketch the simplest maximum likelihood bit demodulator. Detail out
the filters and the threshold test.

(d) Show a judicious choice of transmitted waveforms leads to a demodulator
that is not a function of C.

(e) For C �= 0 and the optimum waveforms from (c) give the probability of bit
error as a function of Eb, C, and N0.

(f) For C �= 0 formulate the maximum a posteriori bit demodulator.

(g) For C �= 0 specify a set of waveforms x0(t) and x1(t) such that the spectral
efficiency can be argued to be near optimum.

Problem 13.16. A binary digital communication system uses the two waveforms
in Figure 13.29 to communicate a bit of information. Assume these signals are
corrupted by an additive white Gaussian noise with a two-sided spectral density
of N0/2 and that the bits are equally likely.
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Figure 13.29 A binary signal set.

(a) Sketch the simplest form for optimum bit demodulator.

(b) Calculate E0, E1, and ρ10.

(c) Calculate the Euclidean square distance between x0(t) and x1(t), �E (1, 0).

(d) What is the resulting bit error probability.

(e) Keep one of either x0(t) or x1(t) and select a third signal x2(t) such that
|x2(t)| ≤ 1 and x2(t) is of length Tp to be used to transmit 1 bit of information
such that the resulting BEP for the optimum demodulation is as low as
possible.

Problem 13.17. Digital communication waveforms can often be viewed as analog
communication waveforms with specific message waveforms.

(a) To this end show that BFSK is equivalent to FM modulating one of two
waveforms, i.e.,

xi(t) = Ac exp
[

j 2π fk

∫ t

−∞
mi(λ)dλ

]
(13.111)

where

m0(t) =
{

1 0 ≤ t ≤ Tp
0 elsewhere m1(t) =

{−1 0 ≤ t ≤ Tp
0 elsewhere (13.112)

Identify fk and Ac.

(b) To this end show that BPSK is equivalent to DSB-AM modulating one of
the two waveforms given in Eq. (13.112). Identify Ac.

Problem 13.18. In the wireless local network protocol denoted IEEE 802.11b the
lowest rate modulation is a binary modulation using the two waveforms given
in Figure 13.30. Assume π0 = 0.5 and that τ1 = 1/11 µs, τ2 = 2/11 µs, and
τ3 = 3/11 µs.
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Figure 13.30 The two signals used in a binary modulation for IEEE 802.11b.

(a) Choose A such that the energy per bit is Eb.

(b) What is the bit rate?

(c) Keeping x0(t), can you choose a new waveform different than x1(t) that will
have the same energy and will improve the BEP? If you can then show an
example.

(d) Assume equally likely bits and a complex additive white Gaussian noise
with a one-sided power spectral density N0 corrupts the received signal.
Find the simplest form of the optimum demodulator.

(e) Find Dxz(f ). Using the 3 dB bandwidth what is the spectral efficiency of this
modulation?

Problem 13.19. In Example 12.1 four example waveforms were introduced to
transmit 2 bits of information. Pick two of these four waveforms to transmit
1 bit of information such that the probability of bit error for the optimum de-
modulator is minimized. Assume that π0 = 0.5. For the two signals selected,

(a) What is the energy per bit, Eb.

(b) What is the probability of error when N0 = 0.1.

(c) Plot Dxz(f ).

(d) Plot the matched filter impulse response.
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Problem 13.20. You have decided to try to predict the outcome of the next presi-
dential race by using your electrical engineering knowledge learned your com-
munication theory class. You decide to use one outcome of an approval rating
poll for the current president in the summer before the election as the observa-
tion. This observation is a random variable V . The minimum error rate decision
rule was given as

f V |1(v|I = 1)π1

Î =1
>
<

Î =0

f V |0(v|I = 0)π0 (13.113)

where π0 is the a priori probability that the challenging party wins and π1 is
the a priori probability the incumbent party wins. After careful analysis of the
polling data you realize that

V = 53 + N I = 1 (when the incumbent party wins)

V = 49 + N I = 0 (when the challenging party wins) (13.114)

where N is a zero mean Gaussian random variable with E[N 2] = 4.

(a) If π0 = 0.4 find π1.

(b) If π0 = 0.4 and v = 51 is observed, make the minimum probability of error
decision.

(c) If π0 = 0.5 and v = 50 is observed, make the minimum probability of error
decision.

(d) If π0 = 0.5 find the probability of error in the optimum test when the in-
cumbent wins.

(e) If v = 50 find the region for the values of π0 where the decision will be
opposite of that found in (c).

Problem 13.21. The two waveforms in Figure 13.31 are to be used to send 1 bit.
Assume that π0 = 0.5.

x0(t) x1(t)

1 1

t t

−1

1

1
0.50.5

Figure 13.31 Two waveforms to send 1 bit.
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(a) Compute E0 and E1.

(b) Specify the optimum demodulator structure. Clearly specify any threshold
test, filter impulse responses, and/or sample times.

(c) Compute the Euclidean distance between x0(t) and x1(t).

Problem 13.22. Using the Rayleigh energy theorem show that


[ρ10] = 
 [∫∞
−∞ X1(f )X ∗

0(f )df
]

√
E1 E0

(13.115)

Problem 13.23. In a manufacturing assembly line the error in placing an object
in a test fixture is modeled as a random variable, V I . If the robot is properly
calibrated then the error is well modeled as

f V I (v|C) =
⎧⎨
⎩

1
2

−1 ≤ v ≤ 1

0 elsewhere
(13.116)

If the robot is not calibrated then the error is well modeled as

f V I (v|N C) = 1√
2π

exp
[
−v2

2

]
(13.117)

Assume the robot is calibrated roughly 75% of the time (πC = 0.75).
Hint: Since Eq. (13.116) is not a Gaussian PDF, a little thought will be needed

to generalize the results of this chapter to answer the questions.

(a) If you observe a Vi = v give a decision algorithm based on the value of v that
would give the minimum probability of error in determining if the system
was uncalibrated.

(b) If the robot is calibrated only 25% of the time the decision algorithm will
change. Precisely define the new decision algorithm for πC = 0.25. Give the
intuition of why the decision algorithm has changed so dramatically.

13.9 Example Solutions

Problem 13.10.

(a) The plot of the bandpass signal corresponding to x0(t) is shown in
Figure 13.32.

(b) The block diagram of the optimum demodulator is exactly as given in the
text (see Figure 13.33).

(c) Recall for an optimal demodulator of a binary signal set that the BEP is
given as

PB (E) = 1
2

erfc

⎛
⎝
√

�E (1, 0)
4N0

⎞
⎠ (13.118)
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Figure 13.32 The bandpass signal corresponding to x0(t).

The Euclidean square distance for this signal set is

�E (1, 0) =
∫ Tp

0
|x1(t) − x0(t)|2dt (13.119)

= 2Eb − 2Eb

Tp

∫ Tp

0


{

exp
(

j
πt

2Tp
− j θ
)}

dt (13.120)

= 2Eb − 2Eb

Tp


{

exp(− j θ )
∫ Tp

0
exp
(

j
πt

2Tp

)
dt
}

(13.121)

= 2Eb − 2Eb

{

exp(− j θ )
(

sin(π/2)
π/2

− cos(π/2) − 1
π/2

)}
(13.122)

= 2Eb − 4Eb

π

{exp(− j θ )(1 + j )} (13.123)

Re[•]

arg
max

Re[•]

Yz(t)

x0(Tp − t)

x1(Tp − t)

Tp

Tp
Î

Figure 13.33 Demodulator block diagram.
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The maximum Euclidean square distance is achieved for θ = −3π/4. Note
this best performance is

�(1, 0) = 2Eb

(
1 + 2

√
2

π

)
= 3.8Eb < 4Eb (13.124)

so that the performance is worse than BPSK but better than the best BFSK
signaling scheme as introduced in class.

(d)

Gx0 (f ) = EbTp(sinc ( f Tp − π/8))2 (13.125)

Gx1 (f ) = EbTp(sinc ( f Tp + π/8))2 (13.126)

DXz(f ) = 1
2

(
Gx0 (f ) + Gx1 (f )

)
(13.127)

This energy spectrum is given in Figure 13.34. Examining this figure gives
B3 = 0.88.

Problem 13.13. This signaling scheme is known as fast frequency hopping.
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Figure 13.34 The average energy spectral density. π0 = π1 = 0.5.
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(a) This modulation has the form Xi(t) = diu(t). Hence only one filter is needed
and this is given as

Q =
∫

Yz(t)u∗(t)dt (13.128)

=
∫ Tp

2

0
Yz(t)

√
Eb

Tp
exp[− j 2π f1t]dt +

∫ Tp

Tp
2

Yz(t)

√
Eb

Tp
exp[− j 2π f 2t]dt

(13.129)

The ML decision metrics can be formulated as

Ei = |di|2 Eu = |di|2 Eb (13.130)

T 0 = 
[d ∗
0 Q] − |d0|2 Eb

2
(13.131)

T 1 = 
[d ∗
1 Q] − |d1|2 Eb

2
(13.132)

(b)

PB (E) = 1
2

erfc

⎡
⎣
√

�E (1, 0)
4N0

⎤
⎦ (13.133)

where �E (1, 0) = |d0 − d1|2 Eb (13.134)

(c) Since d0 = 1 and d0 = −1 this produces �E (1, 0) = 4Eb.

(d) Only point of possible discontinuity is at t = Tp/2.

2π f1
Tp

2
= 2π f 2

Tp

2
(13.135)

2π f1
Tp

2
= 2π f 2

Tp

2
+ 2πn where n is an integer (13.136)

f 2 = f1 + 2n
Tp

(13.137)

(e) The average energy spectrum is given as

Dxz(f ) = 1
2

(GX0 (f ) + GX1 (f )) (13.138)

Since Xi(t) = diu(t), the individual energy spectrums are given as

GX0 (f ) = |X0(f )|2 = |d0|2|U (f )|2 = |U (f )|2 = GX1 (f ) (13.139)
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Note that u(t) = u1(t) + u2(t) where

u1(t) =

⎧⎪⎨
⎪⎩
√

Eb

Tp
exp[ j 2π f1t] 0 ≤ t ≤ Tp/2

0 elsewhere

(13.140)

and

u2(t) =

⎧⎪⎨
⎪⎩
√

Eb

Tp
exp[ j 2π f1t] Tp/2 ≤ t ≤ Tp

0 elsewhere

(13.141)

Taking the Fourier transform gives

U1(f ) =√EbTp exp
[
− j

π f Tp

2

]
sinc
(

( f − f1)Tp

2

)
(13.142)

and

U2(f ) =√EbTp exp
[
− j

3π f Tp

2

]
sinc
(

( f − f 2)Tp

2

)
(13.143)

Finally

|U (f )|2 = |U1(f ) + U2(f )|2 = Dxz(f ) (13.144)

See Matlab code and plot in Figure 13.35.

%
% Generating the spectrum of FH
% Author: M. Fitz
% Last modified: 1/28/04
%
close all
clear all
numpts=2048;
f_1=2;
f_2=-2;
freq=linspace(-4,4, numpts+1);
g_pr=zeros(1,numpts+1);
dum1=exp(-j*pi*freq/2).*sinc(freq-f_1*ones(1,numpts+1));
dum2=exp(-j*3*pi*freq/2).*sinc(freq-f_2*ones(1,numpts+1));
g_pr=(dum1+dum2).*conj(dum1+dum2);
g_prdb=10*log10(g_pr);
figure(1)
plot(freq,g_prdb)
axis([-4 4 -50 5])
xlabel('Normalized frequency, fT_p')
ylabel('Normalized energy spectrum per bit')
hold off
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Figure 13.35 Spectrum of a frequency hopped signal.

13.10 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). Each team
member should be prepared to give the presentation.

13.10.1 Project 1

Project Goals: This project will design a signal set to meet a typical spectral
emissions mask and compute the probability of error for both bandpass and
baseband matched filtering in the presence of sample time error to show the
advantages of processing signals at baseband.

Design a real valued pulse shape, u(t), that can be used with binary pulse
amplitude modulation having the bandpass form

xc0(t) = u(t)
√

2 cos(2π f ct) xc1(t) = −u(t)
√

2 cos(2π f ct)
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Figure 13.36 Spectral emissions mask.

that will meet the spectral emissions mask given in Figure 13.36 but the pulse
must not extend for longer than 40 µs in time. The carrier frequency is 1 MHz.
This spectral emissions mask is the one used for Global System for Mobile com-
munications (GSM) handsets. GSM is a second generation cellular telephony
standard. So this problem is one of great practical interest.

We have discussed one type of demodulator structures for bandpass signals;
baseband matchd filters. This structure match filters to the bandpass signal
after creating the complex envelope of the received signal (see Figure 13.37).
It is also possible to build a matched filter to the bandpass signal itself (h(t) =
x1c(Tp − t) − x0c(Tp − t))

+
− Î

2cos(2πfct)

u(Tp − t)LPFyc(t)

t = Tp

Figure 13.37 The baseband demodulator for binary pulse amplitude modulation.
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(a) Derive the form for and plot the output of the bandpass matched filter for
all time when xc(t) = u(t)

√
2 cos(2π f ct).

(b) Derive the form for and plot the output of the baseband matched filter when
xc(t) = u(t)

√
2 cos(2π f ct).

(c) Compute the Eb/N0 required to produce a 10−5 error probability for the
optimum demodulator.

(d) If the bandpass matched filter is sampled at Tp + 2 × 10−7 instead of Tp
compute the Eb/N0 required to produce a 10−5 error probability.

(e) If the baseband matched filter is sampled at Tp + 2 × 10−7 instead of Tp
compute the Eb/N0 required to produce a 10−5 error probability.

(f) How big would the timing error have to be for the baseband matched filter
to achieve the same answer as in (d)?

13.10.2 Project 2

Project Goals: Engage in an implementation of an optimum demodulator of
a binary signal set.

Consider baseband binary signal set (with sample frequency f s = 22,050 Hz)
and the received bandpass signal ( f c = 3500 Hz) given in sbproj2data.mat.

(a) Plot the two baseband signals and determine the bit rate, Wb.

(b) Sketch a block diagram of the optimum demodulator for these two signals.

(c) Make the optimum bit decision and compute all the sufficient statistics
of the demodulation. Hint: If implementing the demodulator at baseband
make sure to account for the impact of the lowpass filters in the I/Q down-
converter on the possible baseband signals.
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Chapter

14
Transmitting More Than One Bit

People who buy communication systems rarely want to only transmit 1 bit. Con-
sequently, there is a practical need to generalize the results from the previous
chapter to the transmission of multiple bits. The problem considered here is
that we transmit Kb bits by selecting one of M = 2Kb waveforms. In the litera-
ture this is often denoted M-ary digital communications. The demodulator has
the task of deciding which of these waveforms was sent in the presence of an
additive noise. This chapter will consider a variety of problems associated with
transmitting more than 1 bit.

14.1 A Reformulation for 1 Bit Transmission

The optimum demodulator can be reformulated in several ways. Many of these
reformulations give insight for receiver structures we will consider in the se-
quel. Recall from Chapter 13 that the MLBD, when Yz(t) = yz(t) is observed,
has the form

vI (Tp) = 

[∫ ∞

−∞
yz(τ )(x∗

1(τ ) − x∗
0(τ ))dτ

] Î =1
>
<

Î =0

E1 − E0

2
(14.1)

Rearranging Eq. (14.1) gives



[∫ ∞

−∞
yz(τ )x∗

1(τ )dτ

]
− E1

2

Î =1
>
<

Î =0



[∫ ∞

−∞
yz(τ )x∗

0(τ )dτ

]
− E0

2
(14.2)

The form of the MLBD in Eq. (14.2) which forms a decision statistic for each
possible signal by computing the output of a matched filter to that transmit-
ted signal and adding an energy correction term will frequently appear in the
sequel. In fact, to simplify the discussion the following definition is useful.

14.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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Definition 14.1 The maximum likelihood metric for I = i is

T i = 

[∫ ∞

−∞
yz(τ )x∗

i (τ )dτ

]
− Ei

2
(14.3)

Using this definition allows a reformulation of the MLBD as

T 1

Î =1
>
<

Î =0

T 0 (14.4)

Equation (14.4) gives a particularly insightful form of the decision process: form
the maximum likelihood metric for each bit value and choose to decode the bit
value corresponding to the largest metric.

The MAPBD can similarly take other useful forms. Multiplying both sides
of Eq. (14.2) by 2/N0 and taking the exponential gives another form for the
MLBD, i.e.,

exp
[

2
N0



[∫ ∞

−∞
yz(τ )x∗

1(τ )dτ

]
− E1

N0

] Î =1
>
<

Î =0

exp
[

2
N0



[∫ ∞

−∞
yz(τ )x∗

0(τ )dτ

]
− E0

N0

]
(14.5)

The justification of why the constant term is 2/N0 is provided in a book on detec-
tion theory [Poo88]. Using the maximum likelihood metric the MLBD simplifies
to

exp
[

2T 1

N0

]
π1

Î =1
>
<

Î =0

exp
[

2T 0

N0

]
π0 (14.6)

The generalization to unequal priors has the MAPBD taking the form

exp
[

2
N0



[∫ ∞

−∞
yz(τ )x∗

1(τ )dτ

]
− E1

N0

]
π1

Î =1
>
<

Î =0

exp
[

2T 1

N0

] Î =1
>
<

Î =0

exp
[

2T 0

N0

]
(14.7)

In fact, this demodulator structure can be viewed as being equivalent to com-
puting the APP for each of the two possible bits given the receiver input and
then selecting the bit value that corresponds to this maximum, i.e.,

exp
[

2T 1
N0

]
π1

K
= P (I = 1|yz(t))

Î =1
>
<

Î =0

P (I = 0|yz(t)) =
exp
[

2T 0
N0

]
π0

K
(14.8)

where yz(t) is the observed receiver input and K is a constant that is not a
function of I . Forms for the optimal detector given in Eq. (14.5) and Eq. (14.7)
will be used often in the sequel to form optimum detectors in some special cases.
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14.2 Optimum Demodulation

Now we want to consider the digital communication system design problem of
transmitting more than one bit of information. In the sequel, Kb shall denote
the number of bits to be transmitted and the bit sequence is denoted

�I = [I (1) I (2) . . . I (Kb)]T (14.9)

where I (k) take values 0,1. For simplicity of notation a particular sequence
of bits can be designated by the numeric value the bits represent, i.e., �I = i,
i ∈ {0, . . . , M − 1} where M = 2Kb. To represent the M values the bit sequence
can take, M different analog waveforms should be available for transmission.
Denote by xi(t), i ∈ {0, . . . , M − 1} as the waveform transmitted when �I = i
is to be transmitted. Here again we will assume the analog waveforms have
support on t ∈ [0, Tp]. Given this problem formulation we want to extend the
results obtained in the previous chapter. It is worth noting that this problem
formulation gives a bit rate of Wb = Kb/Tp bits per second. The average energy
per bit is given as

Eb = 1
Kb

M−1∑
i=0

πi Ei (14.10)

where again Ei is the energy of waveform xi(t).

EXAMPLE 14.1
Consider the case of Kb = 3, the bits and the words are enumerated as

I (1) I (2) I (3) i
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

EXAMPLE 14.2
Here we consider a modulation known as pulse width modulation with Kb = 2. This
modulation embeds information in the width of the pulse that is transmitted. This is a
popular baseband modulation in certain applications where positive logic level signals
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are desired in the transmitter. The transmitted signals are given as

x0(t) =

⎧⎨
⎩
√

32Eb
10Tp

0 ≤ t ≤ Tp/4

0 elsewhere
x1(t) =

⎧⎨
⎩
√

32Eb
10Tp

0 ≤ t ≤ Tp/2

0 elsewhere
(14.11)

x2(t) =

⎧⎨
⎩
√

32Eb
10Tp

0 ≤ t ≤ 3Tp/4

0 elsewhere
x3(t) =

⎧⎨
⎩
√

32Eb
10Tp

0 ≤ t ≤ Tp

0 elsewhere
(14.12)

A student exercise worth completing is to show that energy per bit for this signal set
is Eb.

14.2.1 Optimum Word Demodulation Receivers

A first receiver to be considered is the maximum a posteriori word demodulator
(MAPWD). This MAPWD can again be shown to be the minimum word error
probability receiver using Bayes detection theory [Leh86, Web87]. A straight-
forward generalization of Eq. (14.8) leads to

�̂I = arg max
i∈{0,...,M−1}

P ( �I = i|yz(t)) (14.13)

where the arg max notation refers to the particular binary word that has the
maximum APP. This is the obvious generalization of binary MAP detection to
the M-ary decision problem. Using the results of the previous section this MAP
decoding rule becomes

�̂I = arg max
i∈{0,...,M−1}

exp
[

2
N0



[∫ ∞

−∞
yz(τ )x∗

i (τ )dτ

]
− Ei

N0

]
πi

= arg max
i∈{0,...,M−1}

exp
[

2
N0


[vi(Tp)] − Ei

N0

]
πi (14.14)

= arg max
i∈{0,...,M−1}

exp
[

2T i

N0

]
πi (14.15)

where

vi(t) =
∫ ∞

−∞
yz(τ )x∗

i (Tp − t + τ )dτ (14.16)

is denoted the ith matched filter output and

Ei =
∫ ∞

−∞
|xi(t)|2dt (14.17)

is the energy of the ith analog waveform. The ith matched filter output when
sampled at t = Tp again will give a correlation of the received signal with the
ith possible transmitted signal. Here T i represents the maximum likelihood
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MF x0(t)

E0/2

E1/2

−

+

p0

p1

Tp

−

+

Tp

−

+

Tp

…

EM-1/2

MF xM-1(t)

MF x1(t)
Choose
Largest

2
N0

2
N0

Re[•]

Re[•]

Re[•]

Σ

Σ

Σ

exp(•)

exp(•)
→̂
I

Yz(t)

2
N0

exp(•)

pM-1

Figure 14.1 The block diagram for the M-ary MAP demodulator.

metric for the word �I = i. For future use it is important to reemphasize that

exp
[

2T i

N0

]
πi = exp

[
2

N0

[vi(Tp)] − Ei

N0

]
πi = K P ( �I = i|yz(t)) (14.18)

where K is a constant that is not a function of �I . The block diagram for the
optimum MAPWD is shown in Figure 14.1.

The demodulator in the case of equal priors, i.e., πi = 1/M, ∀i, can be greatly
simplified. We will denote this demodulator as the maximum likelihood word
demodulator (MLWD). Since all terms have an equal πi this common term can
be canceled from each term in the decision rule and since the ln(•) function is
monotonic the MLWD is given as

�̂I = arg max
i∈{0,...,M−1}


[vi(Tp)] − Ei

2

= arg max
i∈{0,...,M−1}

T i (14.19)

The maximum likelihood metric is computed for each of the possible transmitted
signals. Decoding is accomplished by selecting the binary word associated with
the largest maximum likelihood metric. The block diagram for the optimum
MLWD is shown in Figure 14.2.



14.6 Chapter Fourteen

MF x0(t)

E0/2

−

+

Tp

Tp

−

+

−

+

Tp

MF xM-1(t)

Choose
Largest

T0

T1

TM-1

Yz t( )

Re[•]

Re[•]

Σ

Σ

Σ

MF x1(t) Re[•]

E1/2

EM-1/2

→̂
I

…

Figure 14.2 The block diagram for the MLWD demodulator.

EXAMPLE 14.3
This example returns to the 4-ary example first introduced in Example 12.1. Since the
possible transmitted signals are real, the four matched filter outputs are given as

v0(Tp) =
∫ Tp

0
sin

(
4πτ

Tp

)
yz(τ )dτ v1(Tp) =

∫ Tp

0
yz(τ )dτ

v2(Tp) = −
∫ Tp

0
sin

(
πτ

Tp

)
yz(τ )dτ

v3(Tp) =
∫ Tp/2

0

2τ

Tp
yz(τ )dτ +

∫ Tp

Tp/2

(
2 − 2τ

Tp

)
yz(τ )dτ (14.20)

The energy of each of the transmitted signals is given as

E0 = Tp/2 E1 = Tp E2 = Tp/2 E3 = Tp/3 (14.21)

The maximum likelihood metrics for this modulation are given as

T 0 = 
[v0(Tp)] − Tp/2 T 1 = 
[v1(Tp)] − Tp

T 2 = 
[v2(Tp)] − Tp/2 T 3 = 
[v3(Tp)] − Tp/3 (14.22)
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EXAMPLE 14.4
Returning to the pulse width modulation first introduced in Example 14.2, the four
matched filter outputs are given as

v0(Tp) =
√

32Eb

10Tp

∫ Tp/4

0
yz(τ )dτ v1(Tp) =

√
32Eb

10Tp

∫ Tp/2

0
yz(τ )dτ

v2(Tp) =
√

32Eb

10Tp

∫ 3Tp/4

0
yz(τ )dτ v3(Tp) =

√
32Eb

10Tp

∫ Tp

0
yz(τ )dτ (14.23)

The energy of each of the transmitted signals is given as

E0 = 8Eb

10
E1 = 16Eb

10
E2 = 24Eb

10
E3 = 32Eb

10
(14.24)

The maximum likelihood metrics for this modulation are given as

T 0 =
√

32Eb

10Tp

∫ Tp/4

0
yI (τ )dτ − 4Eb

10
T 1 =
√

32Eb

10Tp

∫ Tp/2

0
yI (τ )dτ − 8Eb

10

T 2 =
√

32Eb

10Tp

∫ 3Tp/4

0
yI (τ )dτ − 12Eb

10
T 3 =
√

32Eb

10Tp

∫ Tp

0
yI (τ )dτ − 16Eb

10

(14.25)

The important thing to notice for both MAPWD and MLWD is that the optimal
demodulator complexity increases exponentially with the number of bits trans-
mitted. The number of matched filters required in each demodulator is M = 2Kb,
consequently the complexity of these demodulation schemes is O(2Kb). The no-
tation O(x) implies the complexity of the algorithm is proportional to x, i.e., a
constant times x. This complexity is obviously unacceptable if large files of data
are to be transmitted. To make data communications practical, ways will have
to be developed that make the complexity linear in the number of bits sent,
i.e., O(Kb). This chapter will continue to look at M-ary signaling schemes as
they often are used in practice (in conjunction with other complexity reduction
techniques) to achieve either lower error rates or higher bandwidth efficiency.

14.2.2 Analysis of Demodulation Fidelity

The analysis of the fidelity of the message reconstruction in an M-ary demod-
ulator is much more complicated than that of the binary detector but many of
the ideas are similar. Two important quantities should be related at this point:
the energy per symbol and the energy per bit. The average symbol energy is
denoted Es and this is given as

Es =
M−1∑
i=0

Eiπi (14.26)
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Es represents the average energy transmitted to communicate the Kb bits. The
case of equal priors reduces to

Es = 1
M

M−1∑
i=0

Ei (14.27)

The average energy per bit is then given as

Eb = Es

Kb
(14.28)

Communication engineers frequently parametrize fidelity of demodulation with
both Es and Eb.

EXAMPLE 14.5
Returning again to the pulse width modulation introduced in Example 14.2 we have

Eb = E0 + E1 + E2 + E3

8
=
(

8Eb

80
+ 16Eb

80
+ 24Eb

80
+ 32Eb

80

)
(14.29)

We again start the process of understanding the fidelity of demodulation by
characterizing the likelihood metrics.

Likelihood Metrics

The likelihood metrics, T i, i ∈ {0, . . . , M − 1} are matched filter outputs with
an energy correction term. Conditioned on the transmitted signal the likeli-
hood metrics are Gaussian random variables. For instance, if xj (t) is assumed
transmitted then denote the ith conditional likelihood metric as

Ti| j = 

[∫ ∞

−∞
Yz(t)x∗

i (t)dt
]

− Ei

2

= 

[∫ ∞

−∞
xj (t)x∗

i (t)dt
]

+ N (i)
I − Ei

2
(14.30)

where N (i)
I is a real zero mean Gaussian random variable given as

N (i)
I = 


[∫ ∞

−∞
Wz(t)x∗

i (t)dt
]

(14.31)

with

var(N (i)
I ) = Ei N0

2
. (14.32)

It should be noted that

Ti| j = 
[ρ j i
√

Ei E j ] − Ei

2
+ N (i)

I

T j | j = E j

2
+ N ( j )

I (14.33)
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Finally, if two conditional likelihood metrics, Ti| j and T k| j are considered
jointly, they will be jointly Gaussian random variables with a correlation co-
efficient of (see Problem 14.14)

ρ = E
[
N (i)

I N (k)
I

]
N0
2

√
Ei Ek

= 
[ρik] (14.34)

This correlation between the matched filter outputs will be explored in more
depth in the homework.

Probability of Word Error

The probability of making a demodulation error is denoted the word error prob-
ability, PW (E). This probability can be written via total probability as

PW (E) =
M−1∑
j =0

P (�̂I �= j | �I = j )π j (14.35)

When the priors are unequal the nonlinear nature of MAPWD in Eq. (14.14)
makes the computation of P (�̂I �= j | �I = j ) very difficult. Not many results exist
in the literature discussing PW (E) calculations for MAPWD.

The case of equal priors has a demodulator with a more exploitable structure.
For MLWD the word error probability is

PW (E) = 1
M

M−1∑
j =0

P (�̂I �= j | �I = j ) (14.36)

The conditional probability of word error is given as

P (�̂I �= j | �I = j ) = P
(

max
j �=i

T i > T j

∣∣∣ �I = j
)

= P
(

max
j �=i

Ti| j > T j | j

)

= P

⎛
⎜⎜⎝

M−1⋃
i=0
j �=i

{Ti| j > T j | j }

⎞
⎟⎟⎠ (14.37)

In general, the probability in Eq. (14.37) is quite tough to compute. While each
of the Ti| j , i = 1, M is a Gaussian random variable, computing the distribution
of the maximum of correlated Gaussian random variables is nontrivial. For a
significant number of modulations with small M the probability in Eq. (14.37)
is computable with a reasonable amount of work on a computer. Some of these
examples will be explored in the sequel and in homework problems. For a gen-
eral modulation and large M the problem is much tougher. One special case
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where a general result is available is the case of an orthogonal modulation, i.e.,
ρi j = 0, ∀i �= j . Error rate analysis for an orthogonal signal set is explored in
the homework.

14.2.3 Union Bound

A common upperbound on the probability in Eq. (14.37) has found great utility
in the analysis of communication systems. This so-called union bound is simply
stated in general form as

P

(
N⋃

i=1

Ai

)
≤

N∑
i=1

P ( Ai) (14.38)

where Ai are arbitrary events. The idea of the union bound is simply understood
if one considers the Venn diagram of Figure 14.3. Consider the probability of
each event, Ai to be proportional to the area in the Venn diagram. The union
bound given in Eq. (14.38) counts the area in A1

⋂
A2, A1

⋂
A3, and A2

⋂
A3

twice and the area of A1
⋂

A2
⋂

A3 three times. The union bound is satisfied
with equality if the events are disjoint.

The union bound can now be used to upperbound the word error probability
in an M-ary optimum word demodulator. Using the union bound in Eq. (14.37)
gives

P (�̂I �= j | �I = j ) = P

⎛
⎜⎜⎝

M−1⋃
i=0
j �=i

{Ti| j > T j | j }

⎞
⎟⎟⎠

≤
M−1∑

i=0
j �=i

P (Ti| j > T j | j ) (14.39)

P (Ti| j > T j | j ) is the probability that the ith maximum likelihood metric for
the transmitted signal is greater than the maximum likelihood metric corre-
sponding to the actual transmitted signal. This probability is often denoted the
pairwise error probability (PWEP).

A1

A2

A3

A3 ∩ A1

A2 ∩ A1

A1∩ A2 ∩ A3

A2 ∩ A3

Figure 14.3 A Venn diagram to explain
the union bound.
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The PWEP has a form readily analyzed. It should first be noted that the
PWEP is exactly the same error rate computation that was done in Chapter 13
for binary modulations. This derivation is repeated here in its more general
form to give another perspective on the problem. Recall the form for the decision
metrics are

Ti| j = 
[ρ j i
√

Ei E j ] − Ei

2
+ N (i)

I

T j | j = E j

2
+ N ( j )

I (14.40)

Consequently, the PWEP is given as

P (Ti| j > T j | j ) = P
(


[ρ j i
√

Ei E j ] − Ei

2
+ N (i)

I >
E j

2
+ N ( j )

I

)

= P
(

Nij >
Ei + E j

2
− 
[ρ j i

√
Ei E j ]

)
(14.41)

= P
(

Nij >
�E (i, j )

2

)
(14.42)

where Nij = N (i)
I − N ( j )

I . Since Nij is a zero mean Gaussian random variable
the PWEP is simply expressed as the tail probability of a Gaussian random
variable. Since

Nij = 

[∫ ∞

−∞
Wz(t)[x∗

i (t) − x∗
j (t)]dt

]
(14.43)

the variance is given as

var(Nij ) = N0

2
[Ei + E j − 2
[ρ j i

√
Ei E j ]] = N0�E (i, j )

2
(14.44)

Using this variance in Eq. (14.41) gives

P (Ti| j > T j | j ) = 1
2

erfc

⎛
⎝
√

Ei + E j − 2
[ρ j i
√

Ei E j ]
4N0

⎞
⎠

= 1
2

erfc

⎛
⎝
√

�E (i, j )
4N0

⎞
⎠ (14.45)

where again

�E (i, j ) =
∫ ∞

−∞
|xj (t) − xi(t)|2dt (14.46)
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is the squared Euclidean distance between xi(t) and xj (t). It should be noted
that the PWEP is exactly the same as the binary error probability given in the
previous chapter.

The PWEP can be combined with Eq. (14.39) to give a union bound to the
conditional word error probability. The conditional probability of error given
that xj (t) was transmitted is now upperbounded by

P (�̂I �= j | �I = j ) ≤
∑
i �= j

1
2

erfc

⎛
⎝
√

�E (i, j )
4N0

⎞
⎠ (14.47)

Definition 14.2 The conditional union bound is the upperbound on the conditional word
error probability and is denoted

PWUB(E| �I = j ) =
∑
i �= j

1
2

erfc

(√
�E (i, j )

4N0

)
(14.48)

This upperbound on the conditional word error probability is formed by com-
puting and summing the pairwise error probability for every other codeword
besides the postulated transmitted symbol.

The conditional union bound can be combined with Eq. (14.36) to provide
an overall bound on the word error rate. An upperbound to the word error
probability is now given as

PW (E) ≤ PWUB(E) =
M−1∑
j =0

1
M

PWUB(E| �I = j )

=
M−1∑
j =0

∑
i �= j

1
2M

erfc

⎛
⎝
√

�E (i, j )
4N0

⎞
⎠ (14.49)

and this upperbound is often referred to as the union bound in the literature.
It is important to realize that this sum is over all possible transmitted signals
and all possible decoding errors for each of the possible transmitted signals.

EXAMPLE 14.6
We can enumerate all the Euclidean distances for the 4-ary modulation example intro-
duced in Example 12.1 by examining the possible cross correlations, i.e.,

0 =
∫ Tp

0
x0(t)x1(t)dt =

∫ Tp

0
x0(t)x2(t)dt =

∫ Tp

0
x0(t)x3(t)dt (14.50)

∫ Tp

0
x1(t)x2(t)dt = −2Tp

π
(14.51)
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∫ Tp

0
x1(t)x3(t)dt = Tp

2
(14.52)

∫ Tp

0
x2(t)x3(t)dt = −4Tp

π2
(14.53)

This results in an enumeration of the possible Euclidean square distances that is detailed
in the following table

�E (i, j )

�I = i

�I = j 0 1 2 3

0 0 3Tp
2 Tp

5Tp
6

1 3Tp
2 0

( 3
2 + 4

π

)
Tp

Tp
3

2 Tp
( 3

2 + 4
π

)
Tp 0

( 5
6 + 8

π2

)
Tp

3 5Tp
6

Tp
3

( 5
6 + 8

π2

)
Tp 0

This enumeration of the squared Euclidean distances between all pairs of words enable
the union bound to be computed for this signal set.

EXAMPLE 14.7
We can enumerate all the Euclidean distances for the pulse width modulation first
introduced in Example 14.2 in a table

�E (i, j )

�I = i

�I = j 0 1 2 3

0 0 8Eb
10

16Eb
10

24Eb
10

1 8Eb
10 0 8Eb

10
16Eb

10

2 16Eb
10

8Eb
10 0 8Eb

10

3 24Eb
10

16Eb
10

8Eb
10 0

This enumeration of the squared Euclidean distances between all pairs of words enable
the union bound to be computed for this signal set.
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The important points resulting from the union bound are

1. Squared Euclidean distance is again an important quantity in understand-
ing the fidelity of message reconstruction.

2. The conditional union bound and the union bound typically have the form

PWUB(E| �I = j ) =
N j∑

k=1

Ad j (k)
2

erfc

⎛
⎝
√

�E j (k)
4N0

⎞
⎠ (14.54)

PW (E) ≤ PWUB(E) =
N∑

k=1

Ad (k)
2M

erfc

⎛
⎝
√

�E (k)
4N0

⎞
⎠ (14.55)

where the sum enumerates the N j ≤ M − 1 and N ≤ M(M − 1)/2 possible
different squared Euclidean distances, �E j (k), k = 1, N j and �E (k), k =
1, N , respectively. Note that Ad j (k) and Ad (k) are the number of signal
pairs having a squared Euclidean distance between them of �E j (k) and
�E (k), respectively. It should also be noted that

∑N j

k=1 Ad j (k) = M − 1 and∑N
k=1 Ad (k) = M(M−1). The combination of the enumeration of the squared

Euclidean distance, �E (k), and the number of signal pairs Ad (k) for each
distance is often denoted the squared Euclidean distance spectrum weight.
All sets of pairs {�E (k), Ad (k)}, k = 1, N is often denoted the squared Eu-
clidean distance spectrum of a signal set. Similiarly, a conditional Euclidean
distance spectrum can be defined.

EXAMPLE 14.8
For pulse width modulation there are two unique conditional Euclidean distance spectra.
For �I = 0 there are three terms in the conditional distance spectrum, i.e.,

N0 = 3 {�E0(k) Ad 0(k)} ∈
[{

8Eb

10
, 1

}
,

{
16Eb

10
, 1

}
,

{
24Eb

10
, 1

}]
(14.56)

and for �I = 1 there are two terms, i.e.,

N1 = 2 {�E0(k) Ad 0(k)} ∈
[{

8Eb

10
, 2

}
,

{
16Eb

10
, 1

}]
(14.57)

which implies, for example, that

PWUB(E| �I = 0) = 1
2

erfc

(√
8Eb

40N0

)
+ 1

2
erfc

(√
16Eb

40N0

)
+ 1

2
erfc

(√
24Eb

40N0

)

(14.58)

Pulling all the conditional distance spectra together we have N = 3 with �E (1) =
8Eb
10 , �E (2) = 16Eb

10 , and �E (3) = 24Eb
10 and Ad (1) = 6, Ad (2) = 4, and Ad (3) = 2.
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Consequently, the union bound is expressed as

PW (E) ≤ PWUB(E) = 3
4

erfc

(√
8Eb

40N0

)
+ 1

2
erfc

(√
16Eb

40N0

)
+ 1

4
erfc

(√
24Eb

40N0

)

(14.59)

3. The bound is often dominated by the minimum squared Euclidean distance
of the signal set, �E (min), where

�E (min) = min
j ∈{0,...,M−1}
i∈{0,...,M−1}

i �= j

�E (i, j ) (14.60)

Since erfc(x) ∼ exp[−x2] it is usually the case that

erfc

⎛
⎝
√

�E (min)
4N0

⎞
⎠� erfc

⎛
⎝
√

�E (i, j )
4N0

⎞
⎠ ∀�E (i, j ) �= �E (min) (14.61)

4. The union bound is usually tight at high SNR. The bound over counts the
cases when more than one maximum likelihood metric for a nontransmit-
ted word is greater than the maximum likelihood metric for the transmitted
word. At high SNR the probability of two or more metrics being greater than
the true metric is very small. Consequently, the overbounding probability is
very small.

5. Using items 3 and 4 allows one to deduce that

PW (E) ≈ Ad (min)
2M

erfc

⎛
⎝
√

�E (min)
4N0

⎞
⎠ (14.62)

is a good approximation to the true error rate at high SNR.

EXAMPLE 14.9
For pulse width modulation a reasonable estimate of performance at high SNR is ex-
pressed as

PW (E) = 3
4

erfc

(√
8Eb

40N0

)
(14.63)

Similarly, for the 4-ary modulation introduced in Example 12.1 a reasonable estimate
of performance at high SNR is expressed as

PW (E) = 1
4

erfc

(√
Tp

12N0

)
(14.64)
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A concept that arises often in error rate analysis is the concept of geometric
uniformity [For91].

Definition 14.3 A geometrically uniform signal set is one in which the conditional dis-
tance spectrum of each of the possible transmitted signals is the same.

The important characteristic of a geometrically uniform signal set is

PWUB(E| �I = 0) = PWUB(E| �I = j ) = PWUB(E) (14.65)

This characteristic implies that the number of terms in the union bound that
needs to be considered reduces from M(M − 1) to M − 1 as only one transmitted
code word needs to be considered. Note that pulse width modulation considered
in Example 14.4 is not a geometrically uniform signal set, but x0(t) and x3(t)
have the same conditional distance spectrum as do x1(t) and x2(t).

14.2.4 Signal Design

Signal design for optimizing the fidelity of message reconstruction of an M-
ary modulation is typically implemented with a max-min approach. Since the
minimum squared Euclidean distance will dominate the word error rate of an
optimum demodulator, the best signal design will happen when the minimum
distance between all pairs of the M signals is maximized. This is known as the
max-min design criteria for digital communications. In general, signal design
in digital communications is a complex endeavor with many open problems.

The spectral characteristics of an M-ary signal set can be characterized with
a straightforward extension of the techniques used for binary signals. Recall
from Eq. (12.8) that the average energy spectrum per bit for a transmitted
signal, Xz(t), where Kb bits are transmitted is

Dxz(f ) = E[Gxz(f )]
Kb

(14.66)

The average here again is over random data bits that are being transmitted.

EXAMPLE 14.10
The average energy spectrum per bit for pulse width modulation can be obtained by
identifying the energy spectrum for each of the possible transmitted waveforms. For
pulse width modulation this is given as

Gx0 (f ) = T 2
p

16
sinc( f Tp/4)2 Gx1 (f ) = T 2

p

4
sinc( f Tp/2)2 (14.67)

Gx2 (f ) = 9T 2
p

16
sinc(3 f Tp/4)2 Gx3 (f ) = T 2

p sinc( f Tp)2

If the signals are equally likely then the average energy spectrum for pulse width
modulation is given in Figure 14.4. Since Wb = 2/Tp and using the 3 dB bandwidth
(BT ≈ 1/Tp) the spectral efficiency is ηB = 2 bits/s/Hz.
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Figure 14.4 The average energy spectrum per bit for pulse width modulation.

14.3 Examples

This chapter is concluded by considering two obvious and important examples of
M-ary carrier modulated digital communication: M-ary frequency shift keying
(MFSK) and M-ary phase shift keying (MPSK). In these examples it is assumed
that πi = 1/M, i ∈ {0, . . . , M − 1}.

14.3.1 M-ary FSK

MFSK modulation sends the word of information by transmitting a carrier
pulse of one of M frequencies. This is an obvious simple signaling scheme and
one used in many early modems. The signal set is given as

xi(t) =

⎧⎪⎪⎨
⎪⎪⎩

√
KbEb

Tp
exp[ j 2π fd (2i − M + 1)t] 0 ≤ t ≤ Tp

0 otherwise

(14.68)
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where fd is known as the frequency deviation. The frequency difference be-
tween adjacent frequency pulses in the signal set is 2 fd . It is apparent that
each waveform in a MFSK signal set has equal energy that has here been set
to Es = KbEb.

The matched filter impulse response is given as

hi(t) = x∗
i (Tp − t) (14.69)

Since MFSK is an equal energy signal set the energy correction term is not
needed in the demodulator and the ML decision metrics are given as

T i = 

[∫ Tp

0
Yz(t)x∗

i (t)dt
]

=
√

KbEb

Tp


[∫ Tp

0
Yz(t) exp[− j 2π fd (2i − M + 1)t]dt

]

i ∈ {0, . . . , M − 1} (14.70)

The MLWD demodulator is then given as

�̂I = arg max
i∈{0,...,M−1}

T i (14.71)

This optimum demodulator computes M matched filter outputs and then selects
as a word estimate the word value that corresponds to the largest real part of
all the matched filter outputs.

The word error rate performance of MFSK is a function of the frequency
spacing, 2 fd . Using the results from BFSK, i.e., (13.87), the pairwise squared
Euclidean distance is given as �E (i, j ) = 2KbEb(1 − sin(4π fd (i− j )Tp )

4π fd (i− j )Tp
). Conse-

quently, for MFSK the placement of the tones is a bit more delicate problem.
The union bound is given as

PWUB(E) =
M−1∑
n=1

M − n
M

erfc

(√
KbEb

2N0

(
1 − sin(4π fd nTp)

4π fd nTp

))
(14.72)

The selection of the frequency spacing, fd , becomes a tricky problem for M > 2
as one needs to balance all the terms in the union bound to optimize the error
rate. The MFSK signal set is not in general a geometrically uniform signal set.

For the special case of 
[ρi j ] = 0 both the PW (E) can be easily computed
and a simple form for the union bound results. This is known as orthogonal
MFSK and is achieved if fd = n

4Tp
where n is a positive integer. The closed

form probability of error expression for orthogonal MFSK is explored in the
homework and plotted in Figure 14.5 for M = 2, 4, 8, 16. The important thing
to realize for MFSK is that for large enough Eb/N0, the PW (E) is monotonically
decreasing with M. In fact, one can show that the error rate can be made
arbitrarily small when Eb/N0 > ln(2) [Sha48]. Consequently, the performance
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Figure 14.5 The true PW (E) and the union bound for orthogonal MFSK.

of a digital communication system can be improved by transmitting more bits
or having more waveforms to choose from. This result is also counter normal
engineering intuition. Shortly, we will show that this performance improvement
is achieved only at the cost of an increase in the bandwidth of the signal. The
union bound for orthogonal MFSK is

PW (E) ≤ M − 1
2

erfc

(√
KbEb

2N0

)
(14.73)

For 
[ρi j ] = 0 MFSK is a geometrically uniform signal set. Figure 14.5 also plots
the union bound for MFSK. It is obvious that the union bound converges to the
true error probability at high SNR. For the particular case of MFSK the bound
is tight enough to be indiscernibly different on the graph for Eb/N0 > 6 dB.
This characteristic for the union bound holds for most signal sets optimally
demodulated in the presence of an AWGN.

The average energy spectrum per bit is again used to characterize the spectral
efficiency. Recall the average energy spectral density per bit is given for M-ary
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modulations as

Dxz(f ) = 1
Kb

M−1∑
i=0

πiGxi (f ) (14.74)

Recall that the energy spectrum of the individual waveforms is given as

Gxi (f ) = KbEbTp

(
sin(π( f − fd (2i − M + 1))Tp)

π( f − fd (2i − M + 1))Tp

)2

(14.75)

Recall that the minimum frequency separation needed to achieve an orthogonal
modulation is fd Tp = 0.25 and that by considering Eq. (14.74) and Eq. (14.75) it
is obvious that the spectral content is growing proportional to BT = fd (2Kb+1).
An example of each of the individual energy spectrums (dotted lines) and the
average energy spectrum for 8FSK (solid line) is plotted in Figure 14.6. The
transmission rate of MFSK is Wb = Kb/Tp. The spectral efficiency then is ap-
proximately ηB = Kb/2Kb−1 and decreases with the number of bits transmitted
or equivalently decreases with M. Conversely MFSK provides monotonically
increasing performance with M. Consequently, MFSK has found use in practice
when lots of bandwidth is available and good performance is required.
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Figure 14.6 For 8FSK the Gxi (f ) for i ∈ {0, . . . , 7} and Dxz (f ) for fd Tp = 0.25.
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The advantages of MFSK are summarized as

■ Very simple to generate. Simply gate one of M oscillators on depending on
the word to be sent.

■ Performance (error rate) improves monotonically with Kb. This is counter
intuition as normal intuition would expect performance degrading with in-
creasing Kb.

The disadvantages of MFSK are summarized as

■ The bandwidth increases exponentially with Kb, hence the spectral efficiency
of MFSK decreases with Kb.

■ Complexity increases exponentially with Kb.

An additional important point demonstrated by this example

■ Union bound is simple to compute and is a tight bound at moderate to high
SNR.

14.3.2 M-ary PSK

MPSK modulation sends the word of information by transmitting a carrier
pulse of one of M phases. This is an obvious simple signaling scheme and one
used in many modems. The form of the signal set is given as

xi(t) =

⎧⎪⎪⎨
⎪⎪⎩

√
KbEb

Tp
exp[ j θ (i)] 0 ≤ t ≤ Tp

0 elsewhere

(14.76)

where θ (i) is a mapping from the information words into a phase. The phases
in MPSK are normally uniformly spaced around the unit circle in engineering
practice. The mapping of information word values into phases is not unique.
Two common mappings exist in communications practice: natural mapping,
θN (i), and Gray mapping, θG(i) [Gra53]. Natural mapping assigns the phase
sequentially with the binary numeric representation of the information word.
Unfortunately, if natural mapping is used then words which map to adjacent
phases and hence close Euclidean distances can have many bit differences.
Gray coding is a technique mitigating the effects of word errors on the PB (E)
by mapping of binary words into phases in a way to where adjacent phases are
only different in 1 bit. An example of the two mappings for M = 4 is shown in
Table 14.1. Since natural mapping is straightforward to enumerate functionally,
i.e.,

θN (i) = π(2i + 1)
M

(14.77)
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TABLE 14.1 The two most common M = 4 PSK mappings

�I I (1) I (2) θN (i) θG(i)

0 00 π
4

π
4

1 01 3π
4

3π
4

2 10 5π
4

7π
4

3 11 7π
4

5π
4

the remainder of this section will consider natural mapping exclusively. The
sequel will return to consider Gray mapping in more detail for QPSK.

Since MPSK is an equal energy signal set the energy correction term is not
needed in the demodulator and the ML decision metrics are given as

T i = 

[∫ Tp

0
Yz(t)x∗

i (t)dt
]

=
√

KbEb

Tp


[∫ Tp

0
Yz(t) exp

[
− j

π(2i + 1)
M

]
dt
]

= 

[

exp
[
− j

π(2i + 1)
M

]√
KbEb

Tp

∫ Tp

0
Yz(t)dt

]

= 

[
exp
[
− j

π(2i + 1)
M

]
Q
]

i ∈ {0, . . . , M − 1} (14.78)

where

Q =
√

KbEb

Tp

∫ Tp

0
Yz(t)dt (14.79)

is denoted the pulse shape matched filter output. The MLWD computes the
output of one filter, Q, derotates this value by each of the possible transmitted
phasors and picks the signal that gives the largest real value. This decision
rule is equivalent to picking the transmitted phase that is closest to the phase
of the pulse shape matched filter so that

�̂I = arg max
i∈{0,...,M−1}

T i = arg min
i∈{0,...,M−1}

∣∣∣∣Qp − π(2i + 1)
M

∣∣∣∣ (14.80)

where Qp = arg{Q}.
Surprisingly this optimum demodulator has only one filter output to compute.

This filter output is then processed to produce the decision metric. The word
decision is then made on the basis of which of these metric is the largest. The
decision rule reduces down to the establishing of decision regions in the complex
plane for the pulse matched filter output Q. The decision regions for 4PSK are
shown in Figure 14.7a. The fact that the optimum M-ary demodulator only has
one filter is due to the transmitted signal set having the form

xi(t) = diu(t) (14.81)
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Figure 14.7a The decision regions for natural mapping 4PSK.

where

u(t) =

⎧⎪⎨
⎪⎩
√

KbEb

Tp
0 ≤ t ≤ Tp

0 elsewhere

(14.82)

is the pulse shape. Modulations which have the form of Eq. (14.81) are often
denoted linear modulations by communications engineers. Since linear mod-
ulations greatly reduce the demodulator complexity they will be explored in
detail in the sequel.

The resulting error rate of MPSK is a function of the phase spacing, 2π
M . The

squared Euclidean distance is given as �E (i, j ) = 2KbEb(1−cos( 2π(i− j )
M )). Note

since cosine is a periodic function, MPSK is a geometrically uniform signal set.
The union bound for MPSK is given as

PW (E) ≤ 1
2

erfc

(√
KbEb

N0

)
+

M/2−1∑
i=1

erfc

(√
KbEb

2N0

[
1 − cos

(
2πi
M

)])
(14.83)

The MFSK signal set was not in general a geometrically uniform signal set but
here we see that the MPSK signal set is geometrically uniform when the phases
of the modulation symbols are uniformly distributed around the unit circle.

It is interesting to note that for MPSK the union bound can actually be tight-
ened compared to the general result given in Eq. (14.83). This tightening of the
union bound is due to the property on the next page.
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A B

C

Figure 14.7b An event that does
not need to be considered in the
union bound computation.

Property 14.1 P ( A∪ B ∪ C) = P ( A∪ B ) if C ⊂ A∪ B .

This property implies that if the set C is a subset of the union of the sets A and B
then C can be ignored in computing a union bound. For digital communications
this implies that if any pairwise error event is a subset of the union of two
(or more) pairwise error probabilities then that pairwise error event does not
need to be considered in the union bound computation. This concept is shown
in Figure 14.7b with a Venn diagram.

Since the MPSK signal set is geometrically uniform we can consider x0(t) to be
the transmitted signal without loss of generality. The pairwise error probability
is then given as

{Ti|0 > T0|0} =
{



[
exp
[
− j

π(2i + 1)
M

]
Q
]

> 

[
exp
[
− j

π

M

]
Q
]}

=
{∣∣∣∣Qp − π(2i + 1)

M

∣∣∣∣ < ∣∣∣Qp − π

M

∣∣∣} (14.84)

This reduces to

{Ti|0 > T0|0} =
{

π(i + 1)
M

≤ Qp ≤ π(M + i + 1)
M

}
(14.85)

Given this form of the pairwise error probability it can be seen that

{T1|0 > T0|0} ∪ {TM−1|0 > T0|0} =
{

2π

M
≤ Qp ≤ 2π

}
(14.86)

Consequently, for any i ∈ {2, . . . , M − 2}

{Ti|0 > T0|0} ⊂ {T1|0 > T0|0} ∪ {TM−1|0 > T0|0} (14.87)

This implies that a tighter union bound for MPSK than Eq. (14.83) is given as

PW (E) ≤ erfc

(√
KbEb

2N0

[
1 − cos

(
2π

M

)])
(14.88)
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This tightened union bound only includes the minimum squared Euclidean
distance terms. For MPSK these two pairwise error probability terms include
all the possible ways an error can occur.

MPSK word error probability performance can be computed exactly. If we
assume that xk(t) was transmitted, the conditional matched filter output is
given as

Q = exp
[

j
π(2k + 1)

M

]
KbEb + Nz (14.89)

where Nz is a complex Gaussian noise with a variance of

var(Nz) = N0KbEb (14.90)

Considering the decision regions and the form of the conditional matched filter
output, the probability of word error can be computed. This idea is explored in
the homework problems. The resulting probability of word error is plotted in
Figure 14.8 for M = 2, 4, 8, 16. In contrast to MFSK the probability of error
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Figure 14.8 The true PW (E) and the union bound for MPSK.
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increases with M for MPSK. The error rate degrades about 4 dB for each dou-
bling of M. The union bound is also plotted in Figure 14.8 for M = 2, 4, 8, 16.
The union bound is again asymptotically tight with moderate SNR. This again
demonstrates the utility of a union bound error rate analysis.

The average energy spectrum per bit is again used to characterize the spectral
efficiency of MPSK. Recall the average energy spectral density per bit is given
for M-ary modulations as

Dxz(f ) = 1
Kb

M−1∑
i=0

πiGxi (f ) (14.91)

Recall that the energy spectrum of the individual waveforms is given as

Gxi (f ) = KbEbTp

∣∣∣∣exp
[

j
π(2i + 1)

M

]∣∣∣∣
2(sin(π f Tp)

π f Tp

)2

= KbEbTp

(
sin(π f Tp)

π f Tp

)2

(14.92)

The occupied bandwidth of MPSK, BT = 1/Tp, does not increase with M while
the bit rate does increase with M, Wb = Kb/Tp to provide a spectral efficiency of
ηB = Kb. Unfortunately, the error rate of MPSK modulation increases with in-
creasing M. Consequently, MPSK modulations are of interest in practice when
the available bandwidth is small and the SNR is large.

The advantages of MPSK are summarized as

■ Very simple to generate. Simply change the phase of an oscillator to one M
values depending on the word to be sent.

■ No increase in the bandwidth occupancy with increasing Kb. Consequently,
spectral efficiency increases with Kb.

■ Demodulation complexity does not increase exponentially with Kb.

The disadvantages of MPSK are summarized as

■ Error rate increases monotonically with Kb.

Additional important points demonstrated by this example

■ The most general union bound is simple to compute and is a tight bound at
moderate to high SNR.

■ The demodulator structure of MPSK allows a tighter union bound to be com-
puted by considering the overlap in the decision regions.

14.3.3 Discussion

This section introduced two example modulations to transmit Kb bits of infor-
mation: MFSK and MPSK. MPSK has the advantage in being able to supply
an increasing spectral efficiency with Kb at the cost of requiring more Eb/N0
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Figure 14.9 A comparison of the spectral efficiency of MPSK and MFSK with the upperbound.

to achieve the same error rate. MFSK can provide improved error rate perfor-
mance with Kb but at a cost of a loss of spectral efficiency. Also the decoding
complexity of MPSK is significantly less than the decoding complexity of MFSK.
As a final point it is worth comparing the spectral efficiency performance of
these two modulations with the upperbounds provided by information theory
(see Section 12.3). As before we will denote reliable communication as being
an error rate of 10−5. The operating points of MFSK and MPSK and the up-
perbound on the possible performance are plotted in Figure 14.9. It is clear
from this graph that different modulations give us a different set of points in a
performance versus spectral efficiency trade-off. Also the two examples we con-
sidered in this chapter have a performance much lower than the upperbound
provided by information theory. This is still not too disturbing as we have sig-
nificantly more digital communication theory to explore.

14.4 Homework Problems

Problem 14.1. Find the probability of word error in MLWD for an arbitrary M
for the case of equal energy orthogonal signaling, 
[ρi j ] = 0, ∀i �= j . Hint:
Condition on a value of the correct likelihood metric and find the conditional
probability of word error (a distribution function of a max(•) random variable).
Next average over the density function of correct likelihood metric. Compute nu-
meric values and plot for M = 4, 8, 16 for values of Eb/N0 = 0−10 dB. The first
derivation of this result is available in [Kot60] but it is worth it to try to obtain
the solution yourself before checking the reference. What value of fd achieves
orthogonality for the MFSK example considered in this chapter for a given Tp.
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Problem 14.2. Show that if you design an equicorrelated (
[ρi j ] = ρ ≤ 0, ∀i �= j ),
equal energy M-ary signaling scheme then

ρ ≥ − 1
M − 1

Interpret what this means as M gets large. Hint: Consider a composite signal
that is a sum of all M signals.

Problem 14.3. The PDF of the phase error between the signal phase and the
measured phase, EP = Y P −xP , of the complex envelope of a carrier modulated
signal in bandpass Gaussian noise, Yz = xz + Nz, is given as

fEP (ep)

=
⎧⎨
⎩

exp[−P ]
2π

+
√

P
4π

cos(ep) exp[−P sin2(ep)](1 + erf (
√

P cos(ep))) −π ≤ ep ≤ π

0 elsewhere

(14.93)

where P = x2
A

var(Nz)
.

(a) Plot this PDF for P = 10 dB.

(b) Use this result to compute the word error probability for M-ary PSK.
Compute numeric values and plot for M = 4, 8, 16 for values of Eb/N0 =
0−20 dB.

Problem 14.4. A simple 4-ary modulation is given as

xi(t) = di(1)u(t) + di(2)u(t − T )

where u(t) is a pulse shape with energy Eu having support on [0, T u] and
T u > T , i = 2 × I (2) + I (1), and di(l) = (−1) I (l) . This signal is to be detected
in the presence of an AWGN with one-sided spectral density of N0 and the
words are a priori equally likely, πi = 0.25 i ∈ {0, . . . , 3}.
(a) What is the length of the transmission, Tp?

(b) Demodulation for this modulation is a function of the correlation function
of the pulse shape, u(t), evaluated at T , Vu(T ). Find and detail out the
optimum word error demodulator as a function of Vu(T ).

(c) Find the union bound to the optimum word error demodulator probability
of word decision error.

(d) Define the following matched filter outputs

Q(1) =
∫ Tp

0
yz(t)u∗(t)dt Q(2) =

∫ Tp

0
yz(t + T )u∗(t)dt
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Find a simple form for the optimum demodulators given above as a func-
tion of Q(1) and Q(2). Q(1) and Q(2) are sufficient statistics for optimal
detection.

(e) If Q(1) = 0.5, Q(2) = −0.1, N0 = 0.3, Vu(T ) = 0.1, and Eu = 1 what is the
optimum word?

Problem 14.5. Show via the union bound that M-ary orthogonal FSK signal-
ing can have a PW (E) arbitrarily small by a proper selection of Kb as long as
Eb/N0 > 2 ln(2). Actually this statement is true for Eb/N0 > ln(2) [Sha48]
but the result is harder to prove (but worth an attempt by the interested
student!)

Problem 14.6. 8-ary phase shift keying (8PSK) has a received signal of the form

Yz(t) = xi(t) + Wz(t) = diu(t) + Wz(t) (14.94)

where Wz(t) is a complex AWGN and if �I = i then di = exp( j πi
4 ) i ∈ {0, . . . , 7}.

Assume πi = 1
8 i ∈ {0, . . . , 7}.

(a) Find the minimum probability of word error demodulator.

(b) Find and plot the tightest union bound to the probability of word error for
the demodulator found in (a) for Eb/N0 = 0−13 dB.

(c) Gray coding assigns bit patterns to M-ary signal points in such a way that
adjacent signals (in Euclidean space) only have 1 bit different. Find a Gray
code mapping for this 8PSK signal set.

(d) Show that with the demodulator in (a) and the bit to symbol mapping de-
rived in (c) that the resulting BEP is

PB (E) = 1
3

⎡
⎣erfc

⎛
⎝
√

3Eb

N0
sin
(π

8

)⎞⎠+ erfc

⎛
⎝
√

3Eb

N0
cos
(π

8

)⎞⎠

×
⎡
⎣1

2
+ 1

2
erf

⎛
⎝
√

3Eb

N0
sin
(π

8

)⎞⎠
⎤
⎦
⎤
⎦ (14.95)

Problem 14.7. Consider a 4-ary communication waveform that achieves Wb =
2/Tp having the form shown in Figure 14.10. Assume all words have equal
priors and the corrupting noise is an AWGN with a one-sided spectral density
of N0.

(a) Identify the MLWD structure.

(b) Give the union bound for the performance.

(c) Identify the 3 dB bandwidth of the transmitted waveform and the spectral
efficiency.
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Figure 14.10 A 4-ary modulation.

A proposed approach to increase the throughput of digital communications
waveforms like that shown in Figure 14.10 is variable phase shift keying (VPSK)
[Wal97]. In variable phase shift keying the transition time between different
voltage levels can be modulated to provide more possible waveforms. For exam-
ple, Figure 14.11 shows a waveform with three possible transition times.

(d) Design a VPSK signal set based on Figure 14.10 that has Wb = 3/Tp. Hint:
You need eight waveforms and only two of four waveforms in Figure 14.10
have transitions.

(e) Optimize performance of the signal set proposed in (d) as a function of the
shift parameter, τs and compare it to the original waveform.

(f) Compute the spectral efficiency (using 3 dB bandwidth again) for this case
of optimal performance.

t

Tp τs τs2
+−

Tp

2
Tp

2

Figure 14.11 A waveform from Figure 14.10 where the transition time is
modulated.



Transmitting More Than One Bit 14.31

c1

c2

Y1(t)Σ

Σ

Xz(t)

W1(t)

W2(t)

Y2(t)

Figure 14.12 Observing a signal on multiple antennas.

Problem 14.8. In wireless communications it is often useful to observe a received
waveform on more than one receiver antenna to improve the reliability of the
decision. A situation like this is depicted in Figure 14.12 for Lr = 2 antennas
where the received signal at the jth antenna is given as

Y j (t) = c j Xz(t) + W j (t) (14.96)

where C j is a complex constant that represents j th channel distortion and
W j (t) is a white Gaussian noise with RW j (τ ) = N0δ(τ ). Assume that W1(t) is
independent of W2(t). Assume that c1 and c2 are known at the demodulator and
that π0 = 0.5.

(a) Optimal decisions are based on APPs, i.e., P (I = m|y(t)). Bayes rule tells
us that

P (I = m|y) = f Y (y|I = m)πm

f Y (y)
(14.97)

The results from detection theory tell us that

f Y (y|I = m)
f Y (y)

= C exp[2T m/N0] (14.98)

How would the computation of the APP change if two observations with
independent noises are obtained.

(b) Using the results from (a) for a given x0(t) and x1(t) find the minimum
probability of error receiver obtained by observing Y j (t) = yj (t) j = 1, 2.
Simplify as much as possible. The resulting receiver structure is known as
maximal ratio combining [Bre59] and essentially gives a matched filter in
space and time.

(c) Compute the error rate performance of the optimum receiver as a function
of c1, c2, and �E (0, 1).
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(d) Knowing the values of c1 and c2 what is the signaling scheme that would
minimize the bit error rate for a fixed transmitted energy per bit.

Problem 14.9. In this problem we examine a binary communication system where
three decisions are possible, Î = 1, Î = 0, Î = E where E represents a no
decision (erasure). The two possible baseband transmitted signals are x0(t)
and x1(t) = −x0(t) with π0 = π1 = 0.5. Recall the optimum binary demodulator
is of the form

P (I = 1|vI )
Î =1
>
<

Î =0

P (I = 0|vI ) (14.99)

where vI is the output of the matched filter. The generalization considered in
this problem is

Î = 1 P (I = 1|vI ) > 0.75 (14.100)

Î = E 0.25 < P (I = 1|vI ) ≤ 0.75

Î = 0 P (I = 1|vI ) ≤ 0.25

(a) Assume yz(t) = xz(t) + Wz(t) where Wz(t) is a complex additive white Gaus-
sian with RWz(τ ) = N0δ(τ ), then the demodulator in Eq. (14.100) simplifies
to a threshold test as in the binary case. Identify the decision statistic and
the two decision thresholds.

(b) Give an expression for the bit error probability P ( Î �= I , Î �= E) in terms
of Eb, and N0 for this signal set and demodulator. Plot this performance in
comparison to the traditional binary demodulator.

Problem 14.10. Consider the MFSK example given in the text. Use the union
bound to find the optimum frequency spacing for

(a) M = 4 at Eb/N0 = 8 dB

(b) M = 8 at Eb/N0 = 9 dB

For each case plot the union bound and compare it to the union bound for

[ρi j ] = 0. A computer might be a friend in this problem.

Problem 14.11. The touch-tone dialing in a telephone is a form of M-ary commu-
nication. When a key is pressed on a telephone two tones are generated, i.e.,

xi(t) = Acos(2π f i(1)t) + Acos(2π f i(2)t) (14.101)

This type of modulation is referred to as dual tone multiple frequency (DTMF)
modulation. The DTMF tones can send Kb = 4 bits even though there are
only 12 keys on the phone. The modulation mappings are shown in Table 14.2.
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TABLE 14.2 The dual tone multiple frequency (DTMF)
modulation mappings

f i(2)

f i(1) 1209 Hz 1336 Hz 1477 Hz 1633 Hz

i = 0 i = 1 i = 2 i = 3
697 Hz ABC DEF

1 2 3 A

i = 4 i = 5 i = 6 i = 7
770 Hz GHI JKL MNO

4 5 6 B

i = 8 i = 9 i = 10 i = 11
852 Hz PRS TUV WXY

7 8 9 C

i = 12 i = 13 i = 14 i = 15
941 Hz oper

* 0 # D

To simplify the problem assume Tp = 1 second. Note also that the modulation
is given as a real signal.

(a) Plot the transmitted signal when person tries to call the operator (i = 13)
for A = 1 over the interval [0, 0.1].

(b) Transmission on telephone lines are often thought of as having f c = 1200 Hz.
Give the simplest form of the complex envelope when a person tries to call
the operator (i = 13).

(c) What is Ei i ∈ {0, . . . , 15}.
(d) Detail out the MLWD. Can you get away with only 8 filters instead of 16?

If so show the structure.

(e) Compute and plot the union bound to the probability of word error for
Eb/N0 = 0−10 dB. Note, with a 16-ary modulation a computer will be your
friend in this problem.

Problem 14.12. Consider a 4-ary communication waveform set that achieves Wb =
2/Tp having the form shown in Figure 14.13. Assume all words are equally
likely and that the corrupting noise is an AWGN with a one-side spectral density
of N0.

(a) Compute the value of A and B such that Ei = 2Eb, i = 0, 3.

(b) Identify the MLWD structure.

(c) Show that only two filters are needed to implement this structure.

(d) Compute the union bound to the probability of word error.
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Figure 14.13 The waveforms for a 4-ary communication system.

Problem 14.13. Three bits of information are transmitted with an 8-ary modula-
tion that has been called pulse position modulation (PPM) and is characterized
with

x0(t) = u(t) x1(t) = u(t − Tp/8)

x2(t) = u(t − Tp/4) x3(t) = u(t − 3Tp/8) (14.102)

x4(t) = u(t − Tp/2) x5(t) = u(t − 5Tp/8)

x6(t) = u(t − 3Tp/4) x7(t) = u(t − 7Tp/8)

where

u(t) =

⎧⎪⎪⎨
⎪⎪⎩

√
24Eb

Tp
0 ≤ t ≤ Tp/8

0 elsewhere

(14.103)

Recall for comparison that 8-ary orthogonal frequency shift keying (8FSK) has
a minimum fd = 1

4Tp
and a transmitted signal given as

xi(t) =

⎧⎪⎪⎨
⎪⎪⎩

√
3Eb

Tp
exp
[

j πt(i − 3.5)
Tp

]
0 ≤ t ≤ Tp

0 elsewhere

(14.104)
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Figure 14.14 Two more waveforms for a 4-ary modulation.

(a) Detail out the maximum likelihood word demodulator for 8PPM. Are there
any simplifications that are possible due to using PPM?

(b) Find the union bound to the word error performance for 8PPM. How will
this performance compare to 8FSK?

(c) Find the average energy spectrum per bit for 8PPM. How does this spectrum
compare to 8FSK?

(d) As a communication engineer assess the advantages and disadvantages of
8PPM versus 8FSK.

Problem 14.14. In the wireless local network protocol denoted IEEE 802.11b the
lowest rate modulation is a binary modulation using the two waveforms given
in Figure 13.30. A modified system chooses to send Kb = 2 equally likely bits
by adding two more waveforms as shown in Figure 14.14

(a) Select A such that the energy per bit is Eb.

(b) Show how to compute T 2.

(c) Compute the union bound for this 4-ary modulation.

Problem 14.15. Recall that


[Wz(t)x∗
i (t)] = WI (t)xi, I (t) + WQ(t)xi,Q(t) (14.105)
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Figure 14.15 Waveforms for a 4-ary modulation.

and use it to show that the correlation coefficient between the noise in different
maximum likelihood metrics is

ρ = E
[
N (i)

I N (k)
I

]
N0
2

√
Ei Ek

= 
[ρik] (14.106)

Problem 14.16. The four waveforms in Figure 14.15 are to be used to send Kb =
2 bits. Assume the received signal is distorted by an AWGN with a one–sided
spectral density of N0 and that all the signals are a priori equally likely.

(a) Select A such that the energy per bit is Eb.

(b) What is the average energy spectrum per bit?

(c) Detail out the MLWD. It is possible to have the MLWD be implemented with
one filter that is sampled at four different time instances. Give the form for
this filter.

(d) Compute the union bound for this 4-ary modulation.

(e) Would this modulation perform better or worse than 4-ary orthogonal FSK
in terms of word error probability?

(f) Would this modulation have better or worse spectral efficiency than 4-ary
orthogonal FSK?

Problem 14.17. Consider a military communication system where bandwidth ef-
ficiency is not a primary driver. A decision was made to limit the choice of mod-
ulations to MFSK. Large packets of data would be sent by streaming MFSK
symbols in time. A team of engineers decided on M = 16 for a system design.
Formulate a valid set of reasons why this team selected M = 16 when trading
off the available performance versus complexity. Would the “optimality” of the
selection be a function of time?
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14.5 Example Solutions

Problem 14.12.

(a) Given Ei = 2Eb, where i = 0, 1, 2, 3 and we note that,

Ei =
∫ ∞

−∞
|xi|2dt

=
∫ Tp

0
|xi|2dt (14.107)

Thus, E0 = E1 = A2Tp = 2Eb and E2 = E3 = B2 Tp

2 = 2Eb. Then,

A =
√

2Eb

Tp
(14.108)

B =
√

4Eb

Tp
(14.109)

(b) The MLWD is given in Figure 14.2.

(c) Notice that E0 = E1 = E2 = E3 and that,

x0(t) = −x1(t) (14.110)

x2(t) = −x3(t) (14.111)

Therefore, only two matched filters are needed and MLWD structure could
be simplified as shown in Figure 14.16.

(d) Recall that union bound to the probability of word error is,

PW (E) ≤ PWUB(E)

=
N∑

k=1

Ad (k)
2M

erfc

⎛
⎝
√

�E (k)
4N0

⎞
⎠ (14.112)

where N is the number of all different square Euclidean distances, Ad (k)
is the number of signal pairs having a square Euclidean distance of �E (k)
and M is 2Kb which Kb = 2 in this case.
We can enumerate all the Euclidean distances for this 4-ary communication
system by calculating �E (i, j ), i.e.,

�E (i, j ) =
∫ ∞

−∞
|xj (t) − xi(t)|2dt (14.113)

and results are shown in Table 14.3.
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Figure 14.16 The MLWD using only two filters.

Thus, we have N = 2 with �E (1) = 8Eb and �E (2) = 4Eb, also Ad (1) = 4
and Ad (2) = 8. Consequently, the union bound is expressed as,

PW (E) ≤ PWUB(E)

= 1
2

erfc

⎛
⎝
√

2Eb

N0

⎞
⎠+ erfc

(√
Eb

N0

)
(14.114)

TABLE 14.3 ∆E( i, j)

�I = i

�I = j 0 1 2 3

0 0 8Eb 4Eb 4Eb

1 8Eb 0 4Eb 4Eb

2 4Eb 4Eb 0 8Eb

3 4Eb 4Eb 8Eb 0
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Problem 14.16.

(a) 2Eb = A2Tp

2 so that A = 2
√

Eb
Tp

.

(b) Defining

u4(t) =
{

1 0 ≤ t ≤ Tp/4

0 elsewhere
(14.115)

then it is apparent that

xi(t) = u4(t − τ1,i) + u4(t − τ2,i) (14.116)

Consequently, the Fourier transform is given as

Xi(f ) = ATp

4
sinc
(

f tp
4

)
exp[− j 2π f τ1,i]

+ ATp

4
sinc
(

f tp
4

)
exp[− j 2π f τ2,i] (14.117)

= ATp

4
sinc
(

f tp
4

)
(exp[− j 2π f τ1,i] + exp[− j 2π f τ2,i]) (14.118)

The energy spectrum of the individual waveforms is then given as

Gxi (f ) = A2T 2
p

16

(
sinc
(

f tp
4

))2

[2 + 2 cos(2π f (τ1,i − τ2,i))] (14.119)

The average energy spectrum is then given as

Dxz(f ) = A2T 2
p

32

(
sinc
(

f tp
4

))2

×
[
4 + 2 cos(π f Tp) + cos

(
π f Tp

2

)
+ cos

(
3π f Tp

2

)]
(14.120)

(c) The ML decision metric is

T i = 

[∫ Tp

0
Yz(t)xi(t)dt

]
i = 0, · · · , 3 (14.121)

and the decoded bit is

�̂I = arg max
i=0,···,3

T i (14.122)

It should be noted that this modulation is an equal energy modulation
scheme and no energy correction scheme is required. The one filter has
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an impulse response of u4(t) so that

Q(t) =
∫

Yz(λ)u4(t − λ)dλ (14.123)

The sufficient statistics for demodulation are the four samples from the
filter given as

Q1 = Q(Tp/4) =
∫ Tp/4

0
Yz(t)dt Q2 = Q(Tp/2) =

∫ Tp/2

Tp/4
Yz(t)dt (14.124)

Q3 = Q(3Tp/4) =
∫ 3Tp/4

Tp/2
Yz(t)dt Q4 = Q(Tp) =

∫ Tp

3Tp/4
Yz(t)dt (14.125)

The ML metrics are given as

T 0 = 
[Q1 + Q3] T 1 = 
[Q1 + Q4] T 2 = 
[Q2 + Q3] T 3 = 
[Q2 + Q4]

(14.126)

(d) A quick examination of the waveforms shows the signal set is geometrically
uniform so that

PWUB(E) = erfc

(√
Eb

2N0

)
+ 1

2
erfc

(√
Eb

N0

)
(14.127)

(e) Recall the union bound for orthogonal 4FSK is

PWUB(E) = 3
2

erfc

(√
Eb

N0

)
(14.128)

minimum squared Euclidean distance between signals for 4FSK is 3 dB
larger than the minimum squared Euclidean distance for the signal set
considered in this problem.

(f) The spectral efficiency of 4FSK is approximately ηB = 1 while it is apparent
from Eq. (14.120) the spectral efficiency of the considered modulation is
approximately ηB = 0.5. Given the results in (e) and (f) there appears to be
no relative advantage to this modulation compared to 4FSK.

14.6 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).
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Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). Each team
member should be prepared to give the presentation.

14.6.1 Project 1

Project Goals: Engage in an implementation of an optimum demodulator of
a 4-ary signal set.

Consider baseband binary signal set (with sample frequency f s = 22,050 Hz)
and the received bandpass signal ( f c = 3500 Hz) given in mbproj1data.mat.

(a) Plot the four baseband signals. Find Eb. Can you identify the modulation
that is being used to send Kb = 2 bits?

(b) Sketch a block diagram of the optimum demodulator for this signal set for
πi = 0.25, i = 0, 1, 2, 3.

(c) Make the optimum word decision and compute all the sufficient statistics
of the demodulation for πi = 0.25, i = 0, 1, 2, 3.

(d) Make the optimum word decision and compute all the sufficient statistics
of the demodulation for

π0 = 0.25 π1 = 0.35 π2 = 0.05 π = 0.35. (14.129)

and N0 = 1/4410.
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Chapter

15
Managing the Complexity of

Optimum Demodulation

The results of the previous chapter have shown that the idea of transmitting
and demodulating many bits of information is a direct extension of the ideas for
transmitting and demodulating 1 bit of information. The biggest impediment
to using these concepts in practical communication systems is the fact that the
optimal demodulator complexity grows exponentially with the number of bits
transmitted (O(2Kb)). The goal for a practical system has to be a demodulator
with complexity that grows linearly with the number of bits (O(Kb)).

Fortunately, the example of M-ary phase shift keyed (MPSK) modulation
considered in Chapter 14 gave one insight into how complexity of optimal
demodulation can be made practical. MPSK has a form xi(t) = diu(t) where a
modulation symbol, di, is linearly modulated on a pulse shape, u(t). When a
modulation takes this form only one matched filter needs to be computed for
the optimum demodulator. The complexity of the demodulator is then greatly
reduced.

Additionally if bits can be modulated in such a way that each bit can be de-
coded independently from the other bits then this would allow the demodulators
introduced in the last two chapters to be used in parallel for each bit. If this
decoupling of each bit decision can be achieved it would allow the complexity of
the optimal demodulator to have a complexity that is linear in the number of
bits transmitted. This chapter will show that if each bit is modulated onto an
orthogonal waveform then this decoupling of the bit decisions is possible.

The goal of this chapter is to show that both linear modulations and orthogo-
nal modulations are well-used techniques in digital communications to manage
the complexity of packet data transmission.

15.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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15.1 Linear Modulations

Linear modulation has the form

xi(t) = di

√
Ebu(t) i ∈ {0, . . . , M − 1} (15.1)

The function of time u(t) is known as the pulse shape. In this text it will be as-
sumed that u(t) has unit energy, Eu = 1. The modulation symbol, di, is, in gen-
eral, complex valued function of the transmitted information word, Dz = a( �I ),
and di = a(i) ∈ �d . The function a(i) is known as the constellation mapping. A
commonly used graphic for interpreting linear modulations is the constellation
plot. A constellation plot for 4PSK modulation, �d = {√2e

j π
4 ,

√
2e

j 3π

4 ,
√

2e
− j π

4 ,√
2e

− j 3π

4 }, is shown in Figure 15.1. For a consistent energy normalization the
constellation will always be chosen such that

M−1∑
i=0

|di|2πi = Kb (15.2)

EXAMPLE 15.1
For Kb = 3 an example linear modulation is given with �d = {A(1 + j ), j A, A(−1 +
j ), −A, 0, A, − j A, A(−1 − j )}. To achieve the desired normalization

A =
√

12
5

(15.3)

The constellation plot is given in Figure 15.2.

••

• •

d0
d1

d2 d3

DI

DQ

Figure 15.1 The constellation plot of 4PSK modulation.
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d0d1d2

d3 d4 d5

d6d7

Figure 15.2 The constellation
plot for an example 8-ary
modulation.

15.1.1 MLWD for Linear Modulation

The MLWD for a linear modulation has a greatly simplified form. Recall the
optimum demodulator has the form

�̂I = arg max
i∈{0,...,M−1}


[Vi(Tp)] − Ei

2
(15.4)

where the ith matched filter output has the form

Vi(Tp) =
∫ Tp

0
Yz(t)x∗

i (t)dt

= d ∗
i

√
Eb

∫ Tp

0
Yz(t)u∗(t)dt

= d ∗
i

√
EbQ (15.5)

where Q is denoted the pulse shape matched filter output and is given as

Q =
∫ Tp

0
Yz(t)u∗(t)dt (15.6)

Note the matched filter can be viewed as a fixed filter with an impulse response
u∗(Tp − t) that is sampled at time Tp. A block diagram of the demodulator for
linear modulations is shown in Figure 15.3. Several observations can be made
about this structure.

■ The number of filtering operations in the demodulation has been reduced
from M = 2Kb to one when compared to the demodulator for a general M-ary
modulation.
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Tp

Decision
Device

Q
ˆ
IYz(t) u∗ (Tp − t)

Figure 15.3 The block diagram of a demodulator for linear modulation.

■ The decision device can still potentially have a complexity that is O(2Kb).
■ The energy of the ith transmitted signal is Ei = |di|2 Eb.

The optimum demodulator for linear modulation has an intuitively pleasing
geometric interpretation. The optimum demodulator can be expressed as

�̂I = arg max
i∈{0,...,M−1}

√
Eb
[d ∗

i Q] − |di|2 Eb

2
(15.7)

Multiplying by 2 and adding a constant with respect to the possible transmitted
symbols, −|Q|2, gives

�̂I = arg max
i∈{0,...,M−1}

−|Q|2 + 2
[d ∗
i Q
√

Eb] − |di|2 Eb

= arg max
i∈{0,...,M−1}

−∣∣Q − di

√
Eb
∣∣2

= arg min
i∈{0,...,M−1}

∣∣Q − di

√
Eb
∣∣2 (15.8)

Consequently, the optimum demodulator computes Q and finds the possible
transmitted constellation point di

√
Eb which has the minimum squared Eu-

clidean distance to Q. This is known by communications engineers as a mini-
mum distance decoder. This minimum distance decoder induces decision regions
in the complex plane. These decision regions represent the matched filter out-
put values that correspond to a most likely transmitted symbol. The decision
regions for 4PSK MLWD are shown in Figure 15.4. In the sequel the decision
regions will be denoted Ai where if Q ∈ Ai then Î = i represents the MLWD
output. It should be noted that the decision regions are bounded by the lines
that are defined as the equal distance points from each pair of constellation
points. For instance, with QPSK there are four such lines and each decision
region is bounded by two of these lines.

EXAMPLE 15.2
Considering Example 15.1 the decision regions are defined as in Figure 15.5. The decision
regions here tend to have rectangular forms as the constellation is defined on a grid.
The one notable exception is in the bottom right corner where there is a point missing
from the grid.
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A3
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Figure 15.4 The minimum dis-
tance decision regions for 4PSK.

Recall the matched filter output when the ith word was transmitted has the
form

Q =
∫ Tp

0
yz(t)u∗(t)dt =

∫ Tp

0
xi(t)u∗(t)dt +

∫ Tp

0
Wz(t)u∗(t)dt

= di

√
Eb + Nz(Tp) (15.9)

With this view the signal portion of the matched filter output corresponds to
the transmitted symbol scaled by the bit energy,

√
Eb, and the noise causes a

random translation of the signal in the complex plane. The idea of a minimum

DQ

DI

A0A1A2

A3 A4 A5

A6A7

Figure 15.5 The decision regions for the linear modulation
given in Example 15.1.
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QI

QQ

Q Nz(Tp)

Ebd0

Figure 15.6 An example geometric interpretation of the signal
and noise in linear modulation. Dz = d0 =

√
2e j π/4 = 1 + j .

distance decoder is simply trying to find which signal set would correspond to
the smallest noise magnitude. For example, if d0 from the 4PSK constellation
in Figure 15.1 is the transmitted symbol then the matched filter output would
have a representation as given in Figure 15.6.

15.1.2 Error Rate Evaluation for Linear Modulation

The symbol error probability calculation also has a nice geometric interpreta-
tion. Comparing the signal form in Figure 15.6 to decision regions in Figure 15.4
an error will occur when the noise, Nz(Tp), pushes the matched filter output
into a decision region that does not correspond to the transmitted symbol. Since
Nz(Tp) is a complex Gaussian random variable with

var(Nz(Tp)) = Eu N0 = N0 var(N I (Tp)) = N0

2
= var(N Q(Tp)) (15.10)

the PDF of the noise is easily computed using Eq. (10.26). An example noise
PDF is plotted in Figure 15.7(a). The probability of word error conditioned on
the ith symbol being sent is

PW (E| �I = i) = P (Q �∈ Ai| �I = i) = P (di

√
Eb + Nz(Tp) �∈ Ai) (15.11)

Consequently, this probability is simply an integral of the noise PDF, i.e.,

PW (E|i) =
∫

Ri

f Nz(nz)d nz =
∫

1Ri (nz) f Nz(nz)d nz (15.12)
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Figure 15.7 A noise PDF corresponding to var(Nz(Tp)) = 1 and the masking needed to compute the word error
rate for QPSK modulation.

where the indicator function is used to mask the PDF only in the regions where
noise will cause an error. Figure 15.7(b) shows the masked PDF for a 4PSK
decision regions given in Figure 15.4 for d0 = √

2 exp( j π
4 ).

EXAMPLE 15.3
For the linear modulation presented in Example 15.1 several of the integration regions
for conditional word error rates can be computed in close form. For example, the condi-
tional word error rate for �I = 4 is given as

PW (E| �I = 4) = 1 −
∫ b

−b

∫ b

−b
f Nz(nz)d nz (15.13)

where b = A
√

Eb
2 . Likewise, the conditional error rate for �I = 1 is

PW (E| �I = 1) = 1 −
∫ b

−b

∫ ∞

−b
f Nz(nz)d nz (15.14)

The conditional decision region for �I = 5 is a bit more complex but it is still easily
specified and the integration can be completed.

The PW (E) for a given Kb can be a significant function of how the con-
stellation points are placed in the complex plane. For example, consider two
common linear modulations, pulse amplitude modulation (PAM) and phase
shift keyed (PSK) modulation that have been implemented often in engineer-
ing practice. PSK uses only the phase to transmit information while PAM
uses only the amplitude to transmit information. Examples of the constella-
tion plots for these two modulations are shown in Figure 15.8(a) for Kb = 2.
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(a) Constellation plots (b) Word error rate curves
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Figure 15.8 Constellation diagrams and word error rate curves comparing 4PAM and 4PSK.

Note 4-ary pulse amplitude modulation (4PAM) is characterized with �d =
{±√

2/
√

5, ±3
√

2/
√

5}. It is clear from the constellation plot that the points of
QPSK are farther apart than the points for 4PAM and hence QPSK will be able
to send 2 bits of information with more fidelity than 4PAM. The PW (E) for each
of these linear modulations are given for Kb = 1, 2 as (see problems)

PW (E) = 1
2

erfc

(√
Eb

N0

)
BPSK/BPAM (15.15)

PW (E) = erfc

(√
Eb

N0

)
−
(

1
2

erfc

(√
Eb

N0

))2

4PSK (15.16)

PW (E) = 3
4

erfc

⎛
⎝
√

2Eb

5N0

⎞
⎠ 4PAM (15.17)

These curves are plotted in Figure 15.8(b). It is clear from Figure 15.8(b) that
the manner in which constellation points are chosen in sending Kb bits with a
linear modulation can have a significant impact on the error rate.

The union bound for the word error probability of a linear modulation is
straightforward to compute. The union bound can be formed by noting that the
pairwise Euclidean squared distance is given as

�E (i, j ) = Eb|di − d j |2 (15.18)

Consequently, the union bound can be formed by looking only at the constella-
tions. The union bound is not a function of the pulse shape used in the linear
modulation.
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EXAMPLE 15.4
Considering Example 15.1 the complete union bound would have to consider seven
different distances for each postulated transmitted signal. Just like MPSK in Chapter 14
this union bound can be tightened. For example, for �I = 0 the conditional union
bound is

PWUB(E| �I = 0) = 1
2

erfc

(√
�E (1, 0)

4N0

)
+ 1

2
erfc

(√
�E (5, 0)

4N0

)
(15.19)

for �I = 1 the conditional union bound is

PWUB(E| �I = 1) = 1
2

erfc

(√
�E (0, 1)

4N0

)
+ 1

2
erfc

(√
�E (2, 1)

4N0

)
+ 1

2
erfc

(√
�E (4, 1)

4N0

)

(15.20)
for �I = 4 the conditional union bound is

PWUB(E| �I = 4) = 1
2

erfc

(√
�E (1, 4)

4N0

)
+ 1

2
erfc

(√
�E (3, 4)

4N0

)
+ 1

2
erfc

(√
�E (5, 4)

4N0

)

+1
2

erfc

(√
�E (6, 4)

4N0

)
(15.21)

and for �I = 5 the conditional union bound is

PWUB(E| �I = 5) = 1
2

erfc

(√
�E (0, 5)

4N0

)
+ 1

2
erfc

(√
�E (4, 5)

4N0

)
+ 1

2
erfc

(√
�E (6, 5)

4N0

)

(15.22)
Combining all the conditional union bounds and noting that adjacent points have a

Euclidean distance of �E (1, 0) =
√

12Eb
5 and points separated on a diagonal have a

distance of �E (6, 5) =
√

24Eb
5 the union bound is given as

PWUB(E) = 5
4

erfc

(√
3Eb

5N0

)
+ 1

8
erfc

(√
6Eb

5N0

)
(15.23)

So an additional benefit of linear modulation beside the simple MLWD is that
the PW (E) can always be easily computed. The actual word error probability
calculation might require a little computer work (two dimensional numerical
integration) but this effort is not unreasonable for a modern communication
engineer. The full union bound is easily computed. Tighter union bounds are
easily identified by looking at the decision regions. While often a general M-ary
modulation must resort to a full union bound computation to characterize the
PW (E) this is not necessary for linear modulation.
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15.1.3 Spectral Characteristics of Linear Modulation

For linear modulations the average energy spectrum per bit is straightforward
to compute. Using the definition of the energy spectrum per bit gives

Dxz(f ) = E[Gxz(f )]
Kb

= Gu(f )
EbE[|Dz|2]

Kb
= Gu(f )

Eb
∑M−1

i=0 |di|2πi

Kb
= EbGu(f )

(15.24)

The important point to note about Eq. (15.24) is that the average energy spec-
trum per bit is entirely (up to a constant multiple) a function of the pulse shape
spectrum, Gu(f ). Transmitting more bits (increasing Kb) has no effect on the
occupied spectrum. Consequently, with a bandwidth efficient choice of the pulse
shape, u(t), linear modulation is a very effective modulation for bandlimited
channels. A design of a pulse shape that will meet a specified spectral mask is
explored in the projects at the end of Chapter 13.

15.1.4 Example: Square Quadrature
Amplitude Modulation

This section will be concluded with a discussion of square quadrature amplitude
modulation (QAM) which is a commonly used linear modulation in engineering
practice. A square QAM constellation consists of a square of M1 points by M1
points with the M1 points in each dimension placed on a equally spaced grid.
Normally the square is chosen such that M1 = 2Kb/2 so that an integer number
of bits is used to specify the constellation in each dimension. This constellation
is considered in detail in the homework problems and the important results to
highlight here are that the spectral efficiency increases logarithmically with
M1 and that the word error probability of this modulation is upperbounded as

PW (E) ≤ 1 −
⎛
⎝erf

⎛
⎝
√

6 log2(M1)
M2

1 − 1
Eb

N0

⎞
⎠
⎞
⎠

2

(15.25)

A plot of this bound to the word error probability is given in Figure 15.9 for
various M1. Much like was seen earlier in MPSK the word error performance
significantly degrades for a fixed SNR as the spectral efficiency is increased. To
keep the same level of performance the signal to noise ratio must be increased
by 4 dB as the spectral efficiency increases by 2 bits/s/Hz.

15.1.5 Summary of Linear Modulation

Important points about linear modulation are

■ Demodulation complexity of linear modulation does not increase exponen-
tially with the number of bits transmitted since only one matched filter output
needs to be computed and simple decision regions can be identified. Linear
modulation is often used because it has a low demodulation complexity.
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Figure 15.9 The word error probability bound for square QAM.

■ The energy spectrum per bit of a linear modulation is entirely a function of
the pulse shape that is used. Bandwidth efficient pulse shapes are often used
in conjunction with M-ary linear modulation when bandwidth efficiency is of
paramount importance. This will be examined in more detail in Chapter 16.

■ Fidelity in message reconstruction gets significantly worse as M gets larger.
This can be seen by examining the error rate of linear modulations in both
Figure 15.8(b), Figure 15.9, and Figure 14.8. Consequently, linear modula-
tion provides a classic trade-off in bandwidth efficiency (bandwidth efficiency
is proportional to Kb) versus fidelity (fidelity significantly degrades with
increasing Kb).

■ The selection of the constellation points in an M-ary linear modulation can
significantly affect the resulting error rate. This can be seen by examin-
ing the performance of 4PAM and 4PSK (both Kb = 2) in Figure 15.8(b).
4PAM has a 3-dB worse performance than 4PSK since the 4PAM constel-
lation points have not been placed as effectively in the complex plane as
the 4PSK constellation points. A more general demonstration of this point is
shown in Figure 15.10 where the performance of the square QAM is compared
to Shannon’s bound and the other modulations introduced up until this point.
Clearly a QAM modulation by placing constellation points more judiciously
in the complex plane can provide better performance at a common spectral ef-
ficiency than an MPSK modulation. The interesting characteristic of QAM is
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Figure 15.10 A comparison of the spectral efficiencies of the modulations introduced.

that it performance seems to parallel Shannon’s upperbound as spectral effi-
ciency increases while MPSK’s performance fall away from Shannon’s bound
as spectral efficiency increases. An interesting paper that investigates opti-
mal and suboptimal constellations is [FGL+84].

It is interesting to note that computer modems introduced in Chapter 12
have migrated to linear modulation over time. The increase in transmission
data rate is achieved by an increase in Baud rate1 and an increase in the size
of the constellation of the linear modulation used in the modem. Examples in
this evolution are documented in Table 15.1. It should be noted that in early
modems the data rate had the following characteristic

Wb = log2(M) × Baud rate (15.26)

TABLE 15.1 Evolution of Baud rates and constellation
sizes in voiceband computer modems

Modem Standard Data Rate Baud Rate M

V.22 1,200 bps 600 Hz 4
V.22bis 2,400 bps 600 Hz 16
V.32 9,600 bps 2,400 Hz 32
V.32bis 14,400 bps 2,400 Hz 128
V.34 28,800 bps 3,200 Hz 896

1Baud rate will be discussed later in this chapter when we introduce the idea of stream
modulations.
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As modem standards became more sophisticated (V.32 and subsequent gen-
erations) redundancy was added to the signaling to improve performance. An
overview of how this redundancy helps improve the fidelity of message recon-
struction is the focus of Chapter 17.

15.2 Orthogonal Modulations

The goal at this point is to identify a constraint that can be put on signal
designs such that optimum demodulation can be formulated with a complexity
of O(Kb). This linear complexity can be achieved if each bit can be demodulated
in an independent fashion. There is a simple constraint on the ML metric that
will enable optimal bit-by-bit decisions. This section will focus on the case of
equal priors (πi = 1/M) but extension to the case of unequal priors is also
possible. When there are Kb bits sent then if the ML metric can be expressed
in an additive form as

T i =
Kb∑

k=1

T (k)
mk

(15.27)

where { �I } = {I (1) = m1, · · · , I (Kb) = mKb} then each bit can be demodulated
in an independent fashion. In other words, if each T i can be broken up into
a sum of terms which are individually only a function of a single bit position,
k, and bit value for that position, I (k) = mk then independent bit demodu-
lation can be implemented. This sum form means that finding the maximum
likelihood is found by a series of binary maximizations on each term of the
summation, i.e.,

�̂I = [ Î (1) . . . Î (Kb)] = arg max
i∈{0,...,M−1}

T i =
[

arg max
m1

T (1)
(m1) . . . arg max

mKb

T (Kb)
(mKb )

]
(15.28)

This bit-by-bit maximization has a complexity that is O(Kb) as opposed to
O(2Kb) that is the general case.

Many of the modulation schemes that are used in practice for their reduced
complexity optimal demodulation are due to the following property.

Property 15.1 (Orthogonal Modulations) If Kb bits are transmitted by summing up
Kb waveforms each used to transmit a single bit, i.e.,

xi(t) =
Kb∑
l=1

x(ml, l, t) (15.29)

where again �I = i = [m1 m2 . . . mKb] and x(ml, l, t) is the waveform used to transmit
I (l) = ml then the ML metric can be put in the additive form required for simplified bit
detection if the waveforms used to transmit each of the bits are orthogonal, i.e.,



[∫ ∞

−∞
x(ml, l, t)x∗(mk , k, t) dt

]
= 0 ∀k �= l, ml = 0, 1, mk = 0, 1 (15.30)
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Proof: The ML metric consists of two components: the matched filter output
and the energy correction term. The matched filter term for the transmitted
signal that has the form in Eq. (15.29) is given as



[∫ ∞

−∞
yz(t)x∗

i (t)dt
]

= 

[∫ ∞

−∞
yz(t)

(
Kb∑
l=1

x(ml, l, t)

)∗

dt

]

=
Kb∑
l=1



[∫ ∞

−∞
yz(t)x∗(ml, l, t)dt

]
(15.31)

Consequently, just due to the form in Eq. (15.29) the matched filter output has
the additive form required for simplified detection. The remaining term is the
energy correction term given for Eq. (15.29) as

Ei

2
= 1

2

∫ ∞

−∞
|xi(t)|2dt = 1

2

∫ ∞

−∞

Kb∑
l=1

x(ml, l, t)

(
Kb∑

k=1

x(mk , k, t)

)∗

dt

= 1
2

Kb∑
l=1

∫ ∞

−∞
|x(ml, l, t)|2dt + 1

2

Kb∑
l=1

Kb∑
k=1
k �=l

∫ ∞

−∞
x(ml, l, t)(x(mk , k, t))∗ dt

(15.32)

= 1
2

Kb∑
l=1

Ex(ml,l) +
Kb∑
l=2

l−1∑
k=1



[∫ ∞

−∞
x(ml, l, t)(x(mk , k, t))∗ dt

]
(15.33)

where Ex(ml, l) is the energy of x(ml, l, t), i.e.,

Ex(ml, l) =
∫ Tp

0
|x(ml, l, t)|2 dt (15.34)

Clearly the second term in Eq. (15.33) will go to zero if the orthogonality condi-
tion holds and then the energy correction term will also have an additive form.
Using these results it is apparent that

T (k)
mk

= 

[∫ ∞

−∞
yz(t)x∗(mk , k, t) dt

]
− Ex(mk , k)

2
� (15.35)

An interesting characteristic of orthogonal modulations is that the deci-
sion metric has exactly the same form as the single bit detector presented in
Chapter 13. Using the above notation for orthogonal modulation we see that
the optimal decision rule for each bit is now given as

exp

[
2T (k)

1

N0

]
π1

Î (k)=1
>
<

Î (k)=0

exp

[
2T (k)

0

N0

]
π0 (15.36)
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The MLBD has the form

T (k)
1

Î (k)=1
>
<

Î (k)=0

T (k)
0


[V1(k)] − 1
2

Ex(1,k)

Î (k)=1
>
<

Î (k)=0


[V0(k)] − 1
2

Ex(0,k) (15.37)

where

Vmk (k) =
∫ ∞

−∞
Yz(t)x∗(mk , k, t) dt (15.38)

is the matched filter to the waveform used to transmit I (k) = mk . This struc-
tural characteristic of orthogonal modulations implies that Kb bits can opti-
mally be demodulated by Kb binary demodulators operated in parallel. These
binary demodulators have the same form as discussed in Chapter 13 and is the
reason why so much effort was spent characterizing the single bit demodulator.
Well over 95% of the communications systems in the world utilize orthogo-
nality in some form so Chapters 13 and 14 are fundamental material in the
understanding of digital communication. With orthogonal modulation optimal
demodulation now has a complexity of O(Kb) as desired in practical communi-
cation systems.

While orthogonality seems to offer a solution to the complexity issue, the
orthogonality exacts a price in the fidelity of demodulation. Since the orthog-
onality reduces the demodulation to exactly that of a single bit developed
in Chapter 13 we can deduce the performance is exactly that of the single
bit demodulator. Consequently, the bit error probability performance is lower
bounded by

PB (E, k) = 1
2

erfc

⎛
⎝
√

�E (1, 0, k)
4N0

⎞
⎠ ≥ 1

2
erfc

(√
Eb

N0

)
(15.39)

where �E (1, 0, k) is the Euclidean square distance between the two waveforms
used to send the kth bit, i.e.,

�E (1, 0, k) =
∫ ∞

−∞
|x(1, k, t) − x(0, k, t)|2 dt (15.40)

The orthogonality implies each decision is independent. This independence im-
plies that the word error probability for an orthogonal modulation when each bit
is sent with waveforms that have the same Euclidean square distance becomes
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(see Problem 15.12)

PW (E) = 1 −
Kb∏

k=1

(1 − PB (E, k))

= 1 − (1 − PB (E))Kb ≥ 1 −
(

1 − 1
2

erfc

(√
Eb

N0

))Kb

(15.41)

The unfortunate consequence of orthogonality is that the performance of single
bit demodulation is far from Shannon’s bound as detailed in Chapter 13.

Orthogonal modulations offer an interesting trade-off for digital communica-
tion system designers. Orthogonality allows the complexity of optimal demodu-
lation to be O(Kb) as would be desired when Kb is large. For this reason almost
all communication systems in practice use orthogonality in some form. Ortho-
gonality with independent bit modulation waveforms limits the achievable
performance to be far from Shannon’s bound and is not desirable in modern
communication systems. In practice orthogonality is still used because there
are techniques that can be used in conjunction with orthogonal modulations to
move performance close to Shannon’s bound. These techniques will be briefly
overviewed in Chapter 17

15.3 Orthogonal Modulation Examples

15.3.1 Orthogonal Frequency Division Multiplexing

A commonly used modulation that admits a simple optimal bit demodulation is
orthogonal frequency division multiplexing (OFDM) [Cha66]. OFDM has found
utility in telephone, cable, and wireless modems. With OFDM each of the Kb
bits is independently modulated on a separate subcarrier frequency and the
subcarrier frequencies are chosen to ensure the orthogonality. The format for
an OFDM signal is

Xz(t) =

⎧⎪⎪⎨
⎪⎪⎩

Kb∑
l=1

Dz(l)

√
Eb

Tp
exp[ j 2π fd (2l − Kb − 1)t] 0 ≤ t ≤ Tp

0 elsewhere

(15.42)

where Dz(l) = a(I (l)) and 2 fd is the separation between adjacent frequencies
that are used to transmit the information. The transmission rate of this form
of OFDM is Wb = Kb/Tp bits/s. In examining Eq. (15.42) it is clear that in this
form of OFDM a binary linear modulation is used on each of the Kb different
subcarrier frequencies. For clarity of discussion the remainder of the section
will assume the linear modulation is BPSK (i.e., a(0) = 1 and a(1) = −1). A
more general form of OFDM could use any type of linear modulation and any
number of bits per subcarrier. For example, 4 bits could be transmitted per
frequency using a 16QAM modulation (see Section 15.1.4 and Problem 15.1).
Some of the generalizations of OFDM will be explored in the homework.
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Figure 15.11 Example vector diagrams of OFDM transmissions.

The OFDM transmitted waveform is a sum of Kb complex sinusoids. This
transmitted waveform will have a complex envelope that changes significantly
over the transmission time as the Kb complex sinusoids change in phase relative
to each other. The larger the value of Kb the larger this variation over the trans-
mission time will be. Figure 15.11 shows the vector diagrams of some example
OFDM transmitted waveforms. The vector diagram clearly becomes more com-
plex as more bits are transmitted. In addition, the peak value of the amplitude
of the complex envelope increases with Kb. For example, Figure 15.12 shows
xA(t) of some example OFDM transmitted waveforms. An OFDM waveform has
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Figure 15.12 Example xA(t) for OFDM transmissions.
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a significant difference between the peaks in amplitude and the average value
of the amplitude. This high peak to average ratio (PAPR)2 requires the radios in
an OFDM system to have a large dynamic range to process the signal without
distortion.

In the general framework of orthogonal modulations OFDM has set

x(ml, l, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dml

√
Eb

Tp
exp[ j 2π fd (2l − Kb − 1)t] 0 ≤ t ≤ Tp

0 elsewhere

(15.43)

The orthogonality condition then corresponds to



[∫ ∞

−∞
x(ml, l, t)x∗(mk , k, t)dt

]
= 0 (15.44)



[
dml d

∗
mk

Eb

Tp

∫ Tp

0
exp[ j 4π fd (l − k)t]dt

]
= 0 (15.45)

Using the result of Eq. (13.86) shows that the minimum spacing with an arbi-
trary complex constellation for orthogonality is achieved with fd = 1/(2Tp). If
the constellation is restricted to have real values (e.g., BPSK) then the mini-
mum frequency spacing is achieved with fd = 1/(4Tp).

EXAMPLE 15.5
The wireless local area network standard denoted IEEE 802.11a uses OFDM. The
802.11a standard uses OFDM that can be represented with Kb = 53 with Tp = 3.2 µs.
The frequency spacing of the subcarrier tones is set with fd = 156.25 kHz because
complex constellations are used in some modes of transmission. The potential trans-
mission rate of the 802.11a waveform with BPSK modulation would be 16.25 MHz. The
top transmission speed of 54 Mbps is achieved by using a QAM modulation on each
subcarrier. QAM constellations are investigated Section 15.1.4 and in the problems at
the end of the chapter.

The optimal demodulator has the form of Kb parallel single bit optimal de-
modulators. This demodulator is shown in Figure 15.13. Restricting ourselves
to BPSK modulation on each subcarrier frequency the MLBD has the form



[∫ Tp

0
Yz(t)

√
1

Tp
exp[− j 2π fd (2k − Kb − 1)t]dt

]
= 
[Q(k)]

Î (k)=0
>
<

Î (k)=1

0 (15.46)

2See the definition of PAPR in Chapter 5.
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Figure 15.13 The optimal demodulator for OFDM using BPSK.

Since OFDM is using a linear modulation on each subcarrier we will use Q(k) to
denote the matched filter output for the kth bit or subcarrier. The demodulator
computes a filter output for each bit, k ∈ {1, . . . , Kb}, and hence the complexity
of the OFDM optimum demodulator is O(Kb) as opposed to the O(2Kb) for an
arbitrary modulation that transmits Kb bits of information. For future refer-
ence here we note that Q(k) can be viewed at the Fourier transform of Yz(t)
evaluated at f = f k = fd ((2k − Kb − 1). The optimal OFDM demodulator
evaluates the real part of the Fourier transform at Kb points symmetrically
spaced around f = 0 and uses these Fourier transform values in a threshold
test. Since 
[Q(k)] = Dz(k)

√
Eb + N I (k) where var(N I (k)) = N0

2 , the bit error
probability performance of OFDM using BPSK on each subcarrier is clearly

PB (E) = 1
2

erfc

(√
Eb

N0

)
(15.47)

The optimal demodulator for OFDM is essentially Kb single bit demodulators
implemented in parallel (one for each subcarrier). Because of the orthogonality
of the subcarriers the fidelity achieved by an OFDM demodulator is the same
as the demodulator for a single bit transmitted in isolation (see Chapter 13).

Spectral Characteristics of OFDM

Recall that the average energy spectrum per bit is

Dxz(f ) = E[Gxz(f )]
Kb

(15.48)

To simplify the notation needed in this discussion we will make the following
definition.
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Definition 15.1 The Fourier transform of the unit energy rectangular pulse function

ur (t) =

⎧⎨
⎩

1√
Tp

0 ≤ t ≤ Tp

0 elsewhere

(15.49)

is

Ur (f ) =
√

Tp
sin(π f Tp)

π f Tp
exp[− j π f Tp] (15.50)

Taking the Fourier transform of the OFDM signal in Eq. (15.42) and using the
frequency shift property of the Fourier transform gives

Xz(f ) =
Kb∑
l=1

Dz(l)
√

EbUr ( f − fd (2l − Kb − 1)) (15.51)

The energy spectrum is then given as

GXz(f ) = Eb

Kb∑
l1=1

Kb∑
l2=1

Dz(l1)D∗
z (l2)Ur ( f − fd (2l1−Kb−1))U ∗

r ( f − fd (2l2−Kb−1))

(15.52)
The average energy spectrum per bit is then

DXz(f ) = Eb

Kb
E

⎡
⎣ Kb∑

l1=1

Kb∑
l2=1

Dz(l1)D∗
z (l2)

×Ur ( f − fd (2l1 − Kb − 1))U ∗
r ( f − fd (2l2 − Kb − 1))

⎤
⎦ (15.53)

The average energy spectrum per bit can be greatly simplified when BPSK
modulation is used on each frequency in OFDM. Recall each bit is assumed to
be random and independently distributed. Here it will be further assumed that
the bits are identically distributed with P (I (k) = 0) = π0 and P (I (k) = 1) = π1
for k = 1, . . . , Kb. Examining the term corresponding to a fixed l1 and l2, l1 �= l2,
in Eq. (15.53) (one of K2

b terms in the summation) gives

E[Dz(l1)D∗
z (l2)]Ur ( f − fd (2l1 − Kb − 1))U ∗

r ( f − fd (2l2 − Kb − 1))

= (π0π0 + π1π1 − π0π1 − π1π0)Ur ( f − fd (2l1 − Kb − 1))

×U ∗
r ( f − fd (2l2 − Kb − 1)) = (π0 − π1)2

×Ur ( f − fd (2l1 − Kb − 1))U ∗
r ( f − fd (2l2 − Kb − 1)) (15.54)

Examining the term corresponding to l1 = l2, in Eq. (15.53) gives

E
[|Dz(l1)|2]|Ur ( f − fd (2l1 − Kb − 1))|2

= (π0 + π1)|Ur ( f − fd (2l1 − Kb − 1))|2

= |Ur ( f − fd (2l1 − Kb − 1))|2 (15.55)
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The average energy spectrum per bit is then given as

DXz(f ) = Eb

Kb

Kb∑
l1=1

|Ur ( f − fd (2l1 − Kb − 1))|2 + Eb

Kb
(π1 − π0)2

(15.56)

×
Kb∑

l2=1

Kb∑
l1=1
l1 �=l2

Ur ( f − fd (2l1 − Kb − 1))U ∗
r ( f − fd (2l2 − Kb − 1))

Further simplifications occur if each bit is equally likely. For equally likely
bits the second term in Eq. (15.56) becomes zero. The spectrum in this case
becomes

DXz(f ) = Eb

Kb

Kb∑
l=1

|Ur ( f − fd (2l − Kb − 1))|2 (15.57)

This spectrum is plotted in Figure 15.14 (the solid line) for Kb = 4 and fd =
0.5/Tp. The dashed lines in Figure 15.14 represent the energy spectrum of
each modulated subcarrier of the OFDM waveform. The conclusions we can
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Figure 15.14 Average energy spectrum per bit for OFDM. Kb = 4, equally likely bits and
BPSK modulation, with fd = 1/(2Tp).
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draw about the average energy spectrum of OFDM is that the bandwidth oc-
cupancy for this type of an OFDM is proportional to 1/Tp and to Kb. Recall
that the transmission rate is Wb = Kb/Tp bits/s. Consequently, the transmis-
sion spectral efficiency is in the neighborhood of 1 bit/s/Hz, though the exact
number will be a function of how the engineering bandwidth is defined.

In conclusion OFDM provides a method to implement multiple bit transmis-
sion with good performance and reasonable complexity and spectral efficiency.
The bit error probability performance of the OFDM scheme highlighted in this
section gives the same bit error probability performance as BPSK used in isola-
tion. The spectral efficiency is roughly 1 bit/s/Hz. The complexity of the optimum
receiver is O(Kb). Consequently, OFDM has found significant utility in engi-
neering practice. One issue with OFDM is that the signal has a large PAPR
and this characteristic can require a high performance and costly radio system
to get high fidelity in message reconstruction.

15.3.2 Orthogonal Code Division Multiplexing

A second commonly used modulation that admits a simple optimal bit de-
modulation is orthogonal code division multiplexing (OCDM). OCDM is often
used in cellular radio communication and in satellite communication on the
downlink. For OCDM, each of the Kb bits is independently modulated on the
same carrier frequency with an orthogonal waveform. This orthogonal wave-
form is often termed the spreading waveform. The typical format for an OCDM
signal is

Xz(t) =

⎧⎪⎨
⎪⎩

Kb∑
l=1

Dz(l)
√

Ebsl(t) 0 ≤ t ≤ Tp

0 elsewhere

(15.58)

where D(l) = a(I (l)) and sl(t) is often denoted the spreading signal for the lth
bit. Here we assume that both E[|D(l)|2] = 1 and that Esl = 1. The transmission
rate of this form of OCDM is Wb = Kb/Tp bits/s. In examining Eq. (15.58)
it is clear that in this form of OCDM a binary linear modulation is used on
each of the Kb different spreading waveforms. Again for clarity of discussion
the remainder of the section will assume the linear modulation is BPSK (i.e.,
a(0) = 1 and a(1) = −1). It should be noted that OFDM is a special case of
OCDM with sl(t) = exp[ j 2π f lt]/

√
Tp.

In the general framework of orthogonal modulations OCDM has set

x(ml, l, t) =
{

dml

√
Ebsl(t) 0 ≤ t ≤ Tp

0 elsewhere
(15.59)

The orthogonality condition then corresponds to



[∫ ∞

−∞
x(ml, l, t)x∗(mk , k, t)dt

]
= Eb


[
dml d

∗
mk

∫ Tp

0
sl(t)s∗

k(t) dt
]

= 0 (15.60)
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Figure 15.15 Example spreading waveforms for OCDM and Kb = 4.

The remaining question is how to find a set of Kb orthogonal waveforms. There
is a wide variety of ways to construct these waveforms and one example is given
in Figure 15.15 for Kb = 4. Certainly this construction is not unique. The time
waveform of OCDM can have significant variations across the transmission
time. For instance Figure 15.16 shows the time plot of the output envelope3 of
two possible transmitted waveforms for the spreading waveforms introduced in
Figure 15.15 for Kb = 4. In both cases the transmitted energy is equal but how
that energy is spread across the transmit time is very much a function of the
transmitted information. An OCDM waveform has a large PAPR. The PAPR
will increase as Kb increases. This high PAPR requires the radios in an OCDM
system to have a large dynamic range to process the signal without distortion.

EXAMPLE 15.6
One of the standards for mobile telephones is denoted IS-95. IS-95 is primarily a voice
communication system and voice communications can be achieved with transmission
rates of less than 10 kHz with modern voiceband source encoders. IS-95 uses OCDM as
the forward link modulation with Kb = 64. The spreading waveforms used to send each
bit are Walsh functions which are discussed in Problem 15.22 (This problem shows how
Walsh functions are derived from Hadamard matrices). In IS-95 Tp = 52.083̄ µs so if
BPSK modulation was used a bit rate of 1.2288 Mbps could be achieved. In voice mobile
telephony data rates only need to support voiceband speech transmission. Hence IS-95
uses each of the spreading waveforms to transmit a bit to potentially 64 different users.
This use of one physical layer radio link to support many information transactions is
known as multiple access communications. Each spreading waveform is simultaneously
capable of supporting a 19.2 kbps transmission rate for each user which is a data rate
greater than necessary for modern speech encoders.

3Because the spreading waveforms are all real xA(t) = |xI (t)|.
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Figure 15.16 Output envelope time waveforms for the spreading waveforms in Figure 15.15.
i1 = [0 1 0 0] and i2 = [0 0 0 0].

The optimal demodulator again has the form of Kb parallel single bit optimal
demodulators. This demodulator is shown in Figure 15.17. Restricting ourselves
to BPSK modulation on each spreading waveform the MLBD has the form



[∫ Tp

0
Yz(t)s∗

k(t) dt
]

= 
[Q(k)]
Î (k)=0

>
<

Î (k)=1

0 (15.61)

The demodulator computes a filter output for each bit, k ∈ {1, . . . , Kb}, and hence
the complexity of optimal OCDM demodulation is again O(Kb) as opposed to
O(2Kb) for an arbitrary modulation that transmits Kb bits of information. Since

[Q(k)] = Dz(k)

√
Eb + N I (k) where var(N I (k)) = N0

2 , the bit error probability
performance of OCDM using BPSK on each spreading waveform is again

PB (E) = 1
2

erfc

(√
Eb

N0

)
(15.62)

The optimal demodulator for OCDM is again Kb single bit demodulators imple-
mented in parallel (one for each orthogonal spreading waveform). Because of
the orthogonality of the spreading waveforms the fidelity achieved by an OCDM
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Figure 15.17 The optimal demodulator for OCDM using BPSK.

demodulator is the same as the demodulator for a single bit transmitted in iso-
lation (see Chapter 13).

Spectral Characteristics of OCDM

Again the average energy spectrum per bit is

Dxz(f ) = E[Gxz(f )]
Kb

= Eb

Kb
E

[
Kb∑
l=1

Kb∑
k=1

Dz(l)D∗
z (k)Sl(f )S∗

k(f )

]
(15.63)

Using the results of Section 15.3.1 and assuming for simplicity that each bit is
equally likely and BPSK modulation is used, the spectrum in this case becomes

DXz(f ) = Eb

Kb

Kb∑
l=1

|Sl(f )|2 (15.64)

where Sl(f ) = F{sl(t)}. The important thing to note here is that the spectrum
of OCDM waveforms is directly proportional to the spectrum of the chosen
spreading waveforms. The spectrum of the set of spreading signals chosen in
Figure 15.15 (the solid line) is shown in Figure 15.18. The dashed lines in
Figure 15.18 represent the energy spectrum of each modulated spreading signal
of the OFDM waveform. The conclusions we can draw about the average energy
spectrum of OCDM is that the bandwidth occupancy for this type of an OCDM
is proportional to 1/Tp and to Kb. The bandwidth is greater than if a single bit
was sent in isolation since Kb orthogonal waveforms need to be constructed for
each of the Kb transmitted bits.

In conclusion OCDM provides a method to implement multiple bit transmis-
sion with good performance and reasonable complexity and spectral efficiency.
The bit error probability performance of the OCDM scheme highlighted in this
section gives the same bit error probability performance as BPSK used in isola-
tion. The spectral efficiency is roughly 1 bit/s/Hz. The complexity of the optimum
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Figure 15.18 The average energy spectrum per bit for the Kb = 4 example OCDM in
Figure 15.15.

receiver is O(Kb). OCDM is a generalization of OFDM. Consequently, OCDM
has found significant utility in engineering practice. One issue with OCDM is
that the signal has a large PAPR and this characteristic can require a high per-
formance and costly radio system to get high fidelity in message reconstruction.

15.3.3 Binary Stream Modulation

A third commonly used modulation that admits a simple optimal bit demodula-
tion is orthogonal time division multiplexing. This is perhaps the most intuitive
form of orthogonal modulation. Orthogonal time division multiplexing is used
in a vast majority of digital communication systems in some form. The idea is
simple, data is streamed in time (1 bit following another) and for the remain-
der of this text this orthogonal time division multiplexing will be referred to as
stream modulation. With a stream modulation each of the Kb bits is indepen-
dently modulated on the same carrier frequency with a time shifted waveform.
The typical format for a stream modulation using linear modulation is

Xz(t) =
Kb∑
l=1

Dz(l)
√

Ebu(t − (l − 1)T ) (15.65)
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where D(l) = a(I (l)), T is known as the symbol4 or bit time in stream modu-
lations, and u(t) is the unit energy pulse of length Tu. The transmission rate
of stream modulation is Wb = Kb/Tp bits/s. It should be noted that Tp =
(Kb − 1)T + Tu and for large Kb that Wb ≈ 1/T .

Definition 15.2 The Baud rate of a stream modulation is WBau = 1/T .

The time shifted pulses are repeated every T seconds. Hence the rate at which
bits (or more generally multiple bit symbols) are put into the channel is the
Baud rate. In examining Eq. (15.65) it is clear that in this stream modulation
a binary linear modulation is used in each of the Kb different time intervals.
Again for clarity of discussion the remainder of the section will assume the
linear modulation is BPSK (i.e., a(0) = 1 and a(1) = −1).

In the general framework of orthogonal modulations stream modulation has
set

x(ml, l, t) =
{

dml

√
Ebu(t − (l − 1)T ) 0 ≤ t ≤ Tp

0 elsewhere
(15.66)

where again u(t) is denoted the pulse shape. The orthogonality condition then
corresponds to

0 = 

[∫ ∞

−∞
x(ml, l, t)x∗(mk , k, t)dt

]

= Eb

[
dml d

∗
mk

∫ ∞

−∞
u(t − (l − 1)T )u∗(t − (k − 1)T )dt

]
= Eb
[dml d

∗
mk

Vu((k − l)T )] (15.67)

where Vu(τ ) is the pulse shape correlation function defined in Chapter 2 as

Vu(τ ) =
∫ ∞

−∞
u(t)u∗(t − τ )dt. (15.68)

This orthogonal time shift condition is often known as Nyquist’s criterion for
zero intersymbol interference (ISI) [Nyq28a]. The remaining question is how
to design orthogonal time shifted waveforms. There is a wide variety of ways
to construct these waveforms but the simplest way is to limit u(t) to only have
support on [0, T ]. For example, if Kb = 4 one can choose T = Tp/4 and have
the set of time shifted waveforms as given in Figure 15.19. Certainly this con-
struction is not unique. It is interesting to note with the waveforms chosen
in Figure 15.19 the amplitude of the transmitted signal will be constant. The
ability to more carefully control peak to average power ratio is one advantage
of stream modulation.

4A generalization not considered in this chapter but frequently used in practice is the idea of a
sending multiple bit symbol (instead of a 1 bit symbol considered here) every T seconds in a stream
modulation. Essentially this is a combination of linear modulation and stream modulation.
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Figure 15.19 An example of time shifted pulses for a linear stream modulation and Kb = 4.

The optimal demodulator again has the form of Kb parallel single bit optimal
demodulators. Since the sample modulation format is repeated in time the
required filtering operation can be implemented with one filter sampled serially
in time. This demodulator is shown in Figure 15.20. Restricting ourselves to
BPSK modulation on each time shifted pulse the optimum demodulator has
the form



[∫ Tp

0
Yz(t)u∗(t − (k − 1)T )dt

]
= 
[Q(k)]

Î (k)=0
>
<

Î (k)=1

0 (15.69)

The demodulator has one filter output whose output is sampled for each bit,
k ∈ {1, . . . , Kb}, and hence the complexity of the stream modulation optimum
demodulator is again O(Kb) as opposed to the O(2Kb). The pulse shape matched
filter output will be referenced frequently in the sequel hence we formally
define it.

Definition 15.3 Recall the pulse shape matched filter has an impulse response ho(t) =
u∗(Tu − t), so that the pulse shape matched filter output is

Qu(t) =
∫ Tp

0
Yz(λ)u∗(λ + Tu − t)dλ (15.70)

where Tu is the pulse shape time support.

Threshold
Test

0

Sampler Î (k)Yz(t) u*(Tu − t)

Tu + (k − 1)T

Re[•]

Figure 15.20 The optimal demodulator for stream modulations using BPSK.
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Using this definition it is easy to see that

Q(k) = Qu(Tu + (k − 1)T ) (15.71)

A characteristic of linear stream modulation that makes for an efficient modem
implementation is that only one filter is needed to implement the demodulator.
This advantage of stream modulation over other orthogonal modulations is
much more significant when the filter is implemented with analog circuits.
This pulse shape matched filter only needs to be sampled at different times to
obtain the sufficient statistics for demodulation. When filters are implemented
with digital cirucits the computational complexity required for demodulation
of all orthogonal modulations is about the same. This is the reason that stream
modulations dominated digital modem implementations up untill the 1980’s as
most processing was done with analog circuitry. As Moore’s Law kicked in and
implementations became predominantly digital other modulations like OFDM
and OCDM became practical.

Finally, again the performance of stream modulation is upperbounded by the
performance of binary modulations transmitted in isolation. This is true since

[Q(k)] = Dz(k)

√
Eb + N I (k) where var(N I (k)) = N0

2 , the bit error probability
performance of stream modulation using BPSK is

PB (E) = 1
2

erfc

(√
Eb

N0

)
(15.72)

Spectral Characteristics of Stream Modulations

Again the average energy spectrum per bit is

Dxz(f ) = E[Gxz(f )]
Kb

= Eb

Kb
E

[
Kb∑
l=1

Kb∑
k=1

Dz(l)D∗
z (k)U (f )U ∗(f ) exp[− j 2π f (l − k)T ]

]

(15.73)

Using the results of Section 15.3.1 and assuming for simplicity that each bit is
equally likely and BPSK modulation is used, the spectrum in this case becomes

DXz(f ) = Eb

Kb

Kb∑
l=1

|U (f )|2 = EbGu(f ) (15.74)

where U (f ) = F{u(t)} and Gu(f ) = |U (f )|2. The important thing to note here
is that the spectrum of linear stream modulation is directly proportional to
the spectrum of the chosen pulse shape. The spectrum of the linear stream
modulation defined in Figure 15.19 is shown in Figure 15.21. The conclusions
we can draw about the average energy spectrum of stream modulation is that
the bandwidth occupancy is also proportional to 1/Tp and to Kb.
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Figure 15.21 The average energy spectrum per bit for stream modulation for the example pulse
shape given in Figure 15.19.

15.4 Conclusions

This chapter looked at two signal design techniques that simplify the optimal
demodulator structures: linear modulation and orthogonal modulation. Linear
modulation simplifies the demodulator by only requiring one matched filter.
Linear modulation provides reduced performance but no bandwidth expansion
as Kb grows larger. Consequently, linear modulations often find utility when
spectral efficiency is at a premium and the expected SNR is high. Orthogonal
modulation is a technique where Kb bits are transmitted by using orthogo-
nal waveforms for each bit. The orthogonality of the individual bit waveforms
enables each bit to be detected optimally with a complexity identical to the
situation where the bit was transmitted in isolation. Examples of orthogo-
nal modulation included in this chapter were modulations where orthogonality
was obtained by frequency spacing (OFDM), obtained by complex waveforms
(OCDM), and obtained by time spacing (stream modulation). Both linear mod-
ulation and orthogonal modulation provide optimal demodulation complexity
that scales better with Kb than does general signaling. Using signals designed
as either a linear or an orthogonal modulation produces a fidelity upperbounded
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by the error rate of BPSK. Linear modulation is advantageous as it allows for
spectral efficiencies greater than 1 bit/s/Hz and is typically why it is used in
practice. As a final note all deployed communication systems use stream modu-
lation in some form even when using OFDM or OCDM. It is also estimated that
greater than 90% of the digital communication systems use linear modulations
in some form.

15.5 Homework Problems

Problem 15.1. 16 quadrature amplitude modulation (QAM) is a linear modulation
with Di = DI i + j DQi where DI i, DQi ∈ {−3A, −A, A, 3A} that can be used to
transmit 4 bits per symbol (Kb = 4).

(a) Find the value of A such that Eb is the average energy per bit.

(b) Find the decision regions corresponding to the values of Q for MLWD of
16QAM.

(c) Is 16QAM a geometrically uniform signal set?

(d) Compute the probability of word error for MLWD, PW (E), for 16QAM and
plot for Eb/N0 = 0, 15 dB.

(e) Compute the full union bound to the probability of word error for MLWD for
16QAM and plot for Eb/N0 = 0, 15 dB. Hint: The union bound requires the
computation of 15 distances for each of the 16 possible transmitted signals
so it might be useful to use the computer.

(f) It is possible to eliminate some terms in the union bound for 16QAM as was
done for MPSK. Identify the union bound having the smallest number of
terms for 16QAM.

(g) Using the union bound result and assuming a pulse shape is chosen such
that BT = 1/Tp plot the 16QAM spectral efficiency in Figure 14.9.

Problem 15.2. Consider the two 8-ary (Kb = 3) linear modulations whose constel-
lations are given in Figure 15.22. One of the 8-ary constellations has four points
each placed on two concentric circles. The other 8-ary constellation has eight
points selected from the 16QAM (see Problem 15.1) constellation in a checker-
board fashion.

a) Determine the value of each constellation point such that Eb is the energy
per bit and �1 = �2.

b) Find the decision regions corresponding to the values of Q for MLWD of
these two 8-ary modulations.

c) Which constellation has a better performance? Why? How does the perfor-
mance of the best constellation compare to the 8-ary linear modulation in-
troduced in Example 15.1?
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DI

DQ

∆1

∆2

(a)

DIi

DQi

(b)

Figure 15.22 Two 8-ary constellation plots for linear modulations.

Problem 15.3. This problem examines the probability of word error for MLWD of
some common linear modulations.

(a) Show that the probability of word error for 4PSK is given as

PW (E) = erfc

(√
Eb

N0

)
−
(

1
2

erfc

(√
Eb

N0

))2

(15.75)

(b) 4-ary equally spaced pulse amplitude modulation (PAM) has a constellation
that is characterized with �d = {±√2/5, ±3

√
2/5}. Show that the proba-

bility of word error for 4PAM is given as

PW (E) = 3
4

erfc

⎛
⎝
√

2Eb

5N0

⎞
⎠ (15.76)

(c) Plot the spectral efficiency versus Eb/N0 of 4PAM on Figure 14.9 using a
word error rate of 10−5.

Problem 15.4. This problem examines the union bound to the probability of word
error for MLWD of some common linear modulations.

(a) Show that the full union bound for the word error probability of 4PSK is
given as

PW (E) = erfc

(√
Eb

N0

)
+ 1

2
erfc

⎛
⎝
√

2Eb

N0

⎞
⎠ (15.77)
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(b) There is a way to tighten the union bound for 4PSK, give the tightest union
bound to the word error probability.

(c) Show that the full union bound for the word error probability of 4PAM
(�d = {±√2/5, ±3

√
2/5}) is given as

PW (E) = 3
4

erfc

⎛
⎝
√

2Eb

5N0

⎞
⎠+ 1

2
erfc

⎛
⎝
√

8Eb

5N0

⎞
⎠+ 1

4
erfc

⎛
⎝
√

18Eb

5N0

⎞
⎠
(15.78)

(d) There is a way to tighten the union bound for 4PAM, give the tightest union
bound to the word error probability

Show that these results are tight to the true values given in Problem 15.3 at
high SNR.

Problem 15.5. Imagine that digital computers were first developed with five logic
levels to match the number of fingers on the typical human hand. Digital
communications would have evolved to be the transmission of quinits (having
five possible values) as opposed to the transmission of bits. In this problem you
will consider what this course might have been like if this alternate evolution
had occurred.

Consider a 5-ary modulation of the form Xz(t) = Dzu(t) corrupted by an addi-
tive white Gaussian noise with one-sided spectral density of N0. Consider two
possible signal sets:

i d (1)
i d (2)

i

0 1 A
1 exp

( j 2π

5

)
j A

2 exp
( j 4π

5

) −A

3 exp
( j 6π

5

) − j A

4 exp
( j 8π

5

)
0

where A is a positive real constant.

(a) Choose the value of A such that both signal sets have the same average Es.

(b) Give the demodulator that minimizes the word error probability and define
the decision regions for each of the two possible signal sets.

(c) Is either signal set geometrically uniform?

(d) Compute the full union bound to PW (E) for each of the two signal sets.

(e) Simplify the union bound as much as possible for each signal set by elimi-
nating terms from the full union bound if possible.

(f) Use numerical integration to compute the actual PW (E).
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dj Eb

Aj

A

Figure 15.23 A square decision region.

Problem 15.6. Consider one of the 5-ary modulations from the previous problem
of the form Xz(t) = Dzu(t) with equally likely symbols and corrupted by an
additive white Gaussian noise with one-sided spectral density of N0.

i di

0 1
1 exp

( j 2π

5

)
2 exp

( j 4π

5

)
3 exp

( j 6π

5

)
4 exp

( j 8π

5

)
(a) What is the average energy spectral density per quinit, Dxz(f )?

(b) If u(t) =
√

Eu
W

sin(πWt)
πWt giveDxz(f ).

(c) If this particular communication system’s electronics was particularly sus-
ceptible to 60 Hz interference from the power supply, could you come up
with a pulse shape that produced a communication signal that did not have
significant spectral content at 60 Hz. Assume that Tp < 0.05.

Problem 15.7. Assume signals are sent with a linear modulation and the resulting
decision region for �I = j is characterized as being square as in Figure 15.23.
Show that

PW (E| �I = j ) = 1 −
(

erf
(

A
2
√

N0

))2

(15.79)

Problem 15.8. A problem examining Alamouti space-time signaling [Ala98].
Consider a 4-ary digital communication system with equally likely words where
the received signal is corrupted by an additive white Gaussian noise of two-
sided spectral density of N0/2. The system uses two antennas as shown in
Figure 15.24 and the four possible transmitted signals are shown in Figure
15.25. The received signal is of the form

yz(t) = c1xi1(t) + c2xi2(t) + Wz(t) = xi(t) + Wz(t)
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c1

c2

Σ Σ

xi1(t)

xi2(t)

xi(t)
Yz (t)

Wz (t)

Figure 15.24 The two antenna communication system.

where c1 and c2 are known constants at the demodulator. The signal set is
defined with

x01(t) = u1(t) x11(t) = u2(t) x21(t) = u4(t) x31(t) = u3(t)

x02(t) = u2(t) x12(t) = u3(t) x22(t) = u1(t) x32(t) = u4(t)

(a) Show that this system results in an equal received energy signal set for any
values of c1 and c2. Compute Es.

(b) Detail out the optimum word demodulator (MLWD). Give impulse responses
for any filters and simplify the structure as much as possible.

(c) Compute the square Euclidean distance between each of the signal pairs.

(d) Defining

ur (t) =

⎧⎪⎨
⎪⎩

1√
Tp

0 ≤ t ≤ Tp

2

0 elsewhere
(15.80)
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−
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u4(t)

Tp
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Figure 15.25 The transmitted waveforms.
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show that xi(t) = di(1)s1(t)+di(2)s2(t), where di(l) l = 1, 2 represents BPSK
modulation symbols, s1(t) = (c1ur (t)+c2ur (t−Tp/2), and s2(t) is orthogonal
to s1(t). Identify s2(t) as a function of c1, c2, and ur (t). This implies each bit
can be demodulated in an independent fashion and the demodulator for
each bit simplifies to a binary threshold test. Derive the demodulator for
I (2) when this orthogonality condition exists.

(e) Compute the PB (E) for the MLBD for I (1) and a given c1 and c2 conditioned
on �I = 0.

Problem 15.9. Consider a demodulation scheme for a binary linear stream modu-
lation where Nyquist’s criterion for zero ISI holds. Prove that the real part of the
noise sample taken from the matched filter for bit k1, k1 ∈ {1, . . . , Kb}, N I (k1),
is independent of the real part of the noise sample taken from the matched
filter for bit k2, k2 ∈ {1, . . . , Kb}, N I (k2) where k1 �= k2.

Problem 15.10. In Problem 2.11 three pulse shapes are presented and this prob-
lem considers their use in a binary stream modulation of the form

Xz(t) =
Kb∑
l=1

xI (l)(t − (l − 1)T ) (15.81)

(a) If x0(t) = u1(t) and x1(t) = u2(t) find the smallest value of T where Nyquist’s
criterion is still satisfied.

(b) If x0(t) = u1(t) and x1(t) = u2(t) plot the resulting transmitted waveform
for Kb = 10 and �I = [0 1 1 1 1 0 0 1 0 0] for the value of T selected in (a).

(c) If x0(t) = u1(t) and x1(t) = u2(t) plot the resulting matched filter output
waveform both signals for Kb = 10 and �I = [0 1 1 1 1 0 0 1 0 0] for the value
of T selected in (a).

(d) Repeat (a), (b), and (c) for the case when x0(t) = u1(t) and x1(t) = u3(t).

Problem 15.11. In this problem we examine an M-ary linear wireless commu-
nication system that uses multiple transmit antennas. This problem assumes
each of the Lt antennas simultaneously transmits one bit of information. The
complex envelope of the transmitted signal from the ith antenna, i = 1, . . . , Lt ,
has the form Xzi(t) = Diu(t) where Di = ai(Ii) is a complex modulation symbol
with |Di| ≤ 1, Ii is the information bit transmitted from the ith antenna, and
u(t) is the pulse shape. The constellation mapping is denoted with

ai(0) = d0i ai(1) = d1i (15.82)

The received signal has the form

Yz(t) =
Lt∑

i=1

ci Xzi(t) + W (t) (15.83)
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where ci are the complex channel gains for the ith antenna and W (t) is a complex
AWGN of one-sided spectral density of N0, i.e. RW (τ ) = N0δ(τ ).

(a) What is the bandpass signal corresponding to Xz1(t) when a carrier fre-
quency of f c is used?

(b) Show

Yz(t) = Dzu(t) + W (t) (15.84)

and find Dz. How many values can Dz take and what are they?

(c) Assume Lt = 2 and that c1 and c2 are known at the receiver. Formulate the
optimum demodulator and simplify as much as possible.

(d) Assume BPSK modulation is used on each antenna d0i = 1 and d1i = −1
and compute the resulting union bound on the word error probability as a
function of c1 and c2.

(e) If it is known before transmission that c1 = 1 and c2 = 1√
2
(1 + j ) postulate

a binary modulation Di = ai(Ii) for each antenna that would result in the
best word error probability performance.

Problem 15.12. You have been asked to design a data communication system
for the Zwertians. The Zwertians are people from a distant solar system who
have the unique characteristic of having 3 fingers. Consequently, their number
system is entirely base 3 and units of information are available in trinits (1
of 3 values). The Zwertians want a linear modulation, consequently a trinit is
transmitted with the complex envelope

Xz(t) = Dzu(t) (15.85)

where the pulse, u(t), has energy Eu = 1. To complete your design you must
specify an optimum demodulator and a 3-ary modulation scheme. Assume each
value of the transmitted trinit is equally likely. The received signal is corrupted
by an additive white Gaussian noise of one-sided spectral density N0.

(a) Assume the three possible transmitted symbols are denoted di i = 1, 2, 3.
Find the demodulator that minimizes the probability of symbol error.

(b) Find the union bound to the symbol error in terms of N0, and di i = 1, 2, 3
for the optimum demodulator decision when Dz = d1.

(c) Assume that the average transmitted energy per symbol is constrained to
be Es = 1, find the optimum values of di i = 2, 3 when d1 = 1.

Problem 15.13. Show that if Kb bits are transmitted on orthogonal waveforms
with BPSK modulation then the word error probability is given as

PW (E) = 1 −
(

1 − 1
2

erfc

(√
Eb

N0

))Kb

(15.86)
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Using the characteristics of the binomial coefficients to arrange in Eq. (15.86)
a sum like the union bound. From this sum can you identify the most probable
error event for an orthogonal modulation and how many bit errors occur in the
word. For example, if Kb = 4 and �I = [0 0 1 0] find all most probable error code
words.

Problem 15.14. Consider Kb = 6 bits being transmitted with OFDM. Compute
the output spectrum of the transmitted signal with the closest possible carrier
spacing, sketch the optimum demodulator and estimate the resulting optimum
word error probability performance for

(a) 6 carrier frequencies each using BPSK modulation

(b) 3 carrier frequencies each using Gray coded 4PSK modulation

(c) 2 carrier frequencies each using 8PSK modulation

Make a comparison between each of these transmission strategies in terms of
performance and spectral efficiency.

Problem 15.15. The OFDM transmitted signal is a sum of complex sinusoids and
in general will be complex valued. In certain special cases the transmitted
signal will be real valued only. When does this occur? Identify all the situations
when this happens for Kb = 4 and BPSK modulation on each carrier.

Problem 15.16. Identify two other spreading waveforms of equal energy that are
mutually orthogonal for an OCDM system with Kb = 3 besides

s1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0 ≤ t <
Tp

3

exp
[

j 2π

3

]
Tp

3 ≤ t <
2Tp

3

exp
[

j 4π

3

]
2Tp

3 ≤ t ≤ Tp

0 elsewhere

(15.87)

A goal in finding these additional two waveforms is to make Dxz(f ) as compact
as possible.

Problem 15.17. Identify four spreading waveforms of length Tp that are equal
energy and are mutually orthogonal for an OCDM system with Kb = 4, and that
are more spectrally efficient than the example spreading waveforms shown in
Figure 15.15.

Problem 15.18. There is an alternate form for PWEP first introduced by Craig
[Cra91] that proves to be useful in many situations and this problem will lead
the student through the derivation. Consider a matched filter output Q for
BPSK modulation when Dz = a(1) = −1 is transmitted. The probability of
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error in this case is given as (see Section 15.1.2)

PB (E|I = 1) =
∫

R1

f Nz(nz) dnz =
∫

1R1 (nz) f Nz(nz) dnz (15.88)

where R1 = {Nz : N I ≥ √
Eb}. Use the form Nz(t) = N A(t) exp[ jNP (t)] to

express the above integral in polar coordinates and derive

PB (E|I = 1) = 1
π

∫ π
2

0
exp
[ −Eb

N0 cos2(np)

]
dnp (15.89)

Problem 15.19. The following is a pulse shape that is used in communication
systems

u(t) =

⎧⎪⎪⎨
⎪⎪⎩
√

2
Tu

sin
(

πt
Tu

)
0 ≤ t ≤ Tu

0 elsewhere

(15.90)

Consider that this pulse is used in a binary linear stream modulation of the form

Xz(t) =
Kb∑
l=1

Dz(l)
√

Ebu(t − (l − 1)T ) (15.91)

where each bit value is equally likely and the received signal has the form Yz(t)
= Xz(t) + W (t) with W (t) is an AWGN with one-sided spectral density of N0.

(a) Compute Vu(τ ).

(b) How fast can the symbol or bit rate, Wb = 1/T , be and still have the MLBD
simplify to a binary threshold test? Provide the form of the MLBD when
BPSK modulation is used (i.e., a(0) = d0 = 1 and a(1) = d1 = −1).

(c) What is the resulting performance of the optimal bit detector found in (b).

(d) Compute and plot Dxz(f ).
At the maximum Wb for the waveform Eq. (15.91), a colleague of yours claims
that you can double the transmission rate of the system in (b) and still have
optimal bit demodulators that are simple threshold tests. The claim is that this
is achieved by sending a separate binary stream modulation in the Q-channel
that is offset in time from the original one by Tu/2. The new transmitted signal
(called minimum shift keying (MSK) by your colleague) has the form

X̃ z(t) =
Kb∑
l=1

Dz1(l)
√

Ebu(t − (l − 1)T ) + j Dz2(l)
√

Ebu
(

t − (l − 1)T − T
2

)

(15.92)

(e) Show that X̃ z(t) can be put in a form as given in Eq. (15.29). Check the
orthogonality conditions to verify your colleague’s assertion.
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(f) For the time interval T
2 ≤ t ≤ T find X̃ A(t) and X̃ P (t) as a function of

Dz1(1) and Dz2(1).

(g) Given the results in (e) can the waveform in Eq. (15.92) be interpreted as
an FSK waveform?

h) Compute Dxz(f ) for MSK.

Problem 15.20. Consider a 4-ary modulation of the form Xz(t) = Dz
√

Ebu(t) cor-
rupted by an additive white Gaussian noise with one-sided spectral density of
N0. Consider two possible signal sets:

i d (1)
i d (2)

i

0
√

2 A
√

3
1 j

√
2 j A

2 −√
2 −A

√
3

3 − j
√

2 − j A

where A is a positive real constant.

(a) Choose the value of A such that both signal sets have the same average Es.

(b) Give the demodulator that minimizes the word error probability and define
the decision regions for each of the two possible signal sets.

(c) Compute the union bound to PW (E) for each of the two signal sets.

(d) Decide which signal set for a common Es will give better performance with
the optimum demodulator.

Problem 15.21. Show in OFDM that if fd = 1/(2Tp) and Kb is odd that Xz(0) =
Xz(Tp). Show that this is not necessarily true for Kb even.

Problem 15.22. Define a 2 × 2 matrix

H2 =
[

1 1
1 −1

]
(15.93)

and a recursion defined as

H2n =
[

H2n−1 H2n−1

H2n−1 −H2n−1

]
(15.94)

These sets of matrices are known as Hadamard matrices. Show that if Kb = 2n

then the Kb spreading waveforms generated as

si(t) =
2n∑

j =1

[
H2n

]
iju2n

(
t − ( j − 1)

Tp

2n

)
i = 1, 2n (15.95)
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where

u2n(t) =
⎧⎨
⎩

1√
Tp

0 ≤ t ≤ Tp

2n

0 elsewhere
(15.96)

constituted a set of spreading waveforms for an OCDM system. Specifically
sketch the waveforms and show orthogonality for Kb = 2 and Kb = 8. For
Kb = 4 this set of spreading waveforms is given in Figure 15.15. A proof by
induction for the general case would be most complete.

Problem 15.23. In the wireless local network protocol denoted IEEE 802.11b the
lowest rate modulation is a binary modulation using the two waveforms given
in Figure 15.30.

(a) If the two waveforms in Figure 15.30 are to be used in a binary stream
modulation, how fast can the symbol or bit rate, Wb = 1/T , be and still have
the maximum likelihood bit demodulator simplify to a binary threshold test
for each bit? Hint: The answer is Wb > 1, 000, 000 Hz.

(b) Assume the two waveforms in Figure 15.30 were to be used in an orthogo-
nal code division multiplexed system to send 1 bit. Find another spreading
waveform, s2(t), for the case Kb = 2 defined on [0, 1µs] with Es2 = Eb such
that when BPSK modulation is used with s2(t) the maximum likelihood bit
demodulator simplifies to a binary threshold test for each bit.

Problem 15.24. 8PAM is a linear modulation used to transmit Kb = 3 bits of
information that is characterized with �d ∈ {±A, ±3A, ±5A, ±7A}. Assume
each word is equally likely and the received signal is corrupted by an additive
white Gaussian noise with one-sided spectral density of N0.

(a) For the case where Eu = 1, find the value of A such that Es = 3Eb.

(b) Define the decision regions for 8PAM that operate on the output of the pulse
shape matched filter, Q.

(c) Find the probability of word error conditioned on Dz = A.

(d) A closed form expression exists for the probability of word error. Find it.

Problem 15.25. Plot the average energy spectrum of the example OFDM system
presented in this chapter with π0(l) = 0.25 l = 1, . . . , Kb with Kb = 6.

Problem 15.26. Plot the average energy spectrum of the example stream modu-
lation system presented in this chapter with π0(l) = 0.25 l = 1, . . . , Kb with
Kb = 6.

Problem 15.27. Kb = 3 bits are to be transmitted via a linear modulation us-
ing a unit energy real valued pulse shape, u(t), and a constellation given in
Figure 15.2.
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(a) Appropriately normalize the constellation so that the transmitted energy
per bit is Eb.

(b) For a carrier frequency of f c give the form of the bandpass waveform trans-
mitted when �I = 0.

(c) Detail out the MLWD and simplified to as great a degree as possible.

(d) The spectral efficiency of a digital modulation is an important characteristic
in engineering design. If you were given an explicite form for u(t) give a
methodology to find the spectral efficiency.

(e) Give an expression (does not need to be evaluated) for the conditional word
error probability for the MLWD when �I = 5.

(f) Identify the smallest number of pairwise error probabilities that need be
computed to provide a union bound to the conditional word error probability
for the MLWD when �I = 5.

Problem 15.28. In this problem we consider a derivative of the signaling scheme
used in Ethernet local area networks. Assume equally likely data bits. Ethernet
signaling uses a linear stream modulation, i.e.,

Xc(t) =
Kb∑
l=1

D(l)
√

Ebu(t − (l − 1)T ) (15.97)

with the pulse shape in Figure 15.26 where Eu = 1 is assumed. Note that
Ethernet is a baseband modulation scheme so that we use the notation Xc(t)
versus Xz(t) and that D(l) must be real valued. Assume that Yc(t) = Xc(t) +
W (t) where W (t) is an additive white Gaussian noise of one-sided spectral
density N0 and that T = Tu.

t

Eu
Tu

−

Tu
2 Tu

Eu
Tu

Figure 15.26 The pulse for Ethernet signaling.



Managing the Complexity of Optimum Demodulation 15.43

t

Eu
Tu

Tu

u2(t)

Figure 15.27 The alternative pulse for doubling the rate of
Ethernet.

(a) Find the optimum demodulator.

(b) Find modulation symbol mappings from I (l) to D(l) that optimizes perfor-
mance.

(c) Give an exact expression for the bit error probability in terms of Eb and N0
for this optimum signal set and demodulator.

(d) Compute the average energy spectrum per bit, Dxz(f ) and the spectral effi-
ciency.

You are asked to double the transmission rate of Ethernet by transmitting
two bits per symbol, I1(l) and I2(l), and the following options are given

(i) A linear modulation using u(t) with a 4-ary modulation characterized with
D(l) = ±3A, ±A

(ii) A nonlinear modulation of the form

Xc(t) =
Kb∑
l=1

D1(l)
√

Ebu(t −(l−1)T )+
Kb∑
l=1

D2(l)
√

Ebu2(t −(l−1)T ) (15.98)

where Di(l) = ±1 and u2(t) is a second pulse shape given in Figure 15.27.

(e) Choose Asuch that each of the two signal sets have the same average energy
per bit, Eb.

(f) Give the MLWD for each option.

(g) Find the word error probility or a union bound to the word error probability
in terms of Eb, N0 for both options.

(h) Compare the spectral efficiency of each scheme by computing the average
energy spectrum per bit, Dxz(f ) of both options.

Problem 15.29. In a system that transmits Kb = 1 bit of information the trans-
mitted waveform has the form

Xz(t) = D1
√

Ebus(t) (15.99)
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where

D1 = (−1) I (1) us(t) =
⎧⎨
⎩Asin

(
πt
Tp

)
0 ≤ t ≤ Tp

0 elsewhere
(15.100)

The received signal is well modeled as Yz(t) = Xz(t) + Wz(t) where Wz(t) is a
complex white Gaussian noise with a one-sided power spectral density of N0.

(a) Give a value of A such that the received energy per bit is Eb.

(b) Compute the spectral efficiency of this transmission scheme using the 3 dB
transmission bandwidth.

(c) Give the MLBD and compute the performance of the MLBD.
It is possible to transmit 2 bits of information (Kb = 2) with waveforms of
the form

Xz(t) = D1
√

Ebus(t) + D2
√

Ebuc(t) (15.101)

where

Di = (−1) I (i) uc(t) =
⎧⎨
⎩Acos

(
πt
Tp

)
0 ≤ t ≤ Tp

0 elsewhere
(15.102)

This modulation became known as Q2PSK [SB89] and sparked significant
interest in the 1990s.

(d) Is this an orthogonal modulation?

(e) Compute the spectral efficiency of this Kb = 2 transmission using the 3 dB
transmission bandwidth.

(f) Detail out the MLWD architecture and compute the performance of this
MLWD.

Problem 15.30. A commonly used linear modulation for satellite communications
is known as 12/4QAM [MO98]. The constellation diagram for 12/4QAM is shown
in Figure 15.28. Assume each of the symbols is equally likely for this problem
(i.e., πi = 1/16).

(a) Give constraints on the two circle radii, δ1 and δ2, such that E[|Dz|2] = 4.

(b) Find the MLWD and define decsion regions for this modulation.

(c) Is the modulation geometrically uniform?

(d) Find the simplest form for the union bound to the probability of word error.

(e) Optimize the fidelity of demodulation by a selection of δ1 and δ2, such that
E[|Dz|2] = 4 for PWUB(E) < 10−4.
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Figure 15.28 The constellation diagram for 12/4QAM.

Problem 15.31. A commonly used linear modulation for spectrally efficient data
communication is known as 32Cross. 32Cross is constructed by first having a 36
point constellation where points are on a rectangular grid with six points in each
dimension, i.e., d I i ∈ {−5A, −3A, −1A, 1A, 3A, 5A} and d Qi ∈ {−5A, −3A, −1A,
1A, 3A, 5A} and removing the (highest power) four corner points.

(a) Plot the constellation and give a guess as to why the modulation is known
as 32Cross.

(b) Give the value of A such that E[|Dz|2] = 5.

(c) Find the MLWD and define decsion regions for this modulation.

(d) Is the modulation geometrically uniform?

(e) Find the simplest form for the union bound to the probability of word error.

Problem 15.32. Show that if two spreading waveforms are orthogonal in the time
domain, i.e., ∫ ∞

−∞
sl(t)s∗

k(t)dt = 0 (15.103)

then they are also orthogonal in the frequency domain∫ ∞

−∞
Sl(f )S∗

k(f )df = 0 (15.104)

Hint: Consider Eq. (2.67).
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Problem 15.33. Consider two competing FSK based systems with rectangular
pulse shapes that transmit Kb = 3 bits of information with a transmission
rate of Wb = 10 kHz. The first is a binary FSK waveform where the 3 bits are
streamed orthogonally in time and the second is an 8FSK system that transmits
the bits with an M-ary modulation.

(a) What is the value of Tp that will achieve the desired Wb = 10 kHz.

(b) For the two systems compute the 3 dB bandwidth.

(c) For the two systems compute the word error probability.

(d) Which system would you recommend using? Why?

Problem 15.34. Consider the set of spreading waveforms in Figure 15.15. Show
that the spectral efficiency can be doubled with no loss in performance by setting

sl + 4(t) = j sl(t). (15.105)

Problem 15.35. While going to school at Ohio State University you lent your dig-
ital communication book to your friend at University of Michigan and he, after
a brief read, got very excited and immediately founded a start-up company,
WolverineCom.com, and built a modem that sent a signal

Xz(t) =
√

Eb

3∑
l=1

Dz(l)sl(t) (15.106)

where sl(t) are unit energy spreading waveforms and Dz(k) = (−1) I (k) is from a
BPSK signal set and each bit is independent and equally likely. Unfortunately,
he did not read the notes carefully and did not ensure that the sl(t) are or-
thogonal to each other. The correlation of the waveforms is captured by the
matrix

G =

⎡
⎢⎣

1 0 0
0 1 0.9
0 0.9 1

⎤
⎥⎦ (15.107)

where [G]ij = ∫ Tp

0 si(t)s∗
j (t) dt. After struggling to get the demodulation part of

the modem to work on a frequency flat channel corrupted by an AWGN, he has
come to you with the offer of stock options if you can help him.

a) Form the MLWD and show that Q(k) = ∫ Tp

0 Yz(t)s∗
k(t)dt k = 1, 2, 3 are

sufficient statistics for optimum word demodulation.

(b) Find the minimum Euclidean squared distance for this modulation and
identify two transmitted words that achieve this distance. Would you invest
in WolverineCom.com?

(c) Find the simplest form for the maximum likelihood demodulator for I (1)
based on observations q(1), q(2), and q(3).
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Problem 15.36. Square quadrature amplitude modulation (QAM) is a commonly
used linear modulation in engineering practice. A square QAM constellation
consists of a square of M1 points by M1 points where the M1 points in each
dimension are placed on an equal spaced grid.

(a) Plot square QAM constellations for M1 = 2, 4, 8.

(b) If constellation points for a constellation of size M2
1 are located at

dI n = B(2m − M1 + 1) m = 0, . . . , M1 − 1

dQm = B(2n − M1 + 1) n = 0, . . . , M1 − 1 (15.108)

show that

B =
√

6 log2(M1)
M2

1 − 1
(15.109)

will normalize the constellation such that E[|Dz|2] = 2 log2(M1). Hint:

N∑
i=1

i = (N + 1)N
2

N∑
i=1

i2 = (N + 1)(2N + 1)N
6

(15.110)

(c) With square QAM decisions can be made independently on the bits modu-
lating the I channel and the Q channel. What conditions must hold for this
to be true.

(d) Show the word error probability of square QAM is upperbounded by

PW (E) ≤ 1 −
(

erf

(
B

√
Eb

N0

))2

(15.111)

Hint: Use Problem 15.7.

Problem 15.37. A modulation often used in practice is known as staggered QPSK.
Staggered QPSK with a bit rate of Wb = 1/T where Kb is even has the form

Xz(t) =
Kb/2∑
l=1

DI (l)ur (t−(l−1)T )+ j
Kb/2∑
l=1

DQ(l)ur

(
t − (l − 1)T − T

2

)
(15.112)

where DI (k) = (−1) I (k) and DQ(k) = (−1) I (k+Kb/2) where k = 1, . . . , Kb/2 and
ur (t) is a unit energy rectangular pulse.

(a) This modulation is an orthogonal modulation. Prove this by showing the
waveforms associated with each bit are orthogonal to the waveforms asso-
ciated with the other bits.

(b) Give a block diagram for a simple optimum detector.
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(c) Compute the bit error probability for the optimum detector.

(d) Compute the word error probability for the optimum detector.

15.6 Example Solutions

Problem 15.20.

(a) Note that the first signal set is 4-ary PSK and has and average constellation
energy of ED1 = 2. The second signal set has the energy of

ED2 = A2

4
[3 + 1 + 1 + 3] = 2A2 (15.113)

Consequently, the value of A needed to achieve equal energy is A = 1.

(b) Since the modulations are linear, the sufficient statistic for demodulation
is the matched filter output

Q =
∫ Tp

0
yz(t)u∗(t) dt (15.114)

The decision rule is given as

�̂I = arg min
i=1,...,3

|Q −
√

Ebdi|2 (15.115)

The decision regions for these minimum distance decoders are shown in
Figure 15.29.

d0

d1

d3

QI

QQ

d0

d1

d2

d3

QI

QQ

A0

A0

A1 A1

A2
A2

A3 A3

d2

Figure 15.29 The two minimum distance decoders.
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(c) The resulting distance spectrum for the first signal set is

�E (i, j )

�I = i

�I = j 0 1 2 3
0 0 4Eb 8Eb 4Eb
1 4Eb 0 4Eb 8Eb
2 8Eb 4Eb 0 4Eb
3 4Eb 8Eb 4Eb 0

Hence the full union bound for the first signal set is given as

PWUB(E) = erfc

(√
Eb

N0

)
+ 1

2
erfc

⎛
⎝
√

2Eb

N0

⎞
⎠ (15.116)

A tighter union bound is given as

PWUB(E) = erfc

(√
Eb

N0

)
(15.117)

The distance spectrum for the second signal set is

�E (i, j )

�I = i

�I = j 0 1 2 3
0 0 4Eb 12Eb 4Eb
1 4Eb 0 4Eb 4Eb
2 12Eb 4Eb 0 4Eb
3 4Eb 4Eb 4Eb 0

Hence the full union bound for the second signal set is given as

PWUB(E) = 5
4

erfc

(√
Eb

N0

)
+ 1

4
erfc

⎛
⎝
√

3Eb

N0

⎞
⎠ (15.118)

(d) The first signal set has a minimum distance of �E (min) = 4Eb with a multi-
plicity of 8. The second signal set has a minimum distance of �E (min) = 4Eb
but a multiplicity of 10. The greater multiplicity of the minimum distance
error event means that the second signal set will have worse performance.
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Problem 15.28.

(a) Ethernet is clearly using a stream modulation. When T = Tu the pulse
shape used in Ethernet satisfies Nyquist’s criterion for zero ISI. Conse-
quently, the matched filter to the pulse shape sampled at times ts = kT k =
1, . . . , Kb will form the sufficient statistics for demodulation. For an ar-
bitrary real constellation the optimum demodulator for each bit has the
form

Î (k) = arg max
mk=0,1

dmk

∫ Tp

0
yc(t)u(t − (k − 1)T )dt − Eb(dmk )2

2

= arg max
mk=0,1

dmk Q(k) − Eb(dmk )2

2
(15.119)

(b) Clearly d0 = 1 and d1 = −1 would optimize performance.

(c) Since the output of the matched filter is

Q(k) = D(k)
√

Eb + Nz(k) (15.120)

and using (15.15) gives

PB (E) = 1
2

erfc

⎛
⎝
√

Eb(d0 − d1)2

4N0

⎞
⎠ (15.121)

(d) The pulse shape spectrum is given as

U (f ) =
√

Tu sin c
(

f Tu

2

)
exp
[− j π f Tu

2

]

−
√

Tu sin c
(

f Tu

2

)
exp
[− j 3π f Tu

2

]
(15.122)

The corresponding energy spectrum is plotted in Figure 15.30 and the
spectral efficiency of Ethernet (using 3 dB bandwidth) is ηB = 1/2.32 =
0.43 bit/s/Hz. Matlab code is appended.

(e) Recall we want

1
M

3∑
i=0

d 2
i = Kb (15.123)

so that A =
√

2
5 .
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Figure 15.30 Dxz (f ) for Wb = 1/T .

(f) It is apparent that for the second alternative that the orthogonality condi-
tion still holds so that we have

Î i(k) = arg max
mk=0,1

dmk

∫ Tp

0
yc(t)ui(t − (k − 1)T )dt − Eb(dmk )2

2
i = 1, 2

(15.124)

For the first alternative the symbols are still orthogonal so each symbol can
be decoded independently and combined via

�̂I (k) = arg max
i=0,3

di

∫ Tp

0
yc(t)u(t − (k − 1)T )dt − Eb(di)2

2
(15.125)

(g) Noting the orthogonality of the modulation and using (15.40) for the second
option we have

PW (E) = 1 −
⎛
⎝1 − 1

2
erfc

⎛
⎝
√

Eb(d0 − d1)2

4N0

⎞
⎠
⎞
⎠

2Kb

(15.126)
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Figure 15.31 Dxz (f ) for Wb = 2/T .

Again noting the orthogonality of the symbol modulation and using the
result in Eq. (15.17) we have for the first option

PW (E) = 1 −
⎛
⎝1 − 3

4
erfc

⎛
⎝
√

2Eb

5N0

⎞
⎠
⎞
⎠

Kb

(15.127)

(h) With linear modulation the spectrum will not be changed so the spectrum
for the first option will have the same form as in Figure 15.30. The resulting
spectral efficiency is ηB = 0.86 bit/s/Hz. The spectrum for the second option,
using similar techniques as in the text and assuming BPSK, is given as

Dxz(f ) = 1
2

(Gu1 (f ) + Gu2 (f )) (15.128)

The resulting average energy spectrum is given as Figure 15.31. The re-
sulting spectral efficiency is ηB = 0.86 bit/s/Hz. Consequently, the resulting
spectral efficiency is roughly the same.
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%
% Solution for Problem mc.28
% Author: M. Fitz
% Last modified: 10/14/06
%
close all
clear all
%
% Using with numpts points over 0<f<xaxislim
%
numpts=10000;
xaxislim=6;
freq=linspace(0.00001,xaxislim,numpts);
%
% part d)
%
uf1=0.5*sinc(freq/2).*exp(-j*pi*(freq)/2);
uf2=-0.5*sinc(freq/2).*exp(-j*3*pi*(freq)/2);
gu1f=(abs(uf1+uf2)).^2;
figure(1)
plot(freq,10*log10(gu1f))
axis([0 xaxislim -60 0])
hs=subplot(1,1,1)
set(hs,'Fontsize',14)
xlabel('Normalized Frequency, f T_{p}', 'Fontsize',16)
ylabel('D_{x_z}(f) / E_b, dB','Fontsize',16)
%
% part h)
%
uf3=sinc((freq)).*exp(-j*pi*freq);
gu2f=(abs(uf3)).^2;
dxzf=0.5*(gu1f+gu2f);
figure(2)
%plot(freq,10*log10(gu1f), freq, 10*log10(gu2f),freq,10*log10(dxzf))
plot(freq,10*log10(dxzf))
axis([0 xaxislim -60 0])
hs=subplot(1,1,1)
set(hs,'Fontsize',14)
xlabel('Normalized Frequency, f T_{p}', 'Fontsize',16)
ylabel('D_{x_z}(f) / E_b, dB','Fontsize',16)

15.7 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).
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Presentation: The forum will be similar to a design review at a company
(only much shorter) The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). Each team
member should be prepared to give the presentation.

15.7.1 Project 1

Project Goals: Engage in an implementation of an optimum demodulator of
an 8-ary signal set that uses linear modulation.

Consider linear modulation and pulse shape (with sample frequency f s =
22,050 Hz) and the received bandpass signal ( f c = 3500 Hz) given in mcproj1
data.mat. Any computer code (e.g., Matlab) should be turned in with
the project write-up.

(a) Plot the constellation. Find Eb.

(b) Sketch a block diagram of the optimum demodulator for this signal set for
πi = 0.125, i = 0, . . . , 7.

(c) Make the optimum word decision and compute all the sufficient statistics
of the demodulation for πi = 0.125, i = 0, . . . , 7.

15.7.2 Project 2

Project Goals: Build an OFDM transmission system that meets an engineer-
ing goal.

Build a digital representation of an OFDM transmitted signal where the
sampling frequency is given as f s = 22,050 Hz. The system should transmit
Kb = 16 bits with 1 bit on each subcarrier, have a carrier frequency of f c =
1800 Hz and achieve a transmission rate of Wb = 2000 Hz. Any computer
code (e.g., Matlab) should be turned in with the project write-up.

Specifically a completed design will require the student to

(a) Plot one sample path of the transmitted signal, i.e., xi(t) for some i ∈
{0, . . . , 65535}. The actual 16 bits will be supplied by the instructor.

(b) Compute and plot DXz(f ) and compare it to a measured energy spectrum of
the sample path generated in (a).

(c) Run a significant number of trials where the value of �I is randomly chosen
and compute the PAPR of this OFDM waveform.

15.7.3 Project 3

Project Goals: Build a demodulator for an OCDM transmission system.
Consider a Kb = 8 OCDM system (with sample frequency f s = 22,050 Hz)

with the set of spreading waveforms and the received baseband signal given in
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mcproj3data.mat. These spreading waveforms are as given in Problem 15.22.
Any computer code (e.g., Matlab) should be turned in with the project
write-up.

(a) What is the transmission rate of this system, Wb?

(b) Sketch a block diagram of the optimum demodulator for this signal set for
equally likely and independent bits.

(c) Make the optimum bit decision and compute all the sufficient statistics of
the demodulation for equally likely and independent bits.
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Chapter

16
Spectrally Efficient Data

Transmission

16.1 Spectral Containment

In digital communications it is often desirable to get many users in a band
of frequencies. Examples include channels in broadcast or cable television and
phone calls in mobile telephony. In this case it is often undesirable for emissions
from one user to interfere with the transmission from another user. In the
modulations introduced in Chapter 15 the transmitted spectra have significant
out of band power due to the sinc( f Tp) characteristic in the spectrum. This
sinc( f TP ) characteristic is due to the using of a rectangular pulse in each of
these modulations. This out of band power can produce significant interference
among users.

To prevent significant adjacent channel interference a spectral mask is of-
ten imposed on the transmission. Figure 16.1(a) shows a typical spectral mask
that must be met by transmitter electronics. Within the transmission band-
width, BT , the spectrum is not regulated. Outside the transmission bandwidth
the output power is slowly tapered off until a large attenuation is achieved
at the next adajacent channel. This mask is the spectral emissions mask for
the narrowband radio services band as defined by the Federal Communica-
tions Commission [Com04]. Forcing a transmitter to obey this type of emissions
mask allows more channels to operate with a better performance in a given fre-
quency band. Meeting this emission mask will require a more sophisticated
signal design than has been investigated up to this point in the text. For exam-
ple, Figure 16.1(b) shows the mask in comparison to the spectrum of a digital
modulation that uses a rectangular pulse shape like the examples introduced
in Chapter 15. Clearly a rectangular pulse shape is not well motivated in this
application due to the high sidelobes in frequency. These high sidelobes will
cause significant interference to adjacent channel users. This is especially true
when a near-far situation exists. An example of a near-far situation would be a

16.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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(b) The mask compared with an example
sinc (2f/BT)2 spectrum.

Figure 16.1 A typical spectral emission mask.

communication system trying to demodulate a digital television signal from a
remote station while simultaneously being close to an antenna broadcasting on
a different channel (carrier frequency). Keeping the interference from the close
by station low will be important in maintaining a high fidelity of demodulation
for the remote station. Designing pulse shapes that meet a spectral mask (one
for a mobile telephone) was investigated in Project 13.1. Meeting this emission
mask and maintaining the orthogonality that enables low complexity demodu-
lation as was introduced in Chapter 15 is the focus of this chapter.

Another situation that often arises is where the physical channel has sig-
nificant spectral shaping characteristics. The best example of this is digital
communications on analog telephone lines. The original analog telephone lines
were designed to work with 4 kHz baseband signals and to minimize the ef-
fects of aliasing there is a sharp cutoff filter in each phone line. Consequently,
it is important to find communication techniques that can accomodate this fre-
quency selective characteristic of the channel. For example, Figure 16.2 shows
what might be a typical communication system model. If the channel is known
at the transmitter then this knowledge can be included as part of the signal
design, i.e., the design problem then focuses on specifying the form of Xz(t)
or Xc(t) to achieve a desired form for Rz(t) or Rc(t). Being able to design a
communication system that can operate in that known environment is another
goal of this chapter.

Xz(t) Yz(t)
Rz(t)

hz(t) Σ

Wz(t) Figure 16.2 A frequency selective
channel model.
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16.2 Squared Cosine Pulse

The following Fourier transform pair is frequently used in bandwidth efficient
communications.

Definition 16.1 The squared cosine pulse family is characterized as

pc(x, Tz) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 |x| ≤ (1 − α)Tz

2

cos2
(

π

2αTz

(
|x| − (1 − α)Tz

2

))
(1 − α)Tz

2
≤ |x| ≤ (1 + α)Tz

2

0 elsewhere
(16.1)

where 0 ≤ α ≤ 1. α is the parameter that indexes this family of pulse shapes. The Fourier
transform of the squared cosine pulse family is

Pc(y, Tz) = F{pc(x, Tz)} = cos(παyTz)
1 − (2αyTz)2 Tzsinc(yTz) (16.2)

It should be noted dummy variables of x and y are used instead of the traditional
t and f in this development. The reason is that this pulse family will be used
as both a time pulse and a frequency pulse. Figure 16.3 shows a plot of the
time function and the Fourier transform. When α = 0 then pc(x, Tz) becomes
the rectangular pulse of width Tz. When α > 0 then the Fourier transform dies
off much quicker than the Fourier transform of the rectangular pulse due to
the tapering at the edge of the pulse. This characteristic is useful for making
the transmissions more bandwidth efficient and meeting a spectral emissions
mask.
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Figure 16.3 The “time” and “frequency” characteristics of the squared cosine pulse.
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The squared cosine pulse shape has two additional important characteristics
that make it useful for bandwidth efficient digital communications.

■ For |x| ≤ Tz the squared cosine pulse satisfies

pc(x, Tz) + pc(x − Tz, Tz) + pc(x + Tz, Tz) = 1 (16.3)

■ Pc( n
Tz

, Tz) = 0 for n an integer and n �= 0.

The first characteristic indicates that the area under pc(x, Tz) is constant
for any value of α even though the length of the pulse, (1 + α)Tz, is changing
with α. This characteristic is due to the fact that cos(x −π/2) = sin(x) and that
cos2(x) +sin2(x) = 1. The second characteristic indicates the Fourier transform
goes to zero at the same values of frequency as the Fourier transform of the
rectangular pulse. The zeros of the Fourier transform are due to the Tzsinc(yTz)
term.

The squared cosine pulse family is often referred to as the raised cosine pulse
in the literature. The reason for this can be seen in the case of α = 1 where the
pulse is given using a trigonometric identity as

pc(x, Tz) =

⎧⎪⎨
⎪⎩

cos2
(

πx
2Tz

)
|x| ≤ Tz

0 elsewhere

=

⎧⎪⎨
⎪⎩

1
2

+ 1
2

cos
(

πx
Tz

)
|x| ≤ Tz

0 elsewhere

(16.4)

The “raised cosine” terminology evolved in the communications literature from
the fact that with α = 1 the 1/2 term raises the cosine term. Why this text
breaks with tradition and uses the notation “squared cosine” family should be
apparent by how this pulse is used in achieving spectrally efficient pulses for
orthogonal modulations.

A second Fourier transform pair is also frequently used in bandwidth efficient
communications.

Definition 16.2 The cosine pulse family is characterized as

uc(x, Tz) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 |x| ≤ (1 − α)Tz

2

cos

(
π

2αTz

(
|x| − (1 − α)Tz

2

))
(1 − α)Tz

2
≤ |x| ≤ (1 + α)Tz

2

0 elsewhere

(16.5)

where 0 ≤ α ≤ 1. The Fourier transform of the cosine pulse family is

Uc(y, Tz) = Tz(1 − α)sinc(yTz(1 − α))
1 − (4αyTz)2 + 4Tzα cos(πyTz(1 + α))

π
(
1 − (4αyTz)2

) (16.6)
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It should be noted for clarity that uc(x, Tz) = √
pc(x, Tz). This pulse is also

often described in the literature as a square root raised cosine pulse. Finally,
neither of the two important characteristics of the squared cosine pulse family
hold true for the cosine pulse family.

16.3 Spectral Shaping in OFDM

OFDM is a modulation that independently modulates data bits on different
subcarrier frequencies. For OFDM a subcarrier refers to a frequency offset
compared to the true carrier frequency, fc. A simple demodulator results if
the modulation on each of the subcarrier frequencies are orthogonal. With the
rectangular pulse shape, ur (t), assumed in Chapter 15, the orthogonality con-
dition between the signal for subcarrier l and subcarrier k was shown to be



[

Dz(l)D∗
z (k)

Eb

Tp

∫ ∞

−∞
|ur (t)|2 exp[ j 4π fd (l − k)t]dt

]
= 0 ∀k �= l (16.7)

The spectrum is also a direct function of the shaping pulse. The spectrum in the
case of equally likely bits independently modulated on each carrier becomes

DXz(f ) = Eb

Kb

Kb∑
l=1

|Ur ( f − fd (2l − Kb − 1))|2 (16.8)

The desired goal is to identify a shaping pulse, us(t), that both maintains the
orthogonality condition of Eq. (16.7) and gives better out of band spectral emis-
sion characteristics than the rectangular pulse shape.

The results of Section 16.2 can be used to identify spectral efficient transmis-
sion strategies for OFDM. To generalize OFDM we can use an arbitrary pulse
shape, us(t). This implies that the transmitted signal has the form

Xz(t) =
Kb∑
l=1

Dz(l)

√
Eb

Tp
us(t) exp[ j 2π fd (2l − Kb − 1)t] (16.9)

and the orthogonality condition becomes



[

Dz(l)D∗
z (k)

Eb

Tp

∫ ∞

−∞
|us(t)|2 exp[ j 4π fd (l − k)t]dt

]
= 0 (16.10)

Defining p(t) = |us(t)|2 and restating the orthogonality condition as


[Dz(l)D∗
z (k)P (2 fd (k − l))] = 0 (16.11)

it is immediately obvious that orthogonality holds for an arbitrary pulse shape
and an arbitrary constellation only if

P (2 fd (k − l)) = 0 ∀ l �= k (16.12)
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Stated in words, the Fourier transform of p(t) = |us(t)|2 must go to zero at
integer multiples of 2 fd . Considering the characteristics of the squared cosine
pulse it is apparent that a selection of p(t) = pc(t, 1/(2 fd )) will give the desired
orthogonality. This implies that a bandwidth efficient implementation of OFDM
has the form

Xzs(t) =
Kb∑
l=1

Dz(l)

√
Eb

Tp
uc(t) exp[ j 2π fd (2l − Kb − 1)t] = uc(t)Xzu(t) (16.13)

where Xzu(t) is the original OFDM modulation without shaping. Using this
form of spectral shaping is convenient since it only has to be done on the trans-
mitted signal after modulation.

This pulse shaping in OFDM has two negative aspects. When keeping the
subcarrier spacings fixed in an OFDM system the shaping will lower the data
rate and spectral efficiency. For a subcarrier spacing of 1/Tp the transmission
length goes from Tp with no shaping to (1 + α)/Tp with shaping. This length-
ening of the pulse leads to a proportional reduction in data rate and spectral
efficiency. Second, the matched filter for each subcarrier must use the shaped
pulse in computing Q(k). This shaping, while not difficult, adds more complex-
ity. The matched filter uses the pulse shape which is not equivalent to taking
a Fourier transform of the received signal as is needed with the unshaped
pulse.

Good spectral efficiency and spectral compactness can be achieved with a
small α in the case when Kb is large. The smaller the value of α, the smaller
the region in time over which the the OFDM signal needs to be shaped and
the higher the spectral efficiency. Figure 16.4(a) shows a plot of the output
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Figure 16.4 The average energy spectrum per bit of OFDM for various raised cosine time pules.
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spectrum for OFDM for Kb = 4 for various values of α. It should be noted that
the cosine pulse shape does not allow a stringent spectral mask to be met with a
small Kb, but with larger Kb the spectrum becomes quite compact. This can be
observed in Figure 16.4(b) that shows a plot of the output spectrum for OFDM
for Kb = 64 for various values of α. This is advantageous as most practical
OFDM systems use at least 64 subcarriers so that a small amount of spectral
shaping is sufficient to meet a typical frequency mask.

It should be noted that this pulse shaping is not precisely used in practice.
In general, OFDM modems are used in frequency selective channels and these
frequency selective channels make orthogonality hard to achieve. The spec-
tral shaping techniques that are used in practice are similar to that developed
here in the sense that shaped pulses are used in lieu of rectangular pulses
where a majority of the shaping is done at the pulse boundaries (equivalent to a
small α).

16.4 Spectral Shaping in Linear Stream Modulations

Linear stream modulation is the most prevalent form of digital communications
so spectral shaping of linear modulations is an important topic. Recall linear
stream modulations have the form

Xz(t) =
Kb∑
l=1

Dz(l)
√

Ebu(t − (l − 1)T ) (16.14)

The orthogonality condition that needs to be satisfied such that simple demod-
ulation is possible is given as


[Dz(l)D∗
z (k)Vu((k − l)T )] = 0 (16.15)

where Vu(τ ) is the pulse shape correlation function defined in Chapter 2, i.e.,

Vu(τ ) =
∫ ∞

−∞
u(t)u∗(t − τ )dt (16.16)

The average energy spectrum per bit of linear stream modulation for the case
of equally likely symmetric constellations was shown in Chapter 15 to be

DXz(f ) = Eb|U (f )|2 = EbGu(f ) (16.17)

Putting together Eqs. (16.15) and (16.17) shows that it is desired that a good
pulse shape for linear stream modulations both must have a compact spectrum
and an autocorrelation function that goes to zeros at integer multiples of the
symbol time.
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Figure 16.5 The autocorrelation of a spectral cosine pulse.

The square cosine function again has the desired characteristics due to the
periodic zeros property of Pc(y, Tz). Using Eq. (16.2) we can set

Vu(τ ) = Pc(τ, 1/T ) = cos
(

πατ
T

)
1 −
(

2ατ
T

)2 sinc
( τ

T

)
(16.18)

where 0 ≤ α ≤ 1. The sinc( τ
T ) term in Eq. (16.18) is what ensures that Nyquist’s

criterion for zero ISI is satisfied in the matched filter output. A plot of this
pulse autocorrelation is shown in Figure 16.5. The reason this function satisfies
Nyquist’s criterion for zero ISI is clearly due to the periodic zero crossings.
If the autocorrelation function of the pulse in a linear modulation is chosen
as in Eq. (16.18) then the average energy spectrum bit of the linear stream
modulation is then given as

Dxz(f ) = EbGu(f ) = Eb pc( f , 1/T )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

EbT | f | ≤ 1 − α

2T

EbT cos2
(

πT
2α

(
| f | − (1 − α)

2T

))
1 − α

2T
≤ | f | ≤ 1 + α

2T

0 elsewhere

(16.19)
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This spectrum is clearly bandlimited (i.e., BT ≈ 1+α
T ) and this text denotes the

pulse/transform pair in Eqs. (16.18) and (16.19) as a spectral squared cosine
family of pulse shapes. In direct analog to the discussion about the squared co-
sine pulse family, this pulse pair is often denoted in the literature as a spectral
raised cosine pulse family. α is usually denoted the excess bandwidth factor
as it determines how much the ideal bandwidth expands from the minimum,
BTmin = 1

T .
The actual pulse used in the linear modulation is a spectral cosine pulse

family. Since

Gu(f ) = F{Pc(τ, 1/T )} = |U (f )|2, (16.20)

it is clear that the pulse spectrum is given as

U (f ) = uc( f , 1/T ) =
√

pc( f , 1/T )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
T | f | ≤ (1 − α)

2T
√

T cos
(

πT
2α

(
| f | − (1 − α)

2T

))
(1 − α)

2T
≤ | f | ≤ (1 + α)

2T

0 elsewhere

(16.21)

The pulse itself is given as

u(t) = Uc(t, 1/T ) = 1 − α√
T

sinc
(

(1−α)t
T

)
1 −
(

4αt
T

)2 +
4α cos

(
π(1+α)t

T

)
π

√
T
(

1 −
(

4αt
T

)2
) (16.22)

Figure 16.6(a) shows plots of the spectral cosine pulse shape for various values of
α. It should be noted that these pulses have infinite time support but the pulses
die off to zero at large arguments. The rate of decay of the pulses away from
the peak of the pulse in this family increases with α. A typical time waveform
for linear stream modulations is shown in Figure 16.6(b).

For practical applications approximations are used in generating the pulse
shape for a linear stream modulation. The infinite time support of the spectral
cosine pulse implies that approximations to these pulses must be used in prac-
tice. The simplest approach to implementation a practical pulse is to window or
truncate the spectral cosine pulse in time to produce a finite time support. Again
we will denote the truncated pulse length with Tu. The truncation implies that
the orthogonality condition will be violated for some or all symbol time offsets.
With an appropriate choice of window function, the amount of ISI produced can
be made acceptably small. The design projects at the end of the chapter will
explore windowing of a spectral cosine pulse for use in stream modulations.
Also as detailed in Eq. (16.22) the spectral cosine pulse is an anticausal pulse.
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Figure 16.6 Spectrally efficient stream modulation using BPSK, α = 0.3, and Tu = 8T .

Once the pulse is truncated there is no impact on performance in making the
pulse causal as both the autocorrelation function of the pulse and the energy
spectrum of the pulse are invariant to a delay in the pulse. A wide range of
practical communication systems use the spectral cosine pulse and in fact all
vector signal analyzers have this pulse programmed as a standard mode.

Recall the demodulator for a linear stream modulation samples the output
of a filter matched to the pulse shape for each transmitted symbol. The demod-
ulator structure is shown in Figure 16.7. Recall that the matched filter output
has the form

Q(t) =
∫ ∞

−∞
Yz(λ)u∗(λ − t + Tu)dλ (16.23)

The matched filter output when sampled at t = Tu + (k − 1)T will have the
form

Q(k) = Dz(k)
√

Eb +
√

Eb

∑
l �=k

Dz(l)Vu(k − l) + Nz(k) (16.24)

Threshold
Test

0

u*(Tu – t) Sampler

Tu + (k – 1)T

Re[•] Î(k)Yz(t)

Figure 16.7 The optimal demodulator for stream modulations using BPSK.
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Figure 16.8 Spectrally efficient stream modulation using BPSK, α = 0.3, and Tu = 8T .

It is clear that if Nyquist’s criterion holds for the pulse shape, u(t), then the
kth data bit can be detected without interference from other data bits (n �= k).
Figure 16.8(a) shows the noiseless output of the matched filter for a spectrally
efficient pulse where Tu = 8T and Eb = 1. The vertical lines in Figure 16.8(a)
represent the sample times and the horizontal lines represent the modulation
symbol values. It is apparent from this figure that even though 8 symbols are
overlapped at any time, designing the pulses to achieve the orthogonality condi-
tion allows each BPSK modulation symbol to be detected without interference
from the other pulses. Using this shaping on the pulse also achieves the desired
spectral efficiency as shown in Figure 16.8(b). This figure is a measurement of
the spectrum of the transmitted signal and demonstrates the desired spectral
containment.

16.5 Testing Orthogonal Modulations

While orthogonal modulations are used in a wide variety of applications, it
is not always possible to keep the waveforms orthogonal at the receiver. The
nonorthogonality of the received waveforms can be produced by a wide variety
of distortions that arise in practice. A partial list of the causes of the loss in
orthogonality is

■ A channel that is frequency selective
■ Phase noise in the up and downconverters in the radio system of a modem
■ Nonlinear distortion in the radio system of the modem
■ Complexity constraints on the modem implementation
■ Noise in the sample timing location for the matched filter output in the modem
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In many situations this loss in orthogonality is significant enough to war-
rant a reformulation of the demodulation algorithms. In many other cases the
goal is to characterize and minimize the distortion that causes the nonorthog-
onality. This section will introduce some common tools used by communica-
tion engineers to characterize the nonorthogonality of received waveforms in a
demodulator.

When orthogonality is lost at the demodulator this results in interference
from other symbols. Recall that OCDM, which is the most general case of or-
thogonal modulation, has a transmitted signal of the form

Xz(t) =
√

Eb

Kb∑
l=1

Dz(l)sl(t) (16.25)

For orthogonal modulations when the waveforms for each bit have maintained
their orthogonality then the output of the matched filter for the kth bit is

Q(k) =
∫ Tp

0
Yz(t)s∗

l (t)dt = Dz(k)
√

Eb + Nz(k) (16.26)

If distortion has happened in the communication system then the matched filter
outputs will have the form

Q(k) =
∫ Tp

0
Yz(t)s∗

l (t)dt =
√

Eb

Kb∑
l=1

Dz(l)g(k, l) + Nz(k) (16.27)

Hence the distortion in the received waveform causes interference from other
symbols in the matched filter output of the desired symbol. Measuring and
characterizing the amount of intersymbol interference (ISI) is the goal of this
section.

Recall that communication waveforms have three dimensions (I, Q, and time)
and most of the tools in use in practice are methods to represent the three
dimensions of a communication waveform in two dimensions. Examples that
we will explore here are

1. The scatter plot (I vs. Q in the matched filter output)

2. The vector diagram for stream modulations

3. The eye diagram (I vs. time or Q vs. time in the matched filter output) for
stream modulation.

These three tools are used frequently in engineering practice.

16.5.1 The Scatter Plot

The scatter plot simply plots the I and Q points of the matched filter output.
In the absence of noise and ISI the scatter plot should just be a scaled constel-
lation plot as in this case Q(k) = √

EbDz(k). For example, the scatter plot of
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Figure 16.9 Scatter plots for QPSK modulation.

a QPSK modulation when the amount of nonorthogonality is small is shown
in Figure 16.9(a). A scatter plot for a case where some significant distortion is
present in the received signal is shown in Figure 16.9(b). The ISI present in the
matched filter output is manifested as a spreading of each of the constellation
points. While the distortion shown in Figure 16.9(b) appears to not be signifi-
cant enough to cause errors in the absence of noise it should be apparent that
the addition of noise with this distortion will significantly degrade the error
rate performance. The scatter plot is a quick visual way for a communication
engineer to get a handle on the amount of nonorthogonality in a modulation.

An often used measure of distortion for communication engineers is the error
vector magnitude (EVM). The error vector for the matched filter output is de-
fined to be Eq(k) = Q(k) − √

EbDz(k) and a vector diagram demonstrating this
concept is shown in Figure 16.10(a). Communication engineers often quote the
statistic of EVM. EVM is the average error vector magnitude compared to the
largest normalized constellation point. There are many definitions of EVM but
the most often used definition is RMS-EVM. Precisely RMS-EVM is defined as

RMS-EVM =
√∑Kb

l=1 |Eq(l)|2
√

Kb maxi=0,...,M−1 |√Ebdi|
(16.28)

and is most often reported in percentage. Most communication systems that
use orthogonal modulations strive to achieve an EVM of less than 5%. Sys-
tems which use large constellations (64QAM or 256QAM) like digital television
often have EVM requirements less than 3%. Most high performance vector an-
alyzer type test equipment have automated EVM computations for common
modulations used in accepted telecommunications standards. For example,
Figure 16.10(b) shows an example test suite for a radio using one of the 64QAM



16.14 Chapter Sixteen

EbDz(k)

Q(k)

Eq(k)

Re(•)

Im
(•

)
(a) The error vector

1.5

Const

–1.5

300
m/div

A: Ch1 OFDM Meas Range: 0 dBm

–2.707
RBW: 312.5 kHz

2.7071
Time Len: 40  Sym

Range: 0 dBm
–10
dBm

LogMag

10
dB/div

Center: 70 MHz
RBW: 17.3607 kHz

Span: 20 MHz
Time Len: 220 uSec

20%

LinMag

0%

2%

/div

C: Ch1 OFDM Err Vect Spectrum Range: 0 dBm

Stop: 26 carrier
TimeLen: 40 Sym

Start: –26  carrier
RBW: 312.5 kHz

EVM  = –30.302 dB EVM = 3.0541 %rms
Pilot EVM  = –32.465 dB CPE  = 3.8536 %rms

Freq Err  = 14.941 kHz IQ Offset  = –55.59 dB
Sync Corr  = 0.90418   Sym ClkErr  = –6.54 ppm
Mod Fmt  = 64 QAM
Octets  = 1200   Symbol = 45
CodeRate  = 3/4   Bit Rate   = 54.000 Mbps

0 00000100 01010000 00010000 00010100 01000101
20 01010100 0001    01 01000001 01010001 01000001
40 01000101 01000100 00010001 01090C26 263A013E
60 261E2138 0B142C22 00222E03 010F2324 2B2503

(b) A test suite for an 802.11a.

B: Ch1 Spectrum D: Ch1 OFDM Syms/Errs Range: 0 dBm

Figure 16.10 Testing using the error vector.

modes of operation for the IEEE 802.11a standard. Recall as discussed earlier
802.11a is an OFDM based wireless modem and this figure shows a scatter
plot for all subcarrier matched filter outputs, the received signal spectrum, and
computations on the error vector for each subcarrier. This test suite is auto-
matically produced by an Agilent vector signal analyzer and a great deal of
information can be derived from this plot about the performance of a communi-
cation system using orthogonal modulation. For example, a very useful tutorial
article on how to use EVM to troubleshoot an orthogonal modulation system
is [Agi00].
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16.5.2 Stream Modulations

Since historically stream modulations have seen the most utility in practice
several techniques have evolved to test the performance of orthogonal stream
modulations. The two most common tests in stream modulation are the vector
diagram plot and the eye diagram.

Vector Diagram

A generalization of the scatter plot is the vector diagram. The vector diagram
was introduced in Chapter 4 as a way to visualize the 3D characteristics of the
complex envelope in a 2D graph. For orthogonal stream modulation as with
any IQ modulation the vector diagram can be used to get information about
the vector modulated signal. For example, Figure 16.11 shows the transmitted
vector diagram for a QPSK modulated stream modulation with a spectral co-
sine pulse with α = 0.3 and Tu = 8T . A particular important vector diagram is
the output of the matched filter to the transmitted pulse shape. This vector
diagram with near ideal orthogonality should go through the constellation
points at each sample time. Often in a vector diagram of the matched filter
output, these sample times are marked with a different marker to empha-
size these sample times. For example, for a QPSK modulated stream modula-
tion with a spectral cosine pulse with α = 0.3 and Tu = 8T with little loss
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Figure 16.11 Vector diagram for a transmitted signal with QPSK, α = 0.3 and Tu = 8T .
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Figure 16.12 Matched filter output vector diagrams for a stream modulation with a spectral cosine pulse with
α = 0.3 and Tu = 8T . Sample times of the matched filter output are denoted with a circle.

in orthogonality the vector diagram of the matched filter output is shown in
Figure 16.12(a). Note that the matched filter output samples taken by them-
selves would be the scatter plots shown in Figure 16.9. Distortion of the stream
modulation signal will produce significant ISI and a vector diagram for a case of
significant ISI is shown in Figure 16.12(b). Vector diagrams for stream modula-
tions give engineers insights into the performance of practical implementations
of orthogonal stream modulation.

The Eye Diagram

The eye diagram is a technique to view the time waveforms out of the matched
filter. Again the matched filter output is a 3D signal and the eye diagram is
a method to visualize this 3D signal in two dimensions. The eye diagram is
a repetitive plot of the matched filter output (either I or Q channel) over one
symbol in time of the stream modulation. An example of the eye diagram for
the case of near ideal orthogonality is shown in Figure 16.13(a). The original
method of producing an eye diagram goes back to the early days of digital
communication when analog oscilloscopes were the primary time domain anal-
ysis tool available to a communication engineer. The I or Q channel of the
matched filter output could be connected to the oscilloscope and the symbol
clock could be used as the trigger and an eye diagram would then be visible on
the display. The eye diagram shows the possible transitions from one symbol to
the next and how impacted the orthogonality is by any distortion. An example
of the eye diagram for the case of significant ISI is shown in Figure 16.13(b). The
ISI causes the space between the worst case sample points of the matched filter
outputs to move closer to the decision threshold. In the case of BPSK modulation
as shown in Figure 16.13 the threshold will be zero. This effect of the ISI moving
the optimum sample point closer to the decision boundary is often referred to as
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Figure 16.13 Matched filter output eye diagrams for a spectral cosine pulse with α = 0.3 and Tu = 8T . BPSK
modulation.

the “closing” of the eye. A communication system is often referred to as having
a closed eye if there are some ISI patterns which would cause a deterministic
error to occur in the simple threshold test demodulator of orthogonal demodula-
tors. Most communications system analysis tools have the capability to produce
eye diagrams and vector plots since they prove useful to communication engi-
neers. For example, Matlab has an eyediagram command. The Agilent vector
analyzer can produce eye diagrams for most standard stream modulations and
an example of both an eye diagram and a vector diagram for a 16QAM stream
modulation is shown in Figure 16.14. The tools of the eye diagram and the

(a) (b)

Figure 16.14 Test results for an orthogonal stream modulation from an Agilent vector signal analyzer. 16QAM with
α = 0.25.
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vector plot produce a great deal of insight into the implementation of orthogonal
stream modulations and are often used by communication system engineers.

16.6 Conclusions

This chapter has looked at some practical aspects of digital communications
using orthogonal modulations. Techniques to shape the spectrum of orthogonal
modualtions in response to requirements often mandated in real implemen-
tations were overviewed. The concept of the cosine pulse that is popular in
practice was introduced. How this cosine pulse can be used in orthogonal mod-
ulations was briefly summarized. Finally, a brief overview of tools used in the
industry to characterize orthogonal modulations was given. Understanding the
concepts in this chapter will help the student get closer to understanding how
digital communications is implemented in modern systems.

16.7 Homework Problems

Problem 16.1. Prove

Vu(mT ) =
{

Eu m = 0
0 elsewhere

(16.29)

if and only if

k=∞∑
k=−∞

Gu

(
f + k

T

)
= T Eu (16.30)

Hint: Note the proof is based on Nyquist sampling theorem. This property in-
dicates ways to design other pulses besides the spectral cosine pulse family to
satisfy the Nyquist’s criteria for zero ISI.

Problem 16.2. Prove the smallest bandwidth (100% of energy is contained within
this bandwidth) that can be achieved in linear stream modulation is BT = 1/T
when Dz(k) can have an arbitrary constellation. If Dz(k) is restricted to be real
valued show the bandwidth can be BT = 1/(2T ).

Problem 16.3. Prove that usc(t) = F−1{Usc(f )}.
Problem 16.4. The company you work for, Horizon Wireless, has purchased 1 MHz
of spectrum from the federal government of Elbonia. The marketing group of
Horizon Wireless in Elbonia has decided that the way to make money in Elbonia
is to divide the purchased spectrum into 20 equal size channels (of 50 kHz) and
sell radios that use these 20 channels to the Elbonian government for use by
their diplomatic corp.

(a) Give an example of a modulation that will achieve a 40 kHz transmission
rate in a spectrally efficient and power efficient manner on one of these
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Figure 16.15 The energy spectrum of three possible pulses for linear stream
modulation.

channels while sending packets of Kb = 256 bits and achieving a demodu-
lation complexity that is reasonably close to O(256).

(b) Give an example of a modulation that will achieve a 120 kHz transmission
rate in a spectrally efficient and power efficient manner on one of these chan-
nels while sending packets of Kb = 768 bits and achieving a demodulation
complexity that is reasonably close to O(768).

(c) Assume the propagation loss in the channel is Lp = aR−2 where R is the
range of communication and a is a constant and the transmitted power
remains the same for both transmission rates. If your design in part (a)
can achieve a range of 1 km with a low frame error rate, what range will
your design in (b) achieve and give the same frame error rate performance.
(assume the noise stays constant).

Problem 16.5. The energy spectrum of three pulse shapes that can be used in
a linear stream modulation is shown in Figure 16.15. Recall linear stream
modulation has the form

Xz,i(t) =
√

Eb

Kb∑
l=1

Dz(l)ui(t − (l − 1)T ) (16.31)

where ui(t) corresponds to one of the three possible pulse shapes.

(a) Find the amplitude Ai for i = 1, 2, 3 such that Eu = 1.

(b) Prove that each of these three pulses can be used in a stream modulation
and have simple bit demodulation result. Hint: These pulses have the same
characteristic as the squared cosine pulse that makes the squared cosine
pulse shape useful for stream modulation.

(c) Find the form of u3(t).

(d) Which pulse shape will provide the best spectral efficiency if the measure
of bandwith is the 10 dB bandwidth, B10?

Problem 16.6. Your boss has tasked you with designing an OFDM cable modem
to send packets of Kb = 256 bits in less than 300 µs achieving a data rate
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Wb ≥ 853.3 kHz. She wants you to use less than 1 MHz of spectrum and cause
little interference to transmissions from adjacent houses (each house is fre-
quency multiplexed). The cable is assumed to be a frequency flat device and
the goal given by your boss is to have a simple demodulator. Specify all the
important parameters and pulse shapes.

Problem 16.7. The eye diagram for BPSK shown in Figure 16.13 has two levels at
the optimum sample point. How many levels would the optimum sample point
have in an eye diagram for

(a) QPSK modulation.

(b) 8PSK modulation.

(c) the 8-ary linear modulation introduced in Example 15.1.

(d) 16QAM introduced in Problem 15.1.

Problem 16.8. In your current job assignment you are expected to find the
impact of imperfections in the hardware to be used to build your commu-
nication systems. The previous engineer who worked on the assignment had de-
rived the impact of a amplitude imbalance in the I/Q upconverter (see
Problem 4.25)

x̃z(t) = AxI (t) + j BxQ(t) =
√

2
1 + γ

xI (t) + j

√
2γ

1 + γ
xQ(t) (16.32)

where the amplitude imbalance is γ and the impact of a phase imbalance of θ

in the I/Q upconverter (see Problem 4.13)

x̃z(t) = xI (t) − xQ(t) sin(θ) + j xQ(t) cos(θ ) (16.33)

(a) Derive the overall response to an amplitude imbalance of γ and a phase
offset of θ .

(b) Assume a linear modulation is used, xz(t) = Dzu(t) = (DI + j DQ)u(t) show
that the error vector magnitude is given as

EVM(DI , DQ, θ , γ )

=
√

(1 − A)2 D2
I + 2(1 − A)B sin(θ )DI DQ + (1 − 2B cos(θ ) + B2)D2

Q

Problem 16.9. The government has given the company SpyRUs 5 MHz of band-
width to bring down video surveillence images of Odillian terrorist cells from
a satellite. The video requires a data rate of 12 Mbits/s and video is divided
up into packets of 1024 bits. The adjacent spectrum is being used for an ESPN
broadcast of the Ohio State versus Michigan football game and cannot be dis-
turbed (there must be at least 50 dB of attenuation in the adjacent 5 MHz
channels or ESPN by contract can fine SpyRUs).
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Figure 16.16 The rocket signal in
frequency.

(a) The satellite channel is well modeled as frequency flat with an AWGN with a
one-sided spectral density of N0. Design a packet transmission system that
will work for SpyRUs. Specify in detail how the 1024 bits will be transmitted
and the precise data rate of the design.

(b) Assume the loss in the channel is Lp, in your model specify the normaliza-
tion constants such the energy per bit is Eb.

(c) Estimate the error rate in demodulation for a given Eb/N0.

Problem 16.10. (RW) An interesting characteristic of the Fourier transform is
linearity and linearity can be used to compute the Fourier transform of compli-
cated functions by decomposing these function into sums of simple functions.

(a) Prove if y(t) = x1(t) + x2(t) that Y (f ) = X1(f ) + X2(f ).

(b) For the pulse shape spectrum given in Figure 16.16 find a symbol rate at
which the Nyquist’s criterion will be satisfied.

Problem 16.11. Show that the rectangular pulse, i.e.,

ur (t) =

⎧⎪⎨
⎪⎩
√

1
T

0 ≤ t ≤ T

0 elsewhere

(16.34)

satisfies the condition given in Eq. (16.30).

Problem 16.12. (Design Problem) Specify and identify all components of the
transmitted waveform for a stream modulation that has a transmission rate
of Wb = 100 kbits/s, uses BPSK modulation, achieves a spectral efficiency of
ηB = 0.75 where BT is the 30 dB bandwidth of the transmitted signal, and
has an optimum demodulator with a complexity that scales linearly with the
number of bits transmitted.
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Problem 16.13. Often in communications a system requirement is that a certain
percentage of the total power or energy must lie within a certain bandwidth
for the system to be acceptable. For stream modulation using ideal an spectral
cosine pulse, plot the 95% energy per bit bandwidth as a function of α. Using
these results propose a bit rate for a binary stream modulation that can be
achieved where 95% of the energy per bit lies within 1 MHz of bandwidth.

16.8 Example Solutions

Problem 16.2. Nyquist’s criterion for stream modulation is

0 = 
[Dz(l)D∗
z (k)Vu((k − l)T )] (16.35)

so for a complex constellation this becomes Vu(mT ) = 0 for m �= 0. Using
Problem 16.1 it is clear that the pulse used must satisfy

k=∞∑
k=−∞

Gu

(
f + k

T

)
= T Eu (16.36)

Hence if the pulse spectrum is

Gu(f ) =
{

T Eu | f | ≤ 1
2T

0 elsewhere
(16.37)

the condition is satisfied and BT = 1/T . If the bandwidth becomes smaller
than BT = 1/T then the condition in Eq. (16.36) will not hold.

For a real-valued constellation with Vu(mT ) = VuI (mT ) + j VuQ(mT ) the
requirement becomes VuI (mT ) = 0. Note from Chapter 4 that

Gu(f ) = GuI (f ) + j GuQ(f ) GuI = Gu(f ) + G∗
u(− f )

2
(16.38)

Using the results from Problem 16.1 the condition that must hold is

k=∞∑
k=−∞

GuI

(
f + k

T

)
= T Eu (16.39)

A pulse spectrum of

Gu(f ) =
{

2T Eu 0 ≤ f ≤ 1
2T

0 elsewhere
(16.40)

will satisfy Eq. (16.39) and provide a bandwidth of BT = 1
2T .

Problem 16.4.

(a) There are a multitude of modulations that can achieve this specification of
0.8 bits/s/Hz. For example, you could use stream modulation with BPSK
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modulation, a symbol rate of 40 kHz (T = 25 µs) and a spectral cosine
pulse with α < 0.25.

(b) There are a multitude of modulations that can achieve this specification
of 2.4 bits/s/Hz. For example, you could use stream modulation with 8PSK
modulation, a symbol rate of 40 kHz (T = 25 µs) and a spectral cosine pulse
with α < 0.25.

(c) For the examples considered in (a) and (b) the word error probability is
given in Figure 14.8. The difference in the required Eb/N0 for BPSK and
8PSK at medium to high SNR is about 3.5 dB. Since the transmitted power
is the same in both cases, the received signal power will be PRz = L2

p PXz .
The received energy per bit in each case is

Eb(BPSK) = PRz T Eb(8PSK) = PRz T /3 (16.41)

It is clear here that the received energy per bit is lower with the higher
transmission rate and also the required Eb/N0 for 8PSK is larger hence
the second transmission scheme will be doubly penalized, i.e.,

PRz(8PSK) = 3(100.35)PRz(BPSK) = 6.72PRz(BPSK) (16.42)

Consequently, the range of transmission for 8PSK will be

R(8PSK) = (6.72)0.25 R(BPSK) = 0.62R(BPSK) (16.43)

16.9 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). All team
members should be prepared to give the presentation.

16.9.1 Project 1

Project Goal: This project examines the design of a realistic pulse shape to be
used with linear modulation that will meet a spectral emissions mask.

A spectral emissions mask is given in Figure 16.17. This spectral emissions
mask is the one used for GSM handsets. So this problem is one of great practical
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Figure 16.17 Spectral emissions mask for a GSM mobile.

interest. Consider a linear stream modulation having the form

Xz(t) =
√

Eb

Kb∑
k=1

Dz(k)u(t − (k − 1)T ) (16.44)

The design is further constrained in that the pulse, u(t), must not extend for
longer than Tu = 40 µs in time. Design a pulse shape that will satisfy Nyquist’s
criterion for an arbitrary constellation.

For the remainder of the project it is assumed that the pulse shape designed
above is used with BPSK modulation. Any finite length pulse shape which
achieves this spectral mask will have to produced some intersymbol interfer-
ence (ISI) (i.e., Nyquist’s criterion cannot exactly be met). Hence the matched
filter demodulator given in Figure 16.18 will not be exactly optimal but can be
made to be very close to optimal with a well designed pulse shape.

+
−u*(Tu – t)

Tu + (k – 1)T

QI(k)
Re[•] Î(k)Yz(t)

Figure 16.18 The baseband demodulator for binary pulse amplitude modu-
lation.



Spectrally Efficient Data Transmission 16.25

(a) Assume Dz(k) = 1, compute the worse case degradation for an arbitrary
pulse shape to the bit error probability for the demodulator given in Fig-
ure 16.18. Specifically consider the case of the kth bit where k = Kb/2 where
Kb is large and compute the effects of ISI. Identify the values of Dz( j ), j �= k
which achieve this worse case degradation for an arbitrary pulse shape with
BPSK modulation.

(b) Design a pulse shape and corresponding symbol rate such that the worse
case (over all ISI patterns) degradation to the effective SNR is less than
0.25 dB and the spectral mask given in Figure 16.17 is met by the trans-
mission. Grades will be assigned proportional to the achieved symbol rate
(higher the better!). Anyone who beats the posted solution will get a bonus
of 10 points for the project!

(c) Plot the transmitted complex envelope for the pulse shape that was designed
in (b). Plot the real component of the matched filter output for a modulation
sequence of [1 − 111 − 11 − 1 − 1 − 11] for your design. Identify the symbol
time sampling points.

Your grade will be penalized if a common solution to yours is found among
your classmates solutions in direct proportion to the number of identical solu-
tions. This is to encourage each of you to work independently. Any computer
code (e.g., Matlab) should be turned in with the project write-up.

16.9.2 Project 2

Project Goal: This project examines the design of a pulse shape for a stream
modulation to meet a spectral emissions mask where the constellation is limited
to be real valued.

Assume a linear stream modulation where the constellation only takes real
values that needs to meet the spectral emissions mask given in Figure 16.17
and be nearly optimally demodulated by a matched filter. This spectral emis-
sions mask is the one used for GSM handsets. So this problem is one of great
practical interest. The pulse shape designed for a real valued constellation can
be spectrally more efficient than the pulse design for the arbitrary constellation.
Hint: The value of �{Vu(τ )} can be of arbitrary value.

The signal will have the form

Xz(t) =
√

Eb

Kb∑
k=1

DI (k)u(t − (k − 1)T ) (16.45)

You are further constrained in that the pulse, u(t), must not extend for longer
than 40 µs in time.

For the remainder of the project it is assumed that the pulse shape designed
above is used with BPSK modulation. Any finite length pulse shape which
achieves this spectral mask will have produced some intersymbol interference
(ISI) (i.e., Nyquist’s criterion cannot exactly be met). Hence the matched filter
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demodulator given in Figure 16.18 will not be exactly optimal but can be made
to be very close to optimal with a well-designed pulse shape.

(a) Assume Dz(k) = 1, compute the worse case degradation for an arbitrary
pulse shape to the bit error probability for the demodulator given in
Figure 16.18. Specifically consider the case of the kth bit where k = Kb/2
where Kb is large and compute the effects of ISI. Identify the values of
Dz( j ), j �= k which achieve this worse case degradation for an arbitrary
pulse shape with BPSK modulation.

(b) If u1(t) = u(t) exp[ j 2π fot], find Vu1 (τ ). This result can help you design an
infinite support pulse from the pulse shapes introduced in the text for use
with real valued linear stream modulation.

(c) Design a pulse shape and corresponding symbol rate such that the worse
case (over all ISI patterns) degradation to the effective SNR is less than
0.25 dB and the spectral mask given in Figure 16.17 is met by the trans-
mission. Grades will be assigned proportional to the achieved symbol rate
(higher the better!). Anyone who beats the posted solution will get a bonus of
10 points for the project!

(d) Plot the transmitted complex envelope for the pulse shape designed in (c).
In addition, plot the real component of the matched filter output for a mod-
ulation sequence of [1 − 1 1 1 − 1 1 − 1 − 1 − 1 1] for your design. Identify
the symbol time sampling points.

Your grade will be penalized if a common solution to yours is found among your
classmates solutions in direct proportion to the number of identical solutions.
This is to encourage each of you to work independently. Any computer code
(e.g., Matlab) should be turned in with the project write-up.

16.9.3 Project 3

Project Goal: To examine a typical degradation that occurs in an orthogonal
modulation in a real system.

An OFDM signal is to be received that is transmitting Kb = 16 bits with
1 bit on each subcarrier, has a carrier frequency of fc = 1800 Hz, and achieve
a transmission rate of Wb = 2000 Hz. Unfortunately, the frequency sources at
the transmitter and receiver cannot be perfectly synchronized so that

Yz(t) = Xz(t) exp[ j 2π fot] + Wz(t) (16.46)

where fo is the resulting frequency offset and

Xz(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Kb∑
l=1

Dz(l)

√
Eb

Tp
exp[ j 2π fd (2l − Kb − 1)t] 0 ≤ t ≤ Tp

0 elsewhere

(16.47)
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It is desired to still use approximately the same demodulator as in the case of
no frequency offset, i.e.,



[

H ∗(k, k)
∫ Tp

0
Yz(t)

√
1

Tp
exp[− j 2π fd (2k − Kb − 1)t]dt

]

= 
[H ∗(k, k)Q(k)]

Î (k)=0
>

<
Î (k)=1

0 (16.48)

This demodulator will have ISI because the orthogonality condition does not
hold.

(a) Show that

Q(k) =
Kb∑
l=1

H (l, k)Dz(l) + Nz(k) (16.49)

and identify H (l, k).

(b) For k = 8 plot a scatter plot of Q(k) for fo = 0, 1, 10 Hz with Nz(k) = 0.

(c) For k = 8 compute the value of fo that will result in less than a 3%
RMS-EVM. Ensure that the amplitude loss of the desired signal due to
the frequency offset is accounted for before computing the EVM.

16.9.4 Project 4

Project Goal: To examine a typical degradation that occurs in an orthogonal
modulation in a real system.

A stream modulated signal is to be received that is transmitting Kb = 16
bits with a carrier frequency of fc = 1800 Hz, and achieves a transmission rate
of Wb = 2000 Hz. Unfortunately, the frequency sources at the transmitter and
receiver cannot be perfectly synchronized so that

Yz(t) = Xz(t) exp[ j 2π fot] + Wz(t) (16.50)

where fo is the resulting frequency offset and

Xz(t) =

⎧⎪⎨
⎪⎩

Kb∑
l=1

Dz(l)u(t − (l − 1)T ) 0 ≤ t ≤ Tp

0 elsewhere

(16.51)
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It is desired to still use approximately the same demodulator as in the case of
no frequency offset, i.e.,



[

H ∗(k, k)
∫ Tp

0
Yz(t)u ∗ (t − (k − 1)T )dt

]
= 
[H ∗(k, k)Q(k)]

Î (k)=0
>

<
Î (k)=1

0

(16.52)

This demodulator is suboptimal and will have ISI because the orthogonality
condition does not hold in the matched filter outputs due to the frequency offset.

(a) Show that

Q(k) =
Kb∑
l=1

H (l, k)Dz(l) + Nz(k) (16.53)

and identify H (l, k).

(b) For k = 8 plot a scatter plot of Q(k) for fo = 0, 1, 10 Hz with Nz(k) = 0.

(c) For k = 8 compute the value of fo that will result in less than a 3% RMS-
EVM. Ensure that the amplitude loss of the desired signal due to the fre-
quency offset is accounted for before computing the EVM.
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17
Orthogonal Modulations with

Memory

17.1 Canonical Problems

Up to this point in this text we have introduced two general methods to com-
municate Kb bits.

1. General M-ary modulations

■ The advantage of a general M-ary modulation is that it can achieve
very good fidelity and arbitrary spectral efficiency.

■ The disadvantage is that without more structure the optimal demodu-
lator has complexity O(2Kb).

2. Orthogonal memoryless modulations (including stream modulations, OFDM,
OCDM)

■ The advantage of orthogonal modulation is that the optimum demod-
ulator has complexity O(Kb) and a desired spectral efficiency can be
achieved with a proper design of the modulation signals.

■ The disadvantage is that the fidelity of message reconstruction is lim-
ited to that of binary modulations and this performance is far from
Shannon’s limit.

The goals for the final chapter of the text will be to explore the remaining areas
of trade-off in fidelity, complexity, and spectral efficiency, i.e.,

■ Improving the demodulation fidelity or spectral characteristics of orthogonal
modulations with a goal of maintaining a demodulation complexity that is
O(Kb).

17.1

Copyright © 2007 by The McGraw-Hill Companies. Click here for terms of use.
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Shannon has given us an upperbound on the performance that can be achieved
for a given spectral efficiency (see Figure 12.5) and there are a variety of ways
to approach that performance with a demodulation complexity that is O(Kb).
The concept of orthogonal modulations with memory are what have allowed
communication theory to approach the bounds provided by Claude Shannon in
his ground breaking work on information theory [Sha48]. This chapter will be
a brief introduction into the topic and an examination of the implications of
adding memory to the performance and the spectral characteristics.

17.2 Orthogonal Modulations with Memory

This section addresses a class of communication problems where an orthog-
onal modulation is implemented with the modulation symbols having mem-
ory. The memory is normally included in the modulation to either improve the
fidelity of demodulation or change the spectral characteristics of a memory-
less orthogonal modulation. This type of modulation is referred to as modula-
tion with memory (MWM) and incorporates most error control coding schemes
[Wic95, LC04, BDMS91]. Our goal in this text is not to explore how to design
these MWM but to understand the communication theory behind the fidelity,
spectral efficiency, and the demodulation complexity. Design of MWM is often
addressed in a course on error control coding. Suffice it to say here that a MWM
adds memory to the modulation process with a goal of either changing the spec-
tral characteristics of the transmitted signal or improving the resulting squared
Euclidean distance spectrum.

This chapter first considers the special case of an orthogonal modulation with
memory (OMWM) where 1 bit is sent with each symbol or orthogonal dimen-
sion. For simplicity of discussion this section will again assume that the bits
to be transmitted are equally likely and independent. The generalizations for
correlated bits is possible but the added notational complexity is not worth the
gain in generality. The resulting data symbols can then be transmitted using
an orthogonal modulation. The data modulation symbols, D̃z(l), are due to the
stream of information bits, I (l), l = 1, . . . , Kb. The tilde notation will be used to
differentiate between modulations that have memory (tilde) and memoryless
modulations (not tilde). For continuity with the previous discussions on orthogo-
nal modulations this initial discussion considers exclusively modulations where
the transmission bit rate is R = 1 bit per symbol. To keep a consistent normal-
ization the mapping, D̃z(l) = a(J (l)), is selected such that E[|D̃z(l)|2] = 1. The
transmitted signal will have the form

Xz(t) =
Nf∑
l=1

D̃z(l)sl(t) (17.1)

where Nf is the length of the transmitted frame in symbols and sl(t) are the
orthogonal basis functions (spreading waveforms) used to transmit the symbols.
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I(l)
J(l)

σ(l)

z−1

Finite State 
Machine

M-ary
Orthogonal
Modulator

Xz(t)σ(l + 1)

Figure 17.1 The block diagram for a modulation with memory
with a transmission rate of 1 bit per symbol.

Note, this formulation is equally applicable to being used in OCDM, OFDM, or
a stream modulation. A more general formulation for orthogonal modulations
where the rate is not constrained to be 1 bit per symbol is considered later in
this chapter.

An orthogonal modulation with memory, as considered in this section, con-
sists of a finite state machine operating at the symbol rate where the output of
the finite state machine is used as an input to an Ms-ary orthogonal modula-
tion. Figure 17.1 shows the block diagram for a linear orthogonal modulation
with memory. At each symbol time a new bit, I (l) is input into the system
and this produces a new constellation label, J (l), and a new modulation state,
σ (l+1). Let Ns denote the number of states in the modulation and the nonlinear
equations governing the finite state machine are given as

σ (l + 1) = g1(σ (l), I (l)) (17.2)

J (l) = g2(σ (l), I (l)) (17.3)

For notational purposes denote the set of all possible state values as �σ . In
general, it is desirable to have νc extra symbols transmitted to return the mod-
ulation to a common final state at the end of the transmission frame. Again the
total length of the frame for the orthogonal modulation is denoted Nf , hence,
in this case when R = 1 bit/symbol Nf = Kb + νc, where νc is a modulation
dependent constant. This return to a final common state is most often known as
termination in the literature of MWM [Wic95, LC04, BDMS91]. Note that the
effective rate is Reff = Kb

Kb+νc
< 1 but if a large number of bits are transmitted

then the loss in efficiency by including the termination becomes small.
A couple comments about OMWM are appropriate at this point. An OMWM

can only provide an improvement in demodulation fidelity or a change in spec-
tral characteristics compared to a memoryless modulation if there is some re-
dundancy to be exploited. An orthogonal modulation with memory has 2Kb pos-
sible bit sequences as an input. The modulation symbols being mapped onto
the orthogonal modulation have MKb+νc

s possible realizations. Hence if there is
to be redundancy that the OMWM can exploit for large Kb then Ms > 2. The
improved fidelity of demodulation or spectral efficiency is achieved by picking
the best M = 2Kb possible transmitted symbol sequences out of the MKb+νc

s total
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possible transmitted symbol sequences. Secondly, the more states an OMWM
has the more memory it contains. In general, more memory allows a designer
to make better choices in the transmitted symbol sequences but at a cost of a
higher complexity demodulation. Finally, an OMWM is often represented with
a directed graph [Wes01]. The vertices of the directed graph represent the state
of the modulation at a particular time and the edges of the directed graph repre-
sent the allowable transitions between states. In the communications literature
the directed graph is often referred to as a trellis. Because of this trellis repre-
sentation OMWM are often referred to as trellis coded modulation (TCM). This
trellis representation of an OMWM is explored in the example considered in
the next section.

17.2.1 MLWD for Orthogonal Modulations with Memory

Recall OMWM can be characterized with a finite state machine defined with

σ (l + 1) = g1(σ (l), I (l)) (17.4)

J (l) = g2(σ (l), I (l)) (17.5)

The equivalent modulation symbol is D̃z(l) = a(J (l)) with a(•) being the
constellation mapping. Here we examine only the optimum word demodulation
(MLWD). The optimum word demodulator is still the MLWD for an orthogo-
nal modulation except now the memory of the modulation must be accounted
for when computing the maximum likelihood metric. Due to the orthogonal
modulation the MLWD has

�̂I = arg max
i=0,...,M−1

T i

= arg max
i=0,...,M−1

√
Eb

Nf∑
k=1


[d̃ ∗
i (k)Q(k)] − Eb

2

Nf∑
k=1

|d̃ i(k)|2

= arg min
i=0,...,M−1

Nf∑
k=1

|Q(k) −
√

Ebd̃ i(k)|2 (17.6)

where Q(k) is the matched filter ouptut sample. Consequently, the output of the
MLWD can be thought of as the possible transmitted modulation symbols (con-
strained by the modulation with memory) that is closest in Euclidean distance
to the matched filter outputs that are observed (Q(k)) over the entire frame
(k = 1, Nf ). This minimum squared Euclidean distance decoder provides a
nice analogy to the demodulation of memoryless orthogonal modulations.

As with a general M-ary modulation, the achieved fidelity in demodulation
of the MLWD for an OMWM is determined by the squared Euclidean distance
spectrum. Due to the use of an orthogonal modulation the squared Euclidean
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distance between any two words is given as

�E (i, j ) =
∫ ∞

−∞
|xi(t) − xj (t)|2dt = Eb

∫ ∞

−∞

∣∣∣∣∣∣
Nf∑
l=1

sl(t)[d̃ i(l) − d̃j (l)]

∣∣∣∣∣∣
2

dt

= Eb

Nf∑
l=1

Nf∑
k=1

(d̃ i(l) − d̃j (l))(d̃ i(k) − d̃j (k))∗
∫ ∞

−∞
sl(t)s∗

k(t)dt (17.7)

= Eb

Nf∑
l=1

|d̃ i(l) − d̃j (l)|2 (17.8)

Consequently, the important characteristics in terms of fidelity of demodulation
of an OMWM is the squared Euclidean distance between the code sequences
produced by the modulation with memory. Consequently, the performance of
the OMWM is only a function of the finite state machine that characterizes the
modulation. For a R = 1, an improved demodulation fidelity will be achieved
compared to a memoryless orthogonal modulation if the minimum Euclidean
squared distance of the modulation with memory is greater than the best
Euclidean squared distance for a R = 1 memoryless modulation. The best
R = 1 memoryless modulation (BPSK) achieves a Euclidean squared distance
of �E,min = 4Eb so this value will be our benchmark for comparison.

17.2.2 An Example OMWM Providing Better Fidelity

Consider an OMWM consisting of a four state trellis code (Ns = 4) using 4PAM
modulation (Ms = 4) as proposed by Ho, Cavers, and Varaldi [HCV93]. It should
be noted here that this OMWM is a simple construction using a general com-
bined modulation and coding technique proposed by Ungerboeck in [Ung82].
This example OMWM illustrates some important properties that will become
apparent in the sequel. The modulation updates are given in Table 17.1. Here
we have �σ = {1, 2, 3, 4}. Note that the modulation is normalized to have an
average energy of unity. The trellis for this modulation is shown in Figure 17.2.
As mentioned before, the vertices of the trellis diagram represent the states at
each time interval (hence for this code there are Ns = 4 vertices at each point
in time) and the edges are the possible transitions (note for instance σ (l) = 1

TABLE 17.1 The finite state machine description of an example trellis code

σ (l + 1) = g1(I (l), σ (l)) J (l) = g2(I (l), σ (l)) D̃z(l) = a(J (l))

I (l) I (l) J (l) D̃z(l)

State, σ (l) 0 1 State, σ (l) 0 1 0 −3/
√

5

1 1 2 1 0 2 1 −1/
√

5
2 3 4 2 3 1 2 1/

√
5

3 1 2 3 2 0 3 3/
√

5
4 3 4 4 1 3
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I(k) = 0 I(k) = 1

−3/ 5

5

5

5

1/ 5

5

5

3/ 5

σ(l) = 1 σ(l + 1) = 1

σ(l + 1) = 2

σ(l + 1) = 3

σ(l + 1) = 4

σ(l) = 2

σ(l) = 3

σ(l) = 4

σ (l) σ(l + 1)

3/

1/

−1/

−3/

−1/

Figure 17.2 The trellis diagram of the Ho, Cavers, and Varaldi trellis code.

can only transition to σ (l+1) = 1 and σ (l+1) = 2). There are a total of 2Ns = 8
edges in this example. It should be noted that the trellis labels in this text will
be put to the side as in Figure 17.2. The edge labels indicate the input, I (k), that
causes the transition and the modulation symbol that is output for that input
and state. Unless noted all the upper transitions in a trellis will correspond to
the input I (k) = 0. As is the case for orthogonal modulation the normalization
is set as

E
[|D̃z(l)|2

] = R = 1 (17.9)

For instance, when σ (l) = 1 and I (l) = 0 the output symbol is D̃z(l) = −3/
√

5.
This particular code requires at most two transitions to allow the modulation
to transition from any state to any other state so this code has νc = 2. For
instance, if σ (l) = 2 then to get to σ (l + 2) = 1 one would have to transition to
σ (l+1) = 3 first. Alternatively if σ (l) = 1 then we could immediately transition
to σ (l + 1) = 1.

Nf trellis sections can be combined together to get a complete description of
an OMWM. For instance for Kb = 4, Figure 17.3 shows a trellis description for a
modulation that has σ (1) = 1 and returns to σ (7) = 1. One can verify that there
are 2Kb paths through this trellis. To understand the fidelity of demodulation

Figure 17.3 The trellis diagram of the Ho, Cavers Varaldi trellis code. Kb = 4.



Orthogonal Modulations with Memory 17.7

0 2 4 6 8 10 12
10–6

10–5

10–4

10–3

10–2

10–1

100

Eb/N0, dB

Memoryless BPSK
HCV Code UB

HCV Simulation

P
W

(E
)

Figure 17.4 The union bound of the example OMWM and frame error rate of Kb =
4 memoryless orthogonally modulated bits using BPSK.

of this particular OMWM all of the (16 × 15)/2 = 120 terms in the squared
Euclidean distance spectrum should be computed. Consider two of the paths in
the trellis corresponding to the words �I = 0 = [0 0 0 0] and �I = 1 = [1 0 0 0].
These two words will produce modulation sequences of

�̃d 0 = [−3/
√

5 − 3/
√

5 − 3/
√

5 − 3/
√

5 − 3/
√

5 − 3/
√

5]

and
�̃d 1 = [1/

√
5 3/

√
5 1/

√
5 − 3/

√
5 − 3/

√
5 − 3/

√
5]

This results in a squared Euclidean distance of

�E (1, 0) = Eb(4/
√

5)2 + Eb(6/
√

5)2 + Eb(4/
√

5)2 = 68Eb/5 (17.10)

Hence at least these two paths produce a squared Euclidean distance bet-
ter than the best memoryless modulation of the same rate, i.e., BPSK has
�E (1, 0) = 4Eb. The entire distance spectrum of this modulation is explored in
the homework problems (see Problem 17.1) and the union bound to the proba-
bility of word error is plotted in Figure 17.4.

17.2.3 Discussion

This section introduced one example modulation to transmit 1 bit of informa-
tion per orthogonal dimension. As a final point it is worth comparing the spec-
tral efficiency performance of this example modulation with the upperbound
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Figure 17.5 A comparison of performance of the example OMWM and Shannon’s
upperbound.

provided by information theory (see Section 12.3). As before we will denote
reliable communication as being an error rate of 10−5. This OMWM achieves
reliable communications at Eb/N0 = 7.8 dB. The performance of this modula-
tion versus the Shannon capacity is plotted in Figure 17.5 and compared to the
best orthogonal memoryless modulation with the same rate (R = 1 which is
BPSK). It should be noted that by considering a very simple modulation with
memory (4 states) we have moved over 2 dB closer to the achievable reliability
predicted by Shannon. Using more states and a proper design of the modu-
lation can improve the performance further. In fact, the performance can be
made arbitrarily close to the Shannon bound by increasing the complexity of
the OMWM.

The remaining items to be explored are the spectral characteristics of OMWM,
a generalization of OMWM to an arbitrary rate, and the demodulation al-
gorithm form and complexity. Note if we can find a demodulator that has a
complexity that is O(Kb) then we have succeeded in obtaining the desired
characteristics (i.e., improved performance compared to memoryless orthog-
onal modulation while maintaining a complexity O(Kb)). It turns out there
is a wide variety of ways to achieve linear complexity in the demodulation of
OMWM [BB99, Wic95, LC04, BDMS91, CAC01]. For those of you who pursue
a career as a communication engineer, algorithms like the Viterbi algorithm
and the BCJR algorithm will become important tools as they provide excel-
lent performance with a complexity of O(Kb). Derivations of the algorithms,
while critical in reaching Shannon’s performance limits, will be left for gradu-
ate school. The remainder of this chapter will explore the spectral characteris-
tics of stream modulation and generalize OMWM to an arbitrary transmission
rate.
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TABLE 17.2 The finite state machine description of the AMI trellis code

σ (l + 1) = g1(I (l), σ (l)) J (l) = g2(I (l), σ (l)) D̃z(l) = a(J (l))

I (l) I (l) J (l) D̃z(l)

State, σ (l) 0 1 State, σ (l) 0 1 0 −
√

2

1 1 2 1 1 0 1 0
2 1 2 2 2 1 2

√
2

17.3 Spectral Characteristics of Stream OMWM

Orthogonal modulations with memory can both be used to achieve better fidelity
of demodulation or a modified transmitted spectrum compared to memoryless
modulation. In general, it is assumed in communications engineering that the
information bits, I (k), will be an independent (white), identically distributed
sequence. In a stream modulation putting this white sequence into an OMWM
will produce a modulation sequence that has memory. The memory in the modu-
lation will produce a correlated time series J (l), l = 1, Nf and this correlation
will change the average transmitted signal energy spectrum per bit, Dxz(f ).
This section will explore this effect and how to characterize the transmitted
energy spectrum from the modulation description.

17.3.1 An Example OMWM with a Modified Spectrum

This section considers an example of Alternate Mark Inversion (AMI) modu-
lation. AMI modulation is an OMWM that is defined in Table 17.2. AMI codes
and related codes are used in many telecommunications applications (e.g., T1
lines on coaxial cables) for reasons that will be apparent in the sequel. Consider
a transmission with Kb = 4 (Nf = 5). This transmission has a trellis diagram
shown in Figure 17.6. In examining each of the paths of the trellis it is apparent
that

Nf∑
l=1

d̃ i(l) = 0 (17.11)

This implies that if AMI modulation is used in a stream modulation then each
transmission will not have a DC offset and that there will be a notch in the
spectrum at f = 0. Precisely, if the data bits driving the trellis modulation are

0 |0 0 |0 0 |0 0 |0 0 |0

1 |01 |01 |0

1| − 2

0| − 2

1| − 2

0| − 2

1| − 2

0| − 2

1| − 2
0| − 2

Figure 17.6 The trellis diagram for AMI with Kb = 4.
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equally likely and independent then spectrum of the stream modulation will
be

Dxz(f ) = E
[
GXz(f )

]
Kb

(17.12)

= E
[|√Eb

∑
l D̃z(l)U (f ) exp[− j 2π f T (l − 1)]|2]

Kb

=
∑2Kb−1

i=0 |√Eb
∑

l d̃ i(l)U (f ) exp[− j 2π f T (l − 1)]|2
2Kb Kb

For the example of AMI with Kb = 4 and stream modulation with

ur (t) =

⎧⎪⎨
⎪⎩
√

1
T

0 ≤ t ≤ T

0 elsewhere
(17.13)

the average energy spectrum per bit is plotted in Figure 17.7. This figure clearly
shows the spectrum of an OMWM can be shaped (compare to Figure 15.21) and
this shaping ability is often why a modulation with memory is used in practice.
The interesting aspect of AMI modulation is that it achieves about the same fi-
delity of demodulation as BPSK modulation in addition to the spectral shaping
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Figure 17.7 The spectrum of AMI used in a stream modulation with rectangular
pulses. Kb = 4.
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characteristics (see Problem 17.14). This combination of spectral shaping with-
out much loss in fidelity of demodulation is the reason for AMI’s adoption in
many telecommunication applications.

17.3.2 Spectrum of OMWM for Large Kb

It is often of interest to evaluate the spectrum resulting from an OMWM in a
stream modulation from a long frame of data (Kb large). It should be noted that
the complexity of evaluating the average in Eq. (17.12) grows proportional to
2Kb. Clearly for large frames this computation is increasingly impractical. Since
there is a regular trellis structure to the modulation this structure can be ex-
ploited to compute the desired average energy spectrum per bit. To understand
how this structure can be exploited first expand

KbDxz(f ) = E

⎡
⎢⎣
∣∣∣∣∣∣
√

Eb

Nf∑
l=1

D̃z(l)U (f ) exp[− j 2π f T (l − 1)]

∣∣∣∣∣∣
2
⎤
⎥⎦

= Eb|U (f )|2
Nf∑

l1=1

Nf∑
l2=1

E[D̃z(l1)D̃∗
z (l2)] exp[− j 2π f (l1 − l2)T ] (17.14)

Since the trellis is the same every symbol in the frame and we assume the
information bits are a white sequence, it is reasonable to assume that D̃z(l)
is a stationary process. Since an OMWM typically starts from a fixed state
and terminates to a fixed state this is not a true model as the distribution of
the modulation at the frame boundaries will be different than the middle of
the frame. If the frame is very long it is a good engineering approximation to
ignore this nonstationarity at the frame boundaries. Also it is possible with
certain OMWM that sequences can be produced in the middle of the frame
that are not stationary time series but in general that will be the exception
and not the rule. Consequently, for a presentation that captures many of the
important engineering applications the discussion will assume stationarity. The
stationarity assumption implies that

E[D̃z(l1)D̃∗
z (l2)] = RD̃(l1 − l2) (17.15)

Since all terms with the same time difference l1 − l2 will be constant the double
sum can be rearranged to give

KbDxz(f ) = Eb|U (f )|2
Nf −1∑

m=−Nf +1

(Nf − |m|)RD̃(m) exp[− j 2π f T m] (17.16)

Looking at the limit of a long frame size and noting that

lim
Kb→∞

Nf

Kb
= 1 (17.17)
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gives1

lim
Kb→∞

Dxz(f ) = Eb|U (f )|2
∞∑

m=−∞
RD̃(m) exp[− j 2π f T m] = Eb|U (f )|2SD̃(e j 2π f T )

(17.18)
where SD̃(e j 2π f T ) is the power spectrum of the stationary discrete-time random
process D̃z(l) evaluated at a discrete frequency f T . It should be noted that
SD̃(e j 2π f T ) is a periodic function of f with a period of 1/T . The transmitted
energy spectrum per bit for a stream modulation is seen to be a product of the
pulse shape energy spectrum and the power spectral density of the discrete
time modulation sequence. The form of the OMWM will determine the power
spectrum of the discrete modulation sequence.

To compute SD̃(e j 2π f ) the correlation function, RD̃(m), needs to be identified
using the trellis structure of the OMWM. For a stationary random process the
correlation function is given by

RD̃(m) =
∑

di∈�D̃

∑
dj ∈�D̃

did ∗
j PD̃z(l)D̃z(l−m)(di, dj ) (17.19)

where PD̃z(l)D̃z(l−m)(di, dj ) is the joint probability mass function of the event
{D̃z(l) = di, D̃z(l − m) = dj }. The key point in finding the correlation function
is identifying an algorithm to compute the joint PMF of the modulation sym-
bols at various time offsets from the trellis representation of the modulation.
The modulation symbol at any point in time, D̃z(l), is determined entirely by
specifying the edge of the trellis. The edges of the trellis can be enumerated by
considering the modulation state at the same time, σ (l), and the modulation
state at the next time, σ (l + 1).

Definition 17.1 An edge of the trellis at time l, denoted S(l), is a pair of states {σ (l) =
i, σ (l + 1) = j } such that P (σ (l + 1) = i|σ (l) = j ) �= 0.

For notational purposes we define the possible values that S(l) can take as
being the set �s with cardinality NE . The number of edges, NE , for a particular
time near the middle of the frame for the R = 1 OMWM is NE = 2Ns. In
general, the number of edges corresponding to a trellis transition is less than
the total number of pairs {σ (l + 1) = i, σ (l) = j }, ‖�σ‖2 = N 2

s .

Property 17.1 There is a functional mapping from S(l) to D̃z(l).

This functional mapping is due to the finite state machine characteristics of
OMWM.

Consequently, the needed symbol joint probability can be computed by deriv-
ing joint edge probabilities. The goal is now identifying PS(l)S(l−m)(i, j ) which

1The readers will have to excuse the slightly inconsistent notation in this equation. This is the
only place in the text where a discrete frequency variable and a continuous frequency variable both
denoted with f are required in the same equation.
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will completely specify PD̃z(l)D̃z(l−m)(di, dj ) and

RD̃(m) =
NE∑
i=1

NE∑
j =1

ds(i)ds( j )∗ PS(l)S(l−m)(i, j ) (17.20)

To reflect this functional mapping we introduce a vector of modulation symbols
corresponding to each edge of the trellis, i.e.,

�ds = [ds(1) . . . ds(NE )] (17.21)

where ds(k) is that value that D̃z(l) takes when S(l) = k. Using this notation
the double sum in Eq. (17.20) can be expressed in a quadratic form as

RD̃(m) = �dsSE (m) �d H
s (17.22)

where [SE (m)]i, j = PS(l)S(l−m)(i, j ).

EXAMPLE 17.1
Consider AMI modulation again. There are NE = 4 edges for AMI. The edges and the
functional mapping to the modulation symbols for AMI are enumerated in Table 17.3.
This results in

�ds = [0
√

2 −
√

2 0] (17.23)

The needed joint probability of the edges, PS(l)S(l−m)(i, j ), can be computed
by forming some vectors and using linear algebra. First, the definition of con-
ditional probability gives

PS(l)S(l−m)(i, j ) = PS(l)|S(l−m)(i| j )PS(l−m)( j ) (17.24)

Clearly from Eq. (17.24) the probabilities PS(l−m)( j ) and PS(l)|S(l−m)(i| j ) will be
important quantities to evaluate the spectrum of the OMWM. To have a concise
notation, define a vector (size 1 × NE ) of the edge probabilities at time l

�PS(l) = [PS(l)(1) PS(l)(2) · · · PS(l)(NE )] (17.25)

TABLE 17.3 The edge enumeration
for the AMI trellis code

s(l) σ (l) σ (l + 1) D̃z(l)

1 1 1 0
2 2 1 −

√
2

3 1 2
√

2
4 2 2 0
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A one-step recursion of this probability can be obtained by using total proba-
bility and Eq. (17.24)

PS(l)(i) =
NE∑
j =1

PS(l)S(l−1)(i, j ) =
NE∑
j =1

PS(l)|S(l1)(i| j )PS(l−1)( j ) (17.26)

This summation can be represented by a matrix equation

�Ps(l) = �Ps(l − 1)ST (17.27)

where ST is often denoted a state transition matrix [Gal01] where

[ST ]i j = PS(l)|S(l−1)( j |i) (17.28)

The state transition matrix of an OMWM is easily identified by examining
g1(I (k), σ (k)). Examining �Ps(l + 1) it is clear that

�Ps(l + 1) = �Ps(l)ST = �Ps(l − 1)S2
T (17.29)

and by induction for any nonnegative m

�Ps(l) = �Ps(l − m)Sm
T (17.30)

Examining Eq. (17.28) it is clear that[
Sm

T

]
i j = PS(l)|S(l−m)( j |i) [SE (m)]i, j = [Sm

T

]
i j PS(l−m)( j ) (17.31)

Consequently, the characterization necessary for the PMF in Eq. (17.24) is given
by Eq. (17.31) and only a form for PS(l−m)( j ) is needed for a complete evaluation
of RD̃(m).

To simplify the analysis the discrete random process, S(l), will be assumed
to be stationary. Stationary means that the value of �PS(l) will be constant over
time. This is clearly an approximation as the OMWM starts in a known state
and terminates into a known state but for a vast majority of the frame the
stationary distribution is valid. Most often the stationary probability of each
edge is equally likely, i.e.,

�PS(l) =
[

1
NE

1
NE

. . .
1

NE

]
(17.32)

but in the cases that an unusual chain is encountered the theory of Markov
chains [Gal01] can be used to solve for the stationary probability distribution
of the edges. This equally likely and stationary assumption leads to the compact
expression of

SE (m) = Sm
T

NE
RD̃(m) = �ds

Sm
T

NE

�d H
s ∀m ≥ 0 (17.33)
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For m < 0 the desired correlation function is evaluated by noting that

RD̃(−m) = (RD̃(m))∗ (17.34)

Since

SD̃(e j 2π f ) =
∞∑

m=−∞
RD̃(m) exp[− j 2π f m] (17.35)

a very simple method to evaluate the spectrum of an OMWM is available.

EXAMPLE 17.2
Consider again the AMI modulation. The edge state transition matrix is

ST =

⎡
⎢⎣

0.5 0 0.5 0
0.5 0 0.5 0
0 0.5 0 0.5
0 0.5 0 0.5

⎤
⎥⎦ (17.36)

and using a uniform edge probability, PS(l−m)(i) = 1/4, i = 1, 4, gives

SE (1) =

⎡
⎢⎣

0.125 0 0.125 0
0.125 0 0.125 0

0 0.125 0 0.125
0 0.125 0 0.125

⎤
⎥⎦ . (17.37)

Note that, for example,

RD̃(1) = [0
√

2 −
√

2 0]

⎡
⎢⎣

0.125 0 0.125 0
0.125 0 0.125 0

0 0.125 0 0.125
0 0.125 0 0.125

⎤
⎥⎦
⎡
⎢⎢⎣

0√
2

−√
2

0

⎤
⎥⎥⎦

= −0.5. (17.38)

Evaluation the correlation function for all value of m results in a spectrum of

SD̃(e j 2π f ) = −0.5e− j 2π f + 1 − 0.5e j 2π f = 1 − cos(2π f ) (17.39)

Equation (17.39) shows that AMI used as an OMWM in a stream modulation will always
produce a notch at DC. This condition is evident in Figure 17.8 which contains a plot of
Gu(f ), SD̃(e j 2π f T ) and the resulting Dxz(f ). Note the close match between the plots in
Figure 17.8 and Figure 17.7 where a short frame was considered (Kb = 4). This notch
at DC characteristic is advantageous in telecommunications systems as it prevents a
large DC current from being driven over the coaxial or twisted pair cables prevalent in
the telecommunications network.
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Figure 17.8 The important spectra for AMI modulation.

17.4 Varying Transmission Rates with OMWM

The OMWM that has been presented so far has limited utility as it only allows
for a rate of one information bit per modulated symbol. This is usually denoted
1 bit per channel utilization by communications engineers. OMWM of this type
only allows a communication engineer to design a modulation that would move
horizontally on the rate performance curve of Figure 17.5. In certain situations
it might be desired to lower the bit rate and achieve higher fidelity at a lower
Eb/N0 (e.g., deep space communications). Alternately it might be useful to
achieve more than 1 bit per channel utilization. This is often the case when
bandwidth is a scarce resource and the signal to noise ratio is relatively high
(e.g., cable modems). This section will show how to generalize the OMWM to
achieve these varying information transmission rates.

The key to this generalization is to enable multiple bit inputs and multiple
symbol outputs in the OMWM. The general orthogonal modulation with mem-
ory, as considered in this section, consists of a finite state machine operating at
an integer fraction of the symbol rate, 1/NmT . The Kb bits to be transmitted
are broken up into blocks of Km in length (a total of Nb = Kb/Km blocks per
frame). At each symbol time a new set of Km bits, �I (m), is input into a finite
state machine and this produces a new constellation label, �J (m), and a new
modulation state, σ (m + 1). The vector constellation label (length Nm) at the
finite state machine output is used as an input to a modulator that produces
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Figure 17.9 The block diagram for a general modulation with memory.

an Nm symbol block of Ms-ary modulation symbols. The output modulation
symbols are

D̃z((m − 1)Nm + i) = a(Ji(m)) (17.40)

where a(•) is the constellation mapping and Ji(m) is the ith component of �J (m).
The output of the orthogonal modulation has the form

Xz(t) =
∑
l=1

D̃z(l)sl(t) (17.41)

Again to keep a consistent normalization the mapping, D̃z(l) = a(Ji(m)), is
selected such that E[|D̃z(l)|2] = R. A total of Nb trellis transitions are needed
to communicate the Kb bits. Figure 17.9 shows the block diagram for a general
OMWM. Ns again denotes the number of states in the modulation and the
nonlinear equations governing the updates are

σ (m + 1) = g1(σ (m), �I (m)) (17.42)

�J (m) = g2(σ (m), �I (m)) (17.43)

Note �J (m) = 0, . . . , MNm
s − 1 where each component of �J (m) only takes values

Ji(m) = 0, . . . , Ms − 1, i = 1, . . . , Nm. The constellation label at time m and in
position i will generate the modulation symbol at time (m − 1)Nm + i for the
orthogonal modulation. In general, it is again usually desirable to have νc extra
symbols transmitted to return the modulation to a common final state at the
end of the transmission frame. The total length of the frame for the OMWM is
still denoted Nf , hence, Nf = NbNm + νc, where νc is a code dependent con-
stant. Due to termination the effective rate is Reff = Kb

NbNm+νc
= KbKm

KbNm+νc
but if

a large number of bits are transmitted then the rate becomes approximately
R = Km/Nm. If a rate less than one is desired then a communication engi-
neer would choose Nm > Km. If a higher transmission rate is desired then the
communication engineer would choose Nm < Km.

17.4.1 Spectrum of Stream Modulations with Nm > 1

When Nm = 1 the spectral characteristics of stream modulation can be com-
puted as in Section 17.3, but if Nm > 1 the techniques of Section 17.3 need to
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be generalized. If Kb is small all the waveforms can be detailed out and the
average energy spectrum can be easily computed in exactly the same way as
previously detailed. This section will concentrate on the evaluation of Dxz(f )
for long frames. Recall the Dxz(f ) is characterized as

KbDxz(f ) = Eb|U (f )|2
Nf∑

l1=1

Nf∑
l2=1

E[D̃z(l1)D̃∗
z (l2)] exp[− j 2π f (l1 − l2)T ] (17.44)

in the case of Kb large. As was done for Nm = 1, the regular trellis structure
of the modulation can be exploited in computing this spectrum. Again it is
assumed that the information bits are a white sequence. Since the trellis tran-
sition is driven by a white process, the states or the edges can accurately be
modeled as a stationary process for large frames. Since the modulation symbols
are produced Nm at a time each trellis transition, D̃z(l) is a cyclostationary pro-
cess [SW02]. Cyclostationary random process have statistics that are periodic.
The contrast between stationary, cyclostationary, and nonstationary processes
is best illustrated by examining the parameterization of the second order statis-
tics contained in the correlation function. For stationary random processes the
correlation function has the form

RN (t1, t2) = g(t1 − t2) (17.45)

so that the second order moments are only a function of the time difference
and not the absolute time. For nonstationary processes there is no simplifying
structure, i.e.,

RN (t1, t2) = g(t1, t2) (17.46)

Cyclostationary random processes have a correlation function that is periodic
in time, i.e.,

RN (t1, t2) = g(t1, t1 − t2) and RN (t1, t2) = RN (t1 + T , t2 + T ) (17.47)

where T is the period of the process. Since D̃z(l) derived from a trellis structure
that updates every Nm symbols it is apparent that this process will be a discrete
cyclostationary random process with period Nm and have

E[D̃z(l1)D̃∗
z (l2)] = RD̃(l1 − l2, l) l = 1, . . . , Nm (17.48)

This cyclostationarry characteristic must be accomodated in computing the
spectral characteristics.

The modeling of the modulation symbols as a cyclostationary time series
enables a simplified expression for the average energy spectrum per bit. The
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double sum in Eq. (17.44) can be rearranged in a similar way to that of
Section 17.3.2 to give

KbDxz(f ) = Eb|U (f )|2
Nf −1∑

n=−Nf +1

Nm∑
l=1

(Nb − |n| + g(n, l))RD̃(n, l) exp[− j 2π f T n]

(17.49)
Again looking at the limit of a long frame size gives

lim
Kb→∞

Dxz(f ) = KmEb|U (f )|2
∞∑

n=−∞

Nm∑
l=1

RD̃(n, l) exp[− j 2π f T n] (17.50)

where

RD̃(n, l) = E[D̃z(mNm + l)D̃∗
z (mNm + l − n)] (17.51)

RD̃(n, l) is the correlation function between the lth symbol of a trellis transition
and a symbol nsymbols away in time. Note that RD̃(n, l) is a function of l because
the number of trellis transitions that occur in n symbol times is a function of l.

EXAMPLE 17.3
If Nm = 2 then when n = 1 there can be one trellis transition, e.g.,

RD̃(1, 1) = E[D̃z(mNm + 1)D̃∗
z ((m − 1)Nm + 2)] (17.52)

or zero trellis transitions, e.g.,

RD̃(1, 2) = E[D̃z(mNm + 2)D̃∗
z (mNm + 1)] (17.53)

It is important to realize that the function

Nm∑
l=1

RD̃(n, l) = R̄D̃(n) (17.54)

now is analogous to the RD̃(n) of Section 17.3.2. In the literature R̄D̃(n) is often
denoted the time average correlation function of the cyclostationary process.
Once this function is identified then the desired average energy spectrum can
be computed as

lim
Kb→∞

Dxz(f ) = KmEb|U (f )|2 S̄ D̃(e j 2π f T ) (17.55)

where S̄ D̃(e j 2π f T ) is the discrete Fourier transform of R̄D̃(n). It should again
be noted that S̄ D̃(e j 2π f T ) is a periodic function of f with a period of 1/T . The
transmitted energy spectrum per bit for stream modulation is again seen to be
a product of the pulse shape energy spectrum and the effective power spectral
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density of the discrete time modulation sequence. The form of the OMWM will
determine the power spectrum of the discrete modulation sequence.

To compute S̄ D̃(e j 2π f ) the correlation function, RD̃(n, l), needs to be identified
using the trellis structure of the OMWM. The correlation function is given by

RD̃(n, l) =
∑

di∈�D̃

∑
dj ∈�D̃

did ∗
j PD̃z((m−1)Nm+l)D̃z((m−1)Nm+l−n)(di, dj ) (17.56)

The key point in finding the correlation function is identifying an algorithm to
compute the joint PMF of the modulation symbols at various time offsets from
the trellis representation of the modulation. Recall the modulation symbol at
any point in time, D̃z((m − 1)Nm + l), is determined entirely by specifying
the edge of the trellis, S(m). The edges of the trellis can be enumerated as in
Section 17.3.2 and the following property still holds:

Property 17.2 There is a functional mapping from S(m) to D̃z((m − 1)Nm + l).

To reflect this functional mapping a vector notation to represent the data
symbols is

�ds(l) = [ds(1, l) . . . ds(Nm, l)] (17.57)

where ds(i, l) is the value of D̃z((m − 1)Nm + l) takes when S(m) = i. Again
the needed joint edge probability, PS(l)S(l−m)(i, j ), can be computed using the
techniques introduced in Section 17.3.2, i.e.,

PS(l)S(l−m)(i, j ) = [SE (m)]i, j =
[

Sm
T

NE

]
i j

m ≥ 0 (17.58)

Since this joint probability gives the required symbol distribution the desired
correlation function can be computed with

RD̃(n, l) =
∑
i∈�S

∑
j ∈�S

di(n, l)d ∗
j (n, l)PS(m)S(m−mt (n,l))(i, j ) (17.59)

where mt(n, l) is the number of trellis transitions that will occur between time
k = mNm + l − n and k = mNm + l. Denoting k = mNm + l − n = (m −
mt(n, l))Nm + lt(n, l) the double sum in Eq. (17.59) is simplified to be

RD̃(n, l) = �Ds(l)SE (mt(n, l)) �Ds(lt(n, l))H = �Ds(l)
Smt (n,l)

T

NE

�Ds(lt(n, l))H n ≥ 0

(17.60)
The major difference in the computation of RD̃(n, l) compared to the Nm = 1
case is need to identify the number of trellis transitions (mt(n, l)) as a function
of l and n and the need to find which “phase” of the Nm symbols produced by
the modulation that should be included in the correlation computation (lt(n, l)).
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EXAMPLE 17.4
From the previous example it is clear for Nm = 2 that

mt (1, 1) = 1 lt (1, 1) = 2 (17.61)

mt (1, 2) = 0 lt (1, 2) = 1 (17.62)

In words, if one symbol offset is considered in calculating the correlation function there
is one transition trellis transition for l = 1 (the first symbol of a trellis transition) and
the associated signal for the correlation calculation is the second symbol of the previous
trellis update. Likewise if the second symbol is considered then no transition need be
considered and the associated signal for the correlation calculation is the first symbol of
the current trellis update. These computations are no more difficult than the Nm = 1
but are a bit more tedious.

Once the details of the computation of R̄(n) are understood then the me-
chanics of computing the average energy spectrum is straightforward. Specifi-
cally once the number of trellis transitions are identified for a given (n, l) then
RD̃(n, l) can be computed using similar techniques as to Section 17.3.2. Once
RD̃(n, l) is computed then R̄D̃(n) can be evaluated. A discrete Fourier trans-
form leads to the complete characterization of the spectrum of the OMWM. A
detailed example will be considered in the sequel.

17.4.2 Example R < 1: Convolutional Codes

Consider an OMWM consisting of an eight-state convolutional code [LC04]
(Ns = 8) using BPSK modulation (Ms = 2) that has R = 1/2 (Ks = 1 and
Nm = 2). The modulation updates are given in Table 17.4. Since this code
only sends 1 bit every two symbols the spectral efficiency of the modulation
(ηB ≈ 1/2 for this OMWM) will be reduced compared to BPSK, for example.
Note that the modulation is normalized to have an average energy of R = 1/2

TABLE 17.4 The finite state machine description
of an example convolutional code

σ (m + 1) = g1(I (m), σ (m)) �J (m) = g2(I (m), σ (m))

I (m) I (m)

State, σ (m) 0 1 State, σ (m) 0 1

1 1 2 1 [0 0] [1 1]
2 3 4 2 [0 1] [1 0]
3 5 6 3 [1 1] [0 0]
4 7 8 4 [1 0] [0 1]
5 1 2 5 [1 1] [0 0]
6 3 4 6 [1 0] [0 1]
7 5 6 7 [0 0] [1 1]
8 7 8 8 [0 1] [1 0]
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Figure 17.10 The trellis diagram of the example convolutional code.

per transmitted symbol, i.e.,

D̃z((m − 1)Nm + i) = 1√
2

(−1)Ji (m) (17.63)

The trellis for this modulation is shown in Figure 17.10. There are a total
of 2Ns = 16 edges in this example. The edge labels indicate the input that
causes the transition and the modulation symbol that is output for that input
and state. This particular code requires at most three transitions to allow the
modulation to transition from any state to any other state so this code has
νc = 6. Again Nf trellis sections can be combined together to get a complete
description of an OMWM. For instance for Kb = 4, Figure 17.11 shows a trellis
description for a modulation that has σ (1) = 1 and returns to σ (8) = 1. One
can verify that there are 2Kb = 16 paths through this trellis. To understand the
fidelity of demodulation of this particular OMWM squared Euclidean distance
spectrum should be computed. The entire distance spectrum of this modulation

Figure 17.11 The trellis diagram of the example convolutional code. Kb = 4.
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Figure 17.12 The union bound and frame error rate of Kb = 4 memoryless orthog-
onally modulated bits using 16FSK and the example convolutional code OMWM.

is explored in the homework problems (see Problem 17.16) and the union bound
to the probability of word error is plotted in Figure 17.12. The important thing
to notice is that the fidelity of demodulation is markedly improved compared to
a modulation that does not use memory. For instance, if we compare fidelity of
demodulation at PW (E) = 10−5 then this example convolutional code is about
2 dB better that the 16FSK, which is the memoryless modulation we considered
in Chapter 14 with roughly the same spectral efficiency.

Forward error correction codes like this example convolutional code are used
in many kinds of communication systems (wireless, wireline, fiber optic net-
work, etc.) to provide significant gains in the fidelity of demodulation at rates
less than 1 bit per orthogonal dimension. Forward error correction codes like
turbo codes, low density parity check codes, conventional convolutional codes
and Reed-Solomon codes have allowed modern communication systems to
achieve performance very close to Shannon’s predicted bound.

17.4.3 Example R > 1: Trellis Codes

Consider an OMWM consisting of a four-state trellis coded modulation [Ung82]
(Ns = 4) using 8PSK modulation (Ms = 8) that has R = 2 (Km = 2 and Nm = 1).
The modulation updates are given in Table 17.5. Note that the modulation is
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TABLE 17.5 The finite state machine description of an example trellis coded modulation

σ (m + 1) = g1(�I (m), σ (m)) J (m) = g2(�I (m), σ (m))

�I (m) �I (m)

State, σ (m) 0 0 1 0 0 1 1 1 State, σ (m) 0 0 1 0 0 1 1 1

1 1 1 2 2 1 0 4 2 6
2 3 3 4 4 2 1 5 3 7
3 1 1 2 2 3 2 6 0 4
4 3 3 4 4 4 3 7 1 5

normalized to have an average energy of R = 2 per transmitted symbol, i.e.,

D̃z(m) =
√

2 exp
[

j π(2J (m) + 1)
8

]
(17.64)

The trellis for this modulation is shown in Figure 17.13. Again in this trellis the
edge labels to the left of the trellis correspond to the labels associated with edges
from top to bottom for each state. There are a total of 2Km Ns = 16 edges in this
example and there are parallel edges in the trellis. Parallel edges connect the
same states but are associated with different input information bits and output
modulations symbols. This particular code requires at most two transitions to
allow the modulation to transition from any state to any other state so this code
has νc = 2.

Again Nf trellis sections can be combined together to get a complete de-
scription of an OMWM. For instance for Kb = 4, Figure 17.14 shows a trellis
description for a modulation that has σ (1) = 1 and returns to σ (5) = 1. One
can verify that there are 2Kb paths through this trellis. It is interesting to note
that due to the parallel transitions there is more than one way to terminate
the trellis for each of the states (4 possibilities in this example). These extra
paths during termination would allow the transmission of Kb = 6 bits in the

σ(m) σ(m+1)I(k) = 10I(k) = 00 I(k) = 01 I(k) = 11

0 4 2 6

2 6 0 4

1 5 3 7

3 7 51

Figure 17.13 The trellis diagram of the example trellis coded modulation.
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Figure 17.14 The trellis diagram of the example trellis coded modualtion. Kb = 4.

same time (Nf = 4) as Kb = 4 bits without much loss in fidelity of demodu-
lation. To understand the fidelity of demodulation of this particular OMWM,
the squared Euclidean distance spectrum should be computed. The entire dis-
tance spectrum of this modulation is explored in the homework problems (see
Problem 17.17) and the union bound to the probability of word error is plotted
in Figure 17.15. The important thing to notice is that again the fidelity of de-
modulation is markedly improved compared to a modulation that does not use
memory. For instance, if we compare performance at PW (E) = 10−5 then this

0 2 4 6 8 10 12
10–6

10–5

10–4

10–3

10–2

10–1

Eb/N0, dB

P
W

(E
)

TCM UB
QPSK
TCM Simulation

100

Figure 17.15 The union bound and simulated fidelity of demodulation of the example
R = 2 OMWM and frame error rate of QPSK. Kb = 4.
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TABLE 17.6 The finite state machine description of the Miller code

σ (m + 1) = g1(I (m), σ (m)) �J (m) = g2(I (m), σ (m))

I (m) I (m)

State, σ (m) 0 1 State, σ (m) 0 1

1 2 3 1 [0 1] [0 0]
2 1 4 2 [1 0] [1 1]
3 2 4 3 [0 1] [1 1]
4 1 3 4 [1 0] [0 0]

example trellis coded modulation is about 3 dB better than QPSK, which is the
memoryless modulation we considered in Chapter 14 with the same spectral
efficiency.

Forward error correction codes like this example trellis code can also be used
in all kinds of communication systems to provide significant gains in fidelity
of demodulation at rates greater than or equal to 1 bit per orthogonal dimen-
sion. A similar dizzying array of coding options exist in this case that use turbo
codes, low density parity check codes, conventional convolutional codes and
Reed-Solomon codes combined with higher order constellations and allow mod-
ern communication systems to achieve performance very close to Shannon’s
predicted bound. In general, modern communication systems are not quite as
close to Shannon’s bounds at high rates so there is some room for further re-
search to fill in the remaining gap.

17.4.4 Example for Spectral Shaping: Miller Code

Consider an OMWM consisting of a four-state coded modulation [Mil63] (Ns =
4) using BPSK modulation (Ms = 2) that has R = 1/2 (Km = 1 and Nm = 2)
known as the Miller code. The modulation updates are given in Table 17.6.
Again the modulation is normalized to have an average energy of R = 1/2 per
transmitted symbol, i.e.,

D̃z((m − 1)Nm + i) = 1√
2

(−1)Ji (m) (17.65)

The trellis for this modulation is shown in Figure 17.16. There are a total of
2Ns = 8 edges in this example. The edge labels indicate the input that causes
the transition and the modulation symbol that is output for that input and state.
A Miller code is typically not terminated as it is not used to achieve a desired
fidelity of demodulation (squared Euclidean distance) and it is not possible
to return to a common state in an identical number of transitions from each
state. To understand the fidelity of demodulation of this particular OMWM,
the squared Euclidean distance spectrum again should be computed and this
distance spectrum is explored in the homework problems (see Problem 17.19).

Since the Miller code was not conceived to improve the distance properties but
to change the time and spectral characteristics of an orthogonal modulation, it
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Figure 17.16 The trellis diagram of the Miller code.

is of interest to explore these properties. An interesting property of the Miller
code is that at most there are 4 symbols in a row that are the same polarity.
Codes of this type that limit the number of symbols between a transition are of-
ten referred to as run length limited (RLL) codes. This type of code is important
in magnetic recording due to the physics of magnetic recording. An important
characteristic of the Miller code is that the memory of the code shapes the
transmitted spectrum. This shaped spectrum is what is advantageous in mag-
netic recording and playback. This spectrum can be explored using the results
of Section 17.4.1.

Finding the joint probability distribution of the edges is the important step
in finding the transmitted spectrum. The edge enumeration of the Miller code
is given in Table 17.7. Recall the edge probability update to compute the needed
modulation symbol correlation is given as

�Ps(m) = �Ps(m − 1)ST and �Ps(m) = �Ps(m − mt)S
mt
T (17.66)

TABLE 17.7 The edge enumeration for the Miller code

S(m) σ (m) σ (m + 1) [D̃z(2(m − 1) + 1)D̃z(2(m − 1) + 2)]

1 2 1 [1 0]
2 4 1 [1 0]
3 1 2 [0 1]
4 3 2 [0 1]
5 1 3 [0 0]
6 4 3 [0 0]
7 2 4 [1 1]
8 3 4 [1 1]
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where by examining Table 17.7 we have

ST =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.5 0.5 0 0 0 0
0 0 0 0 0 0 0.5 0.5

0.5 0.5 0 0 0 0 0 0
0 0 0 0 0.5 0.5 0 0

0.5 0.5 0 0 0 0 0 0
0 0 0 0 0 0 0.5 0.5
0 0 0.5 0.5 0 0 0 0
0 0 0 0 0.5 0.5 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and SE (mt) = Smt
T

8

(17.67)

This edge transition probability can be used to compute RD̃(n, l). Recall that
when Nm = 2 that

mt(1, 1) = 1 lt(1, 1) = 2 (17.68)

mt(1, 2) = 0 lt(1, 2) = 1 (17.69)

This leads to

RD̃(1, 1) = �Ds(1)SE (1) �Ds(2)H = 0.25 (17.70)

and

RD̃(1, 2) = �ds(2)SE (0) �ds(1)H = 0 (17.71)

Summing these two results gives R̄D̃(1) = 0.25. The average correlation, R̄D̃(n),
can be computed numerically using results like Eqs. (17.70) and (17.71) for all
n and the DFT can be taken of R̄D̃(n) to give the final result for the modulation
average spectrum, S̄ D̃(e j 2π f T ). The plot of modulation symbol average power
spectrum for a Miller code is shown in Figure 17.17. Having a spectrum of the
modulation concentrated at higher frequencies in magnetic recording is impor-
tant since lower frequencies of the modulation tend to interfere with the servo
mechanism of the magnetic read/write head. The Miller code is another example
of how the OMWM can be designed to achieve a desired spectral characteristic.

17.5 Conclusions

This chapter introduced the idea of orthogonal modulations with memory
(OMWM). OMWM are used in practice to get better fidelity of demodulation
than orthogonal modulations or to change the spectral characteristics of or-
thogonal modulations while still maintaining a demodulation complexity that
is O(Kb). The demodulation complexity of OMWM was not addressed but inter-
ested readers are referred to [BB99, Wic95, LC04, BDMS91, CAC01]. OMWM
can be implemented in a wide variety of rates and complexities. This variety
of rates and complexity was illustrated with a handful of simple examples.
For example, Figure 17.18 is a plot of the achieved spectral efficiency for the
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Figure 17.17 The effective power spectrum of the modulation symbols for Miller
coded modulation.
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memoryless modulations and the OMWM that were considered in this book.
Clearly these simple examples of OMWM have moved the achieved perfor-
mance closer to that predicted by Shannon than were achieved by memoryless
orthogonal modulations. These simple examples, while illustrative, do not re-
ally reflect the sophistication that is currently the state of the art in digital
communications. Also included in Figure 17.18 are the operating points of sev-
eral of the best OMWM that have appeared in the literature. The discussion
of these modulations and the methods of demodulation requires a level of so-
phistication that is not appropriate for where this text is at in the development
of digital communication theory, so we will not go into more details. Interested
readers should take a course or read a book on modern error correcting codes
[Wic95, LC04, BDMS91]. The important point is that Shannon’s upperbound
is one that is achievable in modern communications.

17.6 Homework Problems

Problem 17.1. Consider a R = 1 OMWM consisting of a four-state trellis code
(Ns = 4) using 4PAM modulation (Ms = 4) as proposed by Ho, Cavers, and
Varaldi [HCV93] and detailed in Section 17.2.2. The modulation is defined as

σ (l + 1) = g1(I (l), σ (l)) J (l) = g2(I (l), σ (l)) D̃z(l) = a(J (l))

I (l) I (l) J (l) Dz(l)

State, σ (l) 0 1 State, σ (l) 0 1 0 −3/
√

5

1 1 2 1 0 2 1 −1/
√

5
2 3 4 2 3 1 2 1/

√
5

3 1 2 3 2 0 3 3/
√

5
4 3 4 4 1 3

(a) For Kb = 4 and the termination back to σ (7) = 1 as discussed in the text
(Nf = 6) find the squared Euclidean distance spectrum of the code and plot
the union bound to the probability of word error.

(b) Draw two transmitted paths and the corresponding error paths through
the trellis associated with the minimum squared Euclidean distance error
event.

(c) For Kb = 4 and no trellis termination (i.e., no return to a common final
state, Nf = Kb) find the squared Euclidean distance spectrum of the code
and plot the union bound to the probability of word error.

(d) Draw two transmitted paths and the corresponding error paths through
the trellis associated with the minimum squared Euclidean distance error
event.

Problem 17.2. The following is a commonly used R = 1 OMWM with four states
(Ns = 4) and QPSK modulation (Ms = 4):
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σ (l + 1) = g1(I (l), σ (l)) D̃z(l) = g2(I (l), σ (l))

I (l) I (l)

State, σ (l) 0 1 State, σ (l) 0 1

1 1 2 1 d0 d2

2 3 4 2 d1 d3

3 1 2 3 d2 d0

4 3 4 4 d3 d1

where d0 = 1, d1 = j , d2 = −1, and d3 = − j .

(a) Starting in σ (1) = 1 with �I = [1 1 0 1] give the values of I (5) and I (6) such
that σ (7) = 1 (for Nf = 6). Draw the trellis and show the path through the
trellis that corresponds to this transmitted word.

(b) Find the squared Euclidean distance spectrum of this code for Kb = 4 with
termination to σ (7) = 1.

(c) With a transmitted waveform produced by �I = [1 1 0 1] enumerate out the
three unique smallest nonzero squared Euclidean distances to the trans-
mitted waveform in the conditional union bound and show a corresponding
path through the trellis.

(d) Is this code better or worse in terms of resulting performance than the HCV
code used as an example in the text?

Problem 17.3. Consider the R = 1 OMWM given by

σ (l + 1) = g1(I (l), σ (l)) D̃z(l) = g2(I (l), σ (l))

I (l) I (l)

State, σ (l) 0 1 State, σ (l) 0 1

1 1 2 1 d0 d2

2 3 4 2 d1 d3

3 1 2 3 d2 d0

4 3 4 4 d3 d1

Design the symbol mapping D̃z(l) (i.e., give values of d0, d1, d2, d3) to give
better fidelity of demodulation than the code presented in the previous prob-
lem while leaving all constellation points on the unit circle. Assume the code
is terminated back to state 1. One example is sufficient to demonstrate you
understand the concepts and there is no need to find the optimum mapping to
get full credit.

Problem 17.4. A concept that is useful in the analysis of coded modulations is
geometric uniformity [For91]. A code is said to be geometrically uniform if
the conditional squared Euclidean distance spectrum for each of the possible
transmitted codes words is identical. Since the conditional squared Euclidean
distance spectrum of a code is identical the union bound can be computed by
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only considering the conditional squared Euclidean distance spectrum for one
possible path in the trellis. The concept of geometric uniformity allows one to
reduce the terms needed to be computed for the union bound from (M − 1)M
to M − 1 where again M = 2Kb. Consider the following two trellis codes

σ (l + 1) = g1(I (l), σ (l)) J (l) = g2(I (l), σ (l)) D̃z(l) = a(J (l))

I (l) I (l) J (l) D̃(1)
z (l) D̃(2)

z (l)

State, σ (l) 0 1 State, σ (l) 0 1 0 −3/
√

5 1

1 1 2 1 0 2 1 −1/
√

5 j
2 3 4 2 3 1 2 1/

√
5 −1

3 1 2 3 2 0 3 3/
√

5 − j
4 3 4 4 1 3

Consider the case of Kb = 4 with termination back to σ (7) = 1, are either of
these codes geometrically uniform?

Problem 17.5. Consider the following R = 1 OMWM with seven states (Ns = 7)
and 4-PAM modulation (Ms = 4):

σ (l + 1) = g1(I (l), σ (l)) J (l) = g2(I (l), σ (l)) D̃z(l) = a(J (l))

I (l) I (l) J (l) D̃z(l)

State, σ (l) 0 1 State, σ (l) 0 1 0 −3/
√

5

1 2 4 1 1 0 1 −1/
√

5
2 3 5 2 1 0 2 1/

√
5

3 4 6 3 1 0 3 3/
√

5
4 1 7 4 3 0
5 2 4 5 3 2
6 3 5 6 3 2
7 4 6 7 3 2

(a) Starting in σ (1) = 4 and that we want to return to σ = 4, show that if Kb
is odd then this is possible in one transition and if Kb is even then this is
possible in two transitions.

(b) For Kb = 3 find the squared Euclidean distance spectrum and plot the union
bound. Will this modulation perform better or worse than BPSK?

(c) For Kb = 3 when the modulation is used in linear stream modulation, show
that ∫ ∞

−∞
xi(t)dt = 0 (17.72)

(d) For Kb = 3 when the modulation is used in linear stream modulation, find
and plot Dxz(f )? How do you see the characteristic of (c) manifested in this
plot?
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I(k) = 0 I(k) = 1

d0 d1

d0 d1

d0 d2

σ(l) = 1

σ(l) = 2

σ(l) = 3

σ(l) σ(l + 1)
σ(l + 1) = 1

σ(l + 1) = 2

σ(l + 1) = 3

Figure 17.19 A trellis diagram for a modulation with memory.

Problem 17.6. An OMWM is defined by the trellis in Figure 17.19. Assume that
d0 = 1, d1 = exp[ j 2π/3], d2 = exp[− j 2π/3] and σ (1) = 1.

(a) For an arbitrary Kb = 3 bit sequence and if the modulation has to stay
as defined by the trellis how many symbols will be needed to guarantee a
return to σ = 1.

(b) Will this OMWM give better fidelity of demodulation than memoryless
BPSK modulation when Kb = 3 when terminated as in part a)? Plot the
union bound.

(c) Is this OMWM geometrically uniform (see Problem 17.4 for the definition
of geometrically uniform)?

(d) It is possible to define a one symbol termination (i.e., Nf = Kb + 1), which
might not be as defined by the trellis, that would result in a minimum
distance that is the same as if the modulation had stayed on the trellis and
had Nf > Kb + 1. Give what the final symbol should be as a function of
σ (Kb + 1) to achieve this goal. Plot a union bound and compare it with the
fidelity of demodulation when Nf > Kb +1 and the modulation stays on the
trellis.

Problem 17.7. If AMI modulation is used as an OMWM in an OFDM system,
what characteristic would it produce? Would you consider AMI useful in any
way as an OMWM for an OFDM system. Hint: AMI puts a DC notch in a stream
modulation’s spectrum.

Problem 17.8. Consider an OMWM consisting of a four-state trellis code (Ns =
4) using 4PAM modulation (Ms = 4) as proposed by Ho, Cavers, and Varaldi
[HCV93] and detailed in Section 17.2.2. Assume this modulation is used in a
stream modulation with Kb large and

ur (t) =

⎧⎪⎨
⎪⎩
√

1
T

0 ≤ t ≤ T

0 elsewhere

(17.73)
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(a) Enumerate out the edges, s(l), and the mappings to D̃z(l).

(b) Identify the edge transition matrix, ST .

(c) Compute the average energy spectrum per bit, DXz(f ), of the resultant
stream modulation.

Problem 17.9. Consider an OMWM consisting of a two-state trellis code (Ns = 2)
using 3PAM modulation (Ms = 3) denoted as AMI modulation in the text. The
modulation is defined as

σ (l + 1) = g1(I (l), σ (l)) J (l) = g2(I (l), σ (l)) D̃z(l) = a(J (l))

I (l) I (l) J (l) D̃z(l)

State, σ (l) 0 1 State, σ (l) 0 1 0 −2

1 1 2 1 1 0 1 0
2 1 2 2 2 1 2 2

(a) For Kb = 4 and the termination back to σ (6) = 1 as discussed in the text
(Nf = 5) find the squared Euclidean distance spectrum of the code and plot
the union bound to the probability of word error.

(b) Draw two pairs of transmitted paths and the corresponding error paths
through the trellis associated with the minimum squared Euclidean dis-
tance error event.

(c) For Kb = 4 and no trellis termination (i.e., no return to a common final
state, Nf = Kb) find the squared Euclidean distance spectrum of the code
and plot the union bound to the probability of word error.

(d) Draw two pairs of transmitted paths and the corresponding error paths
through the trellis associated with the minimum squared Euclidean dis-
tance error event.

Problem 17.10. In Problem 17.5 an OMWM is presented that, at least for small
Kb, was shown to produce a notch at DC in the transmitted spectrum. Using
the results of Section 17.3.2 find the average energy spectrum per bit for Kb
large.

Problem 17.11. Consider an OMWM consisting of an eight-state convolutional
code (Ns = 8) using BPSK modulation (Ms = 2) and detailed in Section 17.4.2.
The modulation is defined in Table 17.4.

(a) For Kb = 4 and the termination back to σ (8) = 1 as discussed in the text
(Nf = 14) find the squared Euclidean distance spectrum of the code and
plot the union bound to the probability of word error.

(b) Draw two transmitted paths and the corresponding error paths through
the trellis associated with the minimum squared Euclidean distance error
event.

(c) Is this modulation geometrically uniform? (See Problem 17.4)
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Problem 17.12. Consider an OMWM consisting of an eight-state convolutional
code as detailed in Table 17.4 and discussed in Section 17.4.2. Assume this
modulation is used in a stream modulation with Kb large and

ur (t) =

⎧⎪⎨
⎪⎩
√

1
T

0 ≤ t ≤ T

0 elsewhere

(17.74)

(a) Enumerate out the edges, s(l), and the mappings to D̃z(l).

(b) Identify the edge transition matrix, ST .

(c) Compute the average energy spectrum per bit, DXz(f ), of the resultant
stream modulation.

Problem 17.13. Consider an OMWM consisting of a four-state trellis coded modu-
lation (Ns = 4) using 8PSK modulation (Ms = 8) and detailed in Section 17.4.3.
The modulation is defined in Table 17.5.

(a) For Kb = 4 and the termination back to σ (7) = 1 as discussed in the text
(Nf = 6) find the squared Euclidean distance spectrum of the code and plot
the union bound to the probability of word error.

(b) Draw two transmitted paths and the corresponding error paths through
the trellis associated with the minimum squared Euclidean distance error
event.

(c) Is this modulation geometrically uniform? (See Problem 17.4.)

Problem 17.14. When the information bits are all equally likely and independent,
prove that if

E[Dz((m− 1)Nm + j )|σ (m) = i] = 0 j ∈ {1, . . . , Ns}, i ∈ {1, . . . , Ns} (17.75)

then the transmitted energy spectrum per bit of an OMWM using stream mod-
ulation is

Dxz(f ) = Eb|U (f )|2 (17.76)

In other words, the spectrum is unchanged by the OMWM compared to a stan-
dard linear stream modulation [BDMS91, Big86]. Which of the example OMWM
in this chapter satisfy this condition?

Problem 17.15. Consider an OMWM consisting of a four state (Ns = 4) OMWM
using BPSK modulation (Ms = 2) and detailed in Section 17.4.4. The modula-
tion is defined in Table 17.6.

(a) For Kb = 4 and no termination (Nf = 8) find the squared Euclidean distance
spectrum of the code and plot the union bound to the probability of word
error.
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(b) Draw two transmitted paths and the corresponding error paths through
the trellis associated with the minimum squared Euclidean distance error
event.

(c) Is this modulation geometrically uniform? (See Problem 17.4.)

Problem 17.16. In the example that considered an R = 2 Ungerboeck trellis code
in Section 17.4.3 it was stated that an extra 2 bits can be transmitted during
the termination stages.

(a) For the example detailed in Section 17.4.3 show the Nf = 4 trellis where
Kb = 6 and σ (5) = 1.

(b) Has the minimum squared Euclidean distance changed by adding these two
extra bits?

(c) Compute the union bound of this new case. Plot this union bound along with
the union bound of the Kb = 4 case. Justify the difference.

Problem 17.17. Consider an OMWM consisting of a two-state trellis code (Ns =
2) using QPSK modulation (Ms = 4) denoted as π/2-BPSK modulation. This
OMWM is used in land mobile radio to control the peak-to-average-power ration
(PAPR) of the transmitted signal. The modulation is defined as

σ (l + 1) = g1(I (l), σ (l)) J (l) = g2(I (l), σ (l)) D̃z(l) = a(J (l))

I (l) I (l) J (l) D̃z(l)

State, σ (l) 0 1 State, σ (l) 0 1 0 1

1 2 2 1 0 1 1 −1
2 1 1 2 2 3 2 j

3 − j

(a) Compute the minimum Euclidean square distance for Kb = 4.

(b) If this OMWM is used in a stream modulation with a rectangular pulse
shape, plot an example vector diagram for Kb = 16 random data bits.

(c) Compute the PAPR of this modulation.

17.7 Example Solutions

Problem 17.2.

(a) Since the code is terminated back to σ = 1 this requires I (5) = 0 and
I (6) = 0. The path through the trellis is shown in Figure 17.20.

(b) Going to Matlab gives the results in Table 17.8. The plot of the performance
is given in Figure 17.21.

(c) Examining the table above it is clear that the three smallest distances are
�E (1) = 10, �E (2) = 12, �E (3) = 14. Error events corresponding to these
distances are plotted in Figure 17.22.
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Figure 17.20 The path through the trellis.

(d) By comparing the union bound it is clear the performance is better. Com-
paring the minimum distances the code here has �E (min) = 10 while the
HCV codes has �E (min) = 7.2.

0 2 4 6 8 10 12
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QPSK Code UB
Memoryless BPSK

Figure 17.21 The union bound for the OMWM.

∆E(3) = 14∆E(1) = 10

∆E(2) = 12

Figure 17.22 The true path and the error events.
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TABLE 17.8 The tabulated Euclidean distance for the QPSK OMWM

�E (i, j )

�I = i

�I = j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 10 10 12 10 12 12 14 10 20 12 14 12 14 14 16
1 10 0 12 10 12 10 14 12 20 10 14 12 14 12 16 14
2 10 12 0 10 12 14 10 12 12 14 10 20 14 16 12 14
3 12 10 10 0 14 12 12 10 14 12 20 10 16 14 14 12
4 10 12 12 14 0 10 10 12 12 14 14 16 10 20 12 14
5 12 10 14 12 10 0 12 10 14 12 16 14 20 10 14 12
6 12 14 10 12 10 12 0 10 14 16 12 14 12 14 10 20
7 14 12 12 10 12 10 10 0 16 14 14 12 14 12 20 10
8 10 20 12 14 12 14 14 16 0 10 10 12 10 12 12 14
9 20 10 14 12 14 12 16 14 10 0 12 10 12 10 14 12
10 12 14 10 20 14 16 12 14 10 12 0 10 12 14 10 12
11 14 12 20 10 16 14 14 12 12 10 10 0 14 12 12 10
12 12 14 14 16 10 20 12 14 10 12 12 14 0 10 10 12
13 14 12 16 14 20 10 14 12 12 10 14 12 10 0 12 10
14 14 16 12 14 12 14 10 20 12 14 10 12 10 12 0 10
15 16 14 14 12 14 12 20 10 14 12 12 10 12 10 10 0

17.8 Miniprojects

Goal: To give exposure

■ to a small scope engineering design problem in communications.
■ to the dynamics of working with a team.
■ to the importance of engineering communication skills (in this case oral pre-

sentations).

Presentation: The forum will be similar to a design review at a company
(only much shorter). The presentation will be of 5 minutes in length with an
overview of the given problem and solution. The presentation will be followed
by questions from the audience (your classmates and the professor). Each team
member should be prepared to give the presentation.

17.8.1 Project 1

Project Goals: Build a practical orthogonal modulation with memory.
Convolutional codes are used in many practical applications. For example, a

block diagram of a convolutional code that is used in wireless LAN applications
and in deep space communications is shown in Figure 17.23. The summation
operation is performed modulo-2 and the orthogonal modulation symbols are
given as D̃z(2(m − 1) + 1) = (−1)J1(m) and D̃z(2(m − 1) + 2) = (−1)J2(m) .
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z–1 z–1 z–1 z–1 z–1 z–1I(m)

J2(m)

J1(m)

Σ

Σ

Figure 17.23 A powerful convolutional code.

(a) Characterize the OMWM by identifying the states of this modulation at
time m, σ (m) and how it relates to the sequence I (m). Hint: There are 64
states.

(b) Enumerate the state transitions, g1(σ (m), I (m)) for states σ (m) = 1, . . . , 8.

(c) Assume the modulation starts in σ (1) = 1 and ends in σ (Nt + 1) = 1 where
Nt is the number of trellis transitions in the frame and write software that
is capable of generating the OMWM output for Kb = 100. A test sequence
of 100 bits will be sent to the class via e-mail.

(d) Provide an estimate of the minimum Euclidean squared distance of this
OMWM.



This page intentionally left blank 



Appendix

A
Useful Formulas

Trigonometric Identities

exp ( j θ ) = cos(θ) + j sin(θ)

cos(θ ) = 1
2

[exp[ j θ ] + exp[− j θ]]

sin(θ ) = 1
2 j

[exp[ j θ ] − exp[− j θ ]]

sin(a ± b) = sin(a) cos(b) ± cos(a) sin(b)

cos(a ± b) = cos(a) cos(b) ∓ sin(a) sin(b)

cos(a) cos(b) = 1
2

[cos(a − b) + cos(a + b)]

sin(a) sin(b) = 1
2

[cos(a − b) − cos(a + b)]

sin(a) cos(b) = 1
2

[sin(a − b) + sin(a + b)]

Transcendental Functions

erf (x) = 2√
π

∫ x

0
exp(−t2)dt

A.1
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erf (x) = −erf (−x) erfc(x) = 1 − erf (x)

Jn(x) = 1
2π

∫ π

−π

exp[− j (nθ − x sin(θ ))]d θ

sinc(x) = sin (πx)
πx

Statistics Formulas

Gaussian density function

fX (x) = 1√
2πσ 2

x

exp

(
− (x − mx)2

2σ 2
x

)
mx = E [X ] σ 2

x = E
[
(X − mx)2

]

Bivariate Gaussian density function

fX1,X2 (x1, x2) = 1

2πσ1σ2
√

1 − ρ2
exp
(

− 1
2(1 − ρ2)

×
(

(x1 − m1)2

σ 2
1

− 2ρ(x1 − m1)(x2 − m2)
σ1σ2

+ (x2 − m2)2

σ 2
2

))

mi = E [Xi] , σ 2
i = E

[
(Xi − mi)2 ], i = 1, 2 ρ = E [(X1 − m1) (X2 − m2)]

Random Processes Formulas

Stationary Processes

RN (τ ) = E [N (t)N (t − τ )] SN (f ) = F {RN (τ )}

Linear Systems and Stationary Processes

SN (f ) = |HR(f )|2 SW (f )

Stationary Bandpass Noise

SNc (f ) = 1
2

SNz( f − fc) + 1
2

SNz(− f − fc)

SN I (f ) = SNz(f ) + SNz(− f )
4

SN I N Q (f ) = SNz(− f ) − SNz(f )
j 4
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Fourier Transforms

TABLE 1.1 Fourier transform table

Time Function Transform

exp
[

2T 1

N0

] i=1
>
<

i=0
exp
[

2T 0

N0

]
X (f ) = T sin(π f T )

π f T

x(t) =
{

1 − |t|
T − T ≤ t ≤ T

0 elsewhere
X (f ) = T

(
sin(π f T )

π f T

)2

x(t) = 2W sin(2πWt)
2πWt X (f ) =

{
1 − W ≤ f ≤ W

0 elsewhere

x(t) =
{

exp (−at) t ≤ 0

0 elsewhere
X (f ) = 1

j 2π f + a

x(t) = Aexp
(

j 2π f0t
)

X (f ) = Aδ( f − f0)

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8

J0(x)

J1(x)
J2(x)

J4(x) J6(x)

β

Figure 1.1 A plot of the low order Bessel functions of the first kind, Jn(β) versus β.
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Appendix

B
Notation

Signals and Systems

x(t) = A signal

 (•) = Real part of a complex signal
� (•) = Imaginary part of a complex signal

xn = Fourier series coefficients of a periodic x(t)
X (f ) = The Fourier transform of x(t)
F (•) = The Fourier transform operator

Px = The power of x(t)
Ex = The energy of x(t)

Vx(τ ) = The correlation function of x(t)
Gx(f ) = The energy spectrum of x(t)

h(t) = A filter impulse response
Tm = Measurement time interval

Sx( f , Tm) = A sampled power spectral density
L (•) = The Laplace transform operator
H (f ) = A filter transfer function

Random Variables

P [A] = Probability of event A
FX (x) = Cumulative distribution function of a random variable X
f X (x) = Probability density function of a random variable X

σx = Standard deviation of a random variable X
mX = Mean of a random variable X

E [•] = Expected value
ρXY = Correlation coefficient between random variable X and random

variable Y
erf(•) = Erfc function

erfc(•) = Complimentaty erfc function

B.1
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Bandpass Signals

xc(t) = Bandpass signal
xI (t) = In-phase signal
xQ(t) = Quadrature signal
xz(t) = Complex envelope signal
xA(t) = Amplitude signal
xP (t) = Phase signal

BT = Transmission bandwidth
fc = Carrier frequency

Analog Modulations

m(t) = Analog message signal
W = Message signal bandwidth
τp = Propagation time delay
Lp = Propagation loss
φp = Propagation phase shift

ET = Transmission efficiency
EB = Bandwidth efficiency
Ac = Transmission amplitude
a = Modulation coefficient

fi(t) = Instantaneous frequency
fd (t) = Instantaneous frequency deviation

kp = Phase deviation constant
kf = Frequency deviation constant (radians/s/V)
fk = Frequency deviation constant (Hz/V)
f p = Peak frequency deviation
D = Bandwidth expansion factor

EM = Multiplexing efficiency

Random Processes

RN (τ ) , RN (t1, t2) = Correlation function of the random process N (t)
ρN (τ ) , ρN (t1, t2) = Correlation coefficient of the process N (t)

SN (f ) = Power spectrum of N (t)
W (t) = White noise

N0 = White noise power spectral density
BN = Noise equivalent bandwidth

Nz(t) = Complex envelope of a bandpass noise
Ñz(t) = Derotated complex envelope
SNRb = Baseband maximum SNR
SNRo = Demodulator output SNR
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Digital Communications Basics

C = Channel capacity
Eb = Energy per bit
T = Symbol time

Wb = Bit rate
Tp = Transmission duration

Dxz(f ) = Average energy spectrum per bit
ηB = Spectral efficiency (bits/s/Hz)

�I , I = Information bits
�̂I , Î = Information bit estimates

T i = Maximum likelihood metric for �I = i
T i| j = Maximum likelihood metric for �I = i when the actual

transmitted signal is �I = j
�E (α, β) = Square Euclidean distance between xα(t) and xβ(t){

Ad (k), �E (k)
} = Squared Euclidean distance spectrum of a modulation

Kb = Number of bits to be transmitted per frame
πi = A prior probability of �I = i

Linear Modulations

u(t) = Modulation pulse shape
Di(k) = Modulation symbol

a(•) = Constellation mapping, i.e., di = a(i), i = 0, M − 1
�d = The constellation for a linear modulation
Q = Output of filter matched to u(t)

Orthogonal Modulations

I (l) = Information bit to be transmitted at step l
Dz(l) = Modulation symbol for orthogonal modulation
sl(t) = The spreading waveform for the lth bit for an orthogonal

modulation
ur (t) = The rectangular pulse

Tu = Pulse shape duration for stream modulation
Q(k) = The output for the matched filter to the kth spreading for an

orthogonal modulation

Orthogonal Modulations with Memory

σ (l) = Modulation state at time l
Ns = Number of states in a OMWM

J (l) = Constellation label sequence, i.e., Dz(l) = a(J (l))
Ms = Number of points in the constellation, i.e., J (l) = i, i = 0, Ms − 1

g1(•, •) = The modulation finite state machine, i.e., σ (l + 1) = g1
(
I (l), σ (l)

)
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g2(•, •) = The output symbol selector mapping, i.e., J (l) = g2
(
I (l), σ (l)

)
�I (l), I (l) = Information bits to be transmitted at symbol time l

Nf = Number of symbols transmitted
Km = Number of bits per trellis transition
Mi = Number of branches per trellis transition, i.e., Mi = 2Ks

Nm = Number of output symbols per trellis transition
R = Number of bits transmitted per symbol, i.e., R = Km/Nm
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C
Acronyms

Signals and Systems

ADC = Analog to digital converter
BPF = Bandpass filter

DC = Direct current, often refers to zero frequency
DTFT = Discrete time Fourier transform

I = In-phase
LPF = Lowpass filter
LTI = Linear Time Invariant

Q = Quadrature
SNR = Signal to noise ratio

Random Variables and Processes

AWGN = Additive white Gaussian noise
CDF = Cumulative distribution function
ChF = Characteristic function
CLT = Central limit theorem
PDF = Probability density function
PMF = Probability mass function
PSD = Power spectral density

RV = Random variable
WSS = Wide sense stationary

Analog Communication

AM = Amplitude modulation
DSB-AM = Double sideband AM

FDM = Frequency division multiplexing
FM = Frequency modulation

C.1
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LC-AM = Large carrier AM
MCPR = Message–to–Carrier Power Ratio
PAPR = Peak–to–Average Power Ratio

PLL = Phase–locked loop
PM = Phase modulation

QCM = Quadrature carrier multiplexing
SSB-AM = Single sideband AM

TV = Television
VCO = Voltage controlled oscillator

VSB-AM = Vestigial sideband AM

Digital Communication

AMI = Alternate mark inversion
APP = A posteriori probability

BCJR = Bahl, Cocke, Jelinek, and Raviv—an algorithm named after the
inventors

BEP = Bit error probability
BFSK = Binary frequency shift keying
BPSK = Binary phase shift keying
DTMF = Discrete tone multiple frequency

EVM = Error vector magnitude
GSM = Global system for mobile communications
IEEE = Institute of electrical and electronic engineers

ISI = Intersymbol interference
MAP = Maximum a posteriori

MAPBD = Maximum a posteriori bit demodulation
MLBD = Maximum likelihood bit demodulation
MLWD = Maximum likelihood word demodulation
MFSK = M-ary frequency shift keying
MPSK = M-ary phase shift keying

MSK = Minimum shift keying
OCDM = Orthogonal code division multiplexing
OFDM = Orthogonal frequency division multiplexing

OMWM = Orthogonal modulation with memory
PPM = Pulse position modulation

PWM = Pulse width modulation
PWEP = Pairwise error probability
QPSK = Quadri-phase shift keying

RLL = Run length limited
VPSK = Variable phase shift keying
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D
Fourier Transforms: f versus ω

This course and communications engineers in general use the variable f as
opposed to ω = 2π f when examining the frequency domain representations of
signals and systems. The reason is that units of Hertz have more of an intu-
itive feel than the units of radians per second. Often undergraduate courses in
signals and systems develop the theory with the notation ω. This appendix is
provided to show the differences in the results that arise from these two views
of frequency domain analysis. First we shall define the Fourier transform for
the two variables

X (f ) =
∞∫

−∞
x(t)e− j 2π f tdt = F {x(t)} X (ω) =

∞∫
−∞

x(t)e− j ωtdt (4.1)

The inverse Fourier transform is given as

x(t) =
∞∫

−∞
X (f )e j 2π f tdf = F−1 {X (f )} x(t) = 1

2π

∞∫
−∞

X (ω)e j ωtdω (4.2)

The other convenient thing about working with the variable f is that the
term (2π )−1 does not need to be included in the inverse transform. A list of
Fourier transform properties of different mathematical operations are listed in
Table 4.1. Additionally Fourier transforms of some commonly used signals are
listed in Table 4.2.

D.1
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TABLE 4.1 Fourier transforms for some common mathematical operations

Operation Time Function, x(t) Transform, X (f ) Transform, X (ω)

Reversal x(−t) X (− f ) X (−ω)

Symmetry X (t) x(− f ) 2πx(−ω)

Scaling x(at) 1
|a| X
(

f
a

)
1
|a| X
(

ω
a

)
Time Delay x(t − t0) X (f )e− j 2π f t0 X (ω)e− j ωt0

Time Differentiation d n

dt n x(t) ( j 2π f )nX (f ) ( j ω)nX (ω)

Energy Ex =
∞∫

−∞
|x(t)|2dt Ex =

∞∫
−∞

|X (f )|2dt Ex = 1
2π

∞∫
−∞

|X (ω)|2dt

Frequency Translation x(t)e j 2π fct = x(t)e j ωct X ( f − fc) X (ω − ωc)

Convolution x(t) ∗ h(t) X (f )H (f ) X (ω)H (ω)

Multiplication x(t)y(t) X (f ) ∗ Y (f ) 1
2π

X (ω) ∗ Y (ω)

TABLE 4.2 Fourier transforms for some common signals

Time Function, x(t) Transform, X (f ) Transform, X (ω)

x(t) =
{

1 − Tp/2 ≤ t ≤ Tp/2

0 elsewhere
Tp

sin(π f Tp)
π f Tp

T sin(ωTp/2)
ωTp/2

x(t) =
{

exp (−at) 0 ≤ t

0 elsewhere
1

j 2π f + a
1

j ω + a

x(t) = A Aδ(f ) 2π Aδ(ω)

x(t) = Ae j ω0t = Ae j 2π f 0t Aδ( f − f 0) 2π Aδ(ω − ω0)
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acronyms, listed, C.1–C.2
additive white Gaussian noise (AWGN)

bandpass noise and, 10.18–10.19,
10.21–10.23, 10.25–10.26

carrier frequency filtering and, 10.1
complex, 10.18–10.19, 13.48, 13.2,

13.22, 14.29
fidelity evaluation and, 11.1, 11.4
frequency shift keying and, 14.19
matched filter and, 13.22
mini-project on, 9.44
multiple bit transmission and, 14.28,

14.29–14.30, 14.33, 14.36
optimal demodulator complexity and,

15.33–15.36, 15.37, 15.40, 15.41,
15.46

random processes and, 9.35–9.36
linear systems and, 9.25, 9.27,

9.30–9.31, 9.32–9.34, 9.39
thermal noise and, 9.20–9.21

satellite communication and, 16.21
single bit demodulation and, 13.2,

13.40, 13.41, 13.42–13.47, 13.48
spectral efficiency and, 12.9
telephone communication and, 12.14

adjacent channel interference (ACI),
10.26

affine modulation, 6.8–6.12
demodulation and, 6.13–6.16
modulator for, 6.12–6.13

Agilent 89600, 4.8
Alternate Mark Inversion (AMI)

modulation, 17.9–17.11, 17.13,
17.15, 17.33, 17.34

amplitude, 4.3, 10.4
amplitude modulation (AM), 6.1

See also under homework problems
affine modulation and, 6.8–6.12

demodulation and, 6.13–6.16
modulator for, 6.12–6.13

bandpass signals and, 5.6

bandwidth and, 5.10
defined, 1.8
disadvantages of, 7.1–7.2
example solutions for, 6.42–6.44
linear modulation and, 6.1, 6.3–6.8
mini-projects on, 6.44–6.46
quadrature modulation and, 6.16–6.17,

6.27
demodulation and, 6.23–6.27
modulator for, 6.22–6.23
SSB-AM and, 6.19–6.21
VSB filter design and, 6.17–6.19

signal to noise ratio and, 11.20, 11.24
transformation of random variables

and, 3.19–3.20
analog communication, 5.1

See also amplitude modulation (AM);
angle modulation; fidelity in
analog demodulation

acronyms for, C.1–C.2
example solutions for, 5.15–5.17
history of communication and, 1.1
homework problems on, 5.12–5.15
message signal characterization and,

5.1–5.4
multiplexing signals and, 8.8–8.13
notation for, B.2
performance metrics for, 5.8–5.11
phase-locked loop and, 8.1–8.4
technique comparison and, 7.24–7.25
text overview and, 1.8–1.9
transmission and, 5.5–5.8

analog-to-digital conversion (ADC), 2.23,
4.23

angle modulation, 7.1
See also under homework problems
AM disadvantages and, 7.1–7.2
bandpass signal and, 7.2–7.6
bandwidth of, 7.12–7.14, 7.15–7.17
complexity and, 7.24, 11.19
defined, 1.8
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angle modulation (Cont.):
demodulation and, 7.19–7.24

signal to noise ratio and, 11.12–11.17
derotated noise and, 11.21
example solutions for, 7.37–7.39
introduction of, 7.2
mini-projects on, 7.39–7.40
modulators for, 7.6–7.7
narrowband, 7.14, 7.18–7.19
phase-locked loop and, 8.4–8.8
signal to noise ratio and, 11.12–11.17,

11.20
sinusoidal message signal and, 7.7–7.14
spectral efficiency and, 11.19

antipodal signaling, 13.28
aperiodic signals, 2.4–2.5
a posteriori probability (APP), 13.5, 13.7,

14.31
a priori probability, 13.49
Armstrong, Edwin H., 7.2
Arnold, H. D., 6.23

bandpass demodulation, 11.4–11.6
bandpass noise, 10.19

amplitude of, 10.4
complex AWGN and, 10.18–10.19
complex envelope and, 10.6–10.12
correlation function of, 10.6, 10.10,

10.17
defined, 10.1
example solutions for, 10.27–10.29
homework problems on, 10.19–10.27
lowpass noise and, 10.3
mini-projects on, 10.29–10.30
multiple bit transmission and, 14.28
performance analysis and, 10.2–10.3
phase of, 10.4
random processes and, 10.4–10.6
signal to noise ratio and, 11.20
solution of canonical problem and,

10.15–10.17
spectral characteristics of, 10.2, 10.3,

10.12–10.15
bandpass signals, 4.18

See also under homework problems
affine modulation and, 6.14
amplitude modulation and, 1.8
angle modulation and, 1.8, 7.2–7.6,

7.37

bandwidth of, 4.13
baseband representation of, 4.2–4.6
complex envelope and, 4.9
defined, 4.2
direct digital synthesis and, 7.6
DSB-AM and, 6.28, 6.31
example solutions for, 4.30–4.33
linear systems and, 4.14–4.17, 6.1
mini-projects on, 4.33–4.34
notation for, B.2
text overview and, 1.8
vector diagram of, 4.8–4.9
VSB-AM signals and, 6.17, 6.18

bandwidth
AM disadvantages and, 7.1
analog communication and, 5.2–5.3,

6.1, 6.3
of angle modulation, 7.12–7.14,

7.15–7.17, 7.24, 7.25–7.27, 7.30,
7.33

of bandpass signals, 4.2, 4.13, 4.26
complexity and, 11.19
energy spectrum and, 13.29
FM demodulation and, 8.14
frequency domains and, 2.14–2.16
of frequency shift keying, 13.35, 14.21
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limiting, 5.13
linear modulations and, 6.1, 6.3, 15.11
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modems and, 12.11
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performance and, 14.19, 14.20
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of phase shift keying, 14.26
sampling and, 2.23–2.24
signal to noise ratio and, 11.20
spectral efficiency and, 12.4, 12.6–12.7,

12.9–12.10
spectral mask and, 16.1
squared cosine pulse and, 16.3–16.4,

16.19
transmission efficiency and, 5.10

baseband data communications, 12.2
baseband processing power, 1.6
Baud rate, 15.27
Bayes theorem, 3.4–3.5, 3.15–3.16,

3.25–3.26, 3.33, 13.7, 13.8, 14.4,
14.31
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Bessel function, 7.10–7.11, 7.12, 7.30
binary data communications, 12.1
binary frequency shift keying (BFSK),

13.30–13.36, 13.39, 13.41, 13.47,
13.52

binary phase shift keying (BPSK)
eye diagram and, 16.20
orthogonal modulation and,

15.37–15.38
OCDM, 15.22, 15.24, 15.25
OFDM, 15.18–15.19, 15.38
OMWM, 17.21, 17.32, 17.33, 17.34,

17.35–17.36
single bit demodulation and,

13.36–13.39, 13.42, 13.47, 13.52
stream modulation and, 15.27, 15.28,
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3.33, 13.7, 13.8, 14.4, 14.31
central limit, 3.10, 3.21
circuit, 1.3
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duality theorem, 2.10
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4.18
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bandpass noise and, 10.6–10.12,

10.20–10.21, 10.23
of bandpass random process, 10.4–10.6
bandpass signals and, 4.4, 4.6,
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random processes and, 9.4
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differentiator, 2.22
digital communication, 12.2

See also multiple bit transmission;
single bit demodulation structures
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example solutions for, 12.14
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digital signal processors, 2.6
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direct digital synthesis (DDS), 7.6
discrete Fourier transform (DFT), 2.23,
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discrete random variables, 3.6, 3.8
discrete time Fourier transform (DTFT),
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Doppler effect, 4.24
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complexity and, 11.19
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quadrature modulation and, 6.16
signal to noise ratio and, 11.6–11.8,
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spectral efficiency and, 11.19
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energy spectrum

affine modulation and, 6.11–6.12
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frequency shift keying and, 14.20
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linear modulations and, 2.19, 6.1, 15.10
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message signal characterization and,
5.1–5.2, 5.3

notation for, B.1
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sinc pulse and, 2.16
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frequency shift keying and,
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for bandpass noise, 10.27–10.29
for bandpass signals, 4.30–4.33
for digital communication, 12.14
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for multiplexing, 8.19
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for signal to noise ratio, 11.26–11.28
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Fourier transform
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angle modulation and, 7.7
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linearity and, 2.19, 16.21
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properties of, 2.9–2.10
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signal to noise ratio and, 11.4
single bit demodulation and, 13.54
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theory and, 2.10–2.14
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Fourier transform and, 2.9–2.14,
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Parseval’s theorem and, 5.17
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homework problems on, 7.27, 7.28,

7.32, 7.33–7.34
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Fry, T. C., 7.15
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defined, 9.5
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central limit theorem and, 3.21
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group delay, 2.32

Hadamard matrices, 15.40–15.41
Hermitian symmetric, 2.8, 2.9, 4.9–4.10
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7.27, 7.28, 7.31, 7.32–7.33,
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on FM demodulation, 8.14
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frequency shift keying and,
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frequency shift keying and, 15.46
Hadamard matrices and, 15.40–15.41
linear modulation and, 15.31–15.32,
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phase shift keying and, 15.47–15.48
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correlation function and, 9.37–9.38
Fourier transform and, 9.32
Gaussian random variables and,
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9.40
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linear systems and, 9.32, 9.39
message signals and, 9.39
power spectrum and, 9.34–9.35
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spectral density and, 9.31–9.32, 9.34

on random variables/probability,
3.23–3.32

on signals, 2.25–2.33
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on single bit demodulation structures
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stream modulation and, 15.36, 15.50,
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Jacobs, Irwin, 1.6
Johnson, J. B., 9.19
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See also random processes
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angle modulation and, 7.14, 7.18, 7.23,
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complex envelope and, 6.9–6.10
complexity and, 11.19
demodulation and, 6.13–6.16
energy spectrum of, 6.9, 6.11–6.12
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mini-project on, 6.45
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quadrature modulation and, 6.16, 6.27
signal to noise ratio and, 11.9–11.10,

11.11, 11.19, 11.29
spectral efficiency of, 11.19
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linear modulation, 15.11–15.13

advantage of, 15.31
bandpass signal and, 4.25
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error rate evaluation for, 15.6–15.9
example solutions for, 15.52
Fourier transform and, 2.33, 16.21
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notation for, B.3
phase-locked loop and, 8.4, 8.6–8.8
quadrature amplitude and, 15.10
random processes and, 9.23–9.27, 9.32,

9.39
spectral characteristics of, 15.10,

16.7–16.11
linear stream modulation, 16.18, 16.19
linear time-invariant (LTI) system,
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frequency response and, 8.7
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11.23–11.24
single bit demodulation and, 13.7,
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error rate of, 14.18–14.19, 14.26
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bandwidth computation and, 2.18
Bessel function and, 7.30
complex baseband representation and,

4.1
continuous time signals and, 2.6
double sideband modulation and, 6.45
eye diagram and, 16.17
large carrier modulation and, 6.45
optimal demodulator complexity and,

15.54–15.55
probability density function and, 3.9
random variables and, 3.6, 3.10, 3.12,

3.15, 3.29, 3.31
sample paths and, 9.3
single bit demodulation and, 13.54
single sideband modulation and, 6.46
statistical averages and, 9.4–9.5
time variables and, 2.23–2.25
unwrapping function and, 7.20

Matlab code, 5.17
maximum a posteriori bit demodulation

(MAPBD), 13.7, 13.10, 13.41, 14.2
maximum a posteriori word demodulator

(MAPWD), 14.4–14.5, 14.7, 14.9
maximum likelihood bit demodulator

(MLBD), 13.12
a priori probability and, 13.16–13.18
filter design and, 13.20
frequency shift keying and, 13.32
geometric interpretation of,

13.12–13.13
matched filter and, 13.21–13.23, 13.28
multiple bit transmission and,

14.1–14.2
orthogonal modulations and, 15.15,

15.18, 15.24
phase shift keying and, 13.38
single bit demodulation and, 13.41
stream modulation and, 15.39

maximum likelihood word demodulator
(MLWD), 14.5–14.6

frequency shift keying and, 14.18
homework problems on, 14.27, 14.30,

14.33, 14.36, 15.35–15.36, 15.42,
15.43
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for linear modulation, 15.3–15.6, 15.31,
15.32, 15.45

OMWM and, 17.4–17.5
optimal demodulator complexity and,

14.7
phase shift keying and, 14.22
word error probability of, 14.9, 14.27

memory, 17.2. See also orthogonal
modulation with memory (OMWM)

message signal characterization, 5.1–5.4
microprocessor, 1.2
Miller code, 17.26–17.28
minimum distance decoder, 15.4
minimum shift keying (MSK), 13.34
mini-projects

on bandpass noise, 10.29–10.30
on bandpass signals, 4.33–4.34
on digital communication, 12.14–12.15
on multiple bit transmission,

14.40–14.41
on multiplexing, 8.20
on OMWM, 17.37–17.39
on optimal demodulator complexity,

15.53–15.55
on probability/random variables,

3.36–3.37
on random processes, 9.44–9.45
on signals, 2.36–2.37
on signal to noise ratio, 11.29
on single bit demodulation, 13.55–13.57
on spectral efficiency, 16.23–16.28

mixed random variable, 3.6
mobile devices, 12.8
modems

bandpass signals and, 4.2
frequency shift keying and, 12.12,

13.30, 14.17
linear modulation and, 15.12
orthogonal modulations and, 15.16,

16.7, 16.11, 16.19
performance of, 12.10–12.11
phase shift keying and, 14.21, 15.13,

15.46
physical layers and, 1.5
probability theory and, 13.5
redundancy and, 15.13
stream modulation and, 15.29
term of, 12.4

modulation with memory (MWM), 17.2.
See also orthogonal modulation
with memory (OMWM)

Moore’s Law, 1.2, 1.6, 15.29
multiple bit transmission, 14.1

See also under homework problems
example solutions for, 14.37–14.40
frequency shift keying and, 14.17–14.21
mini-projects on, 14.40
optimum demodulation and, 14.3–14.4

fidelity analysis and, 14.7–14.10
signal design and, 14.16–14.17
union bound and, 14.10–14.16
word demodulation receivers and,

14.4–14.7
phase shift keying and, 14.21–14.26
reformulation for, 14.1–14.2
multiplexing analog signals, 8.8–8.13
homework problems on, 8.14, 8.15–8.18

narrowband angle modulation, 7.14,
7.18

narrowband phase modulation, 7.31
National Aeronautics and Space

Administration (NASA), 12.13
National Television System Committee,

5.4
natural mapping, 12.13, 14.21–14.22
noise

See also bandpass noise; signal to noise
ratio (SNR)

analog transmission and, 5.5
characterization of, 9.1
generation of, 10.1
LC-AM and, 6.16
lowpass, 10.3
scatter plot and, 16.12
text overview and, 1.9–1.10
thermal, 9.1, 9.19–9.21

See also random processes
trade-offs and, 1.9
white, 9.20–9.21, 9.24, 10.1, 13.5,

14.31
See also additive white Gaussian

noise
noncoherent demodulation, 5.8, 7.20,

7.23, 11.9–11.12, 11.19
North, D. O., 13.20
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notation, B.1–B.4
Nyquist, H., 2.24, 4.23, 9.19, 16.11, 16.18.

See also intersymbol interference
(ISI)

open systems interconnection (OSI)
model, 1.4

optimal demodulator complexity, 15.1,
15.30–15.31

See also under homework problems
bit rate and, 14.7
example solutions for, 15.48–15.53
linear modulation and, 15.11–15.13

constellation plot and, 15.2–15.3,
15.10

error rate evaluation for, 15.6–15.9
MLWD for, 15.3–15.6
square quadrature amplitude and,

15.10
mini-projects on, 15.53–15.55
orthogonal modulations and,

15.13–15.16
code division multiplexing and,

15.22–15.26
frequency division multiplexing and,

15.16–15.22
stream modulation and,

15.26–15.30
orthogonal code division multiplexing

(OCDM)
applications for, 15.22
demodulator for, 15.24–15.25
homework problems on, 15.38,

15.40–15.41
mini-projects on, 15.54–15.55
mobile telephony and, 15.23
signal format of, 15.22, 16.12
spectral characteristics of,

15.25–15.26
waveform construction and, 15.23,

15.24
orthogonal frequency division

multiplexing (OFDM)
applications of, 15.16
demodulator for, 15.18–15.19
homework problems on, 15.38, 15.40,

15.41
mini-projects on, 15.54, 16.26

signal format of, 15.16
spectral characteristics of, 15.19–15.22,

16.5–16.7, 16.19–16.20
transmitted waveform of, 15.17–15.18
wireless LAN and, 15.18

orthogonal modulation
advantage of, 17.1
mini-project on, 16.26–16.28
notation for, B.3
optimal demodulator complexity and,

15.13–15.16, 15.30, 15.45, 15.51
scatter plot and, 16.12–16.14
spectral efficiency of, 16.11–16.18

orthogonal modulation with memory
(OMWM)

complexity of, 17.4, 17.28
convolutional codes and, 17.21–17.23
example solutions for, 17.36–17.37
fidelity and, 17.3–17.4, 17.5–17.7
homework problems on, 17.30–17.36
Miller code and, 17.26–17.28
mini-projects on, 17.37–17.39
MLWD and, 17.4–17.5
notation for, B.3–B4
spectral efficiency and, 17.7–17.8
stream, 17.9–17.15, 17.17–17.21
transmission rates and, 17.16–17.17
trellis codes and, 17.23–17.26

orthogonal time division multiplexing,
15.26–15.30

oscilloscope, 1.7, 1.8, 4.8, 16.16
output amplitude control, 5.8

pairwise error probability (PWEP),
14.10–14.12, 14.24, 15.38–15.39

Parseval’s theorem, 2.8–2.10, 2.12, 5.17,
6.44, 7.11, 9.24

peak-to-average-power ratio (PAPR),
5.3, 6.11, 15.18, 15.23, 15.26,
17.36

performance
See also complexity; fidelity; noise;

spectral efficiency
of analog communication, 5.8–5.11
bandwidth and, 7.1, 7.16, 14.19,

14.20
bit error probability and, 13.27, 13.33,

13.36, 13.38–13.39
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bit rate and, 14.18–14.19
complex baseband representation and,

4.17
of digital communication, 12.7–12.8

bandwidth efficiency and, 12.6–12.7
complexity and, 12.5
fidelity and, 12.4–12.5
limits on, 12.8–12.10

frequency shift keying and,
14.20–14.21, 14.36

of LC-AM, 6.10, 6.13
linear amplifiers and, 7.1
of linear modulation, 15.30
linear system theory and, 2.19
of MLBD, 13.17–13.18
of modems, 12.11
of orthogonal modulations,

15.15–15.16, 15.22, 15.25–15.26
OMWM, 17.5, 17.8, 17.23,

17.25–17.26, 17.30
of phase-locked loops, 8.3, 8.6, 8.8
phase shift keying and, 15.11–15.12
probability theory and, 3.2
radar signals and, 3.26
random variables and, 3.12, 3.14
spectral mask and, 16.1
of stream modulation, 15.29
of VSB-AM, 7.24
of wireless communication, 12.8

periodic real signal, 4.23
periodic signals, 2.4, 2.6, 2.16–2.18, 2.26,

5.15, 7.8
phase, 4.3, 4.19, 10.4
phase-locked loop (PLL)

angle modulation and, 8.4–8.8
DSB-AM and, 6.7–6.8
general concepts of, 8.1–8.4
homework problems on, 8.13–8.14
linear analysis of, 8.4

phase modulation (PM)
angle modulation and, 7.3–7.4, 7.5–7.6,

7.7–7.8, 7.20
homework problems on, 7.25,

7.26–7.28, 7.32–7.33, 7.34–7.37,
7.39

demodulation of, 8.1–8.2
frequency modulation and, 11.18–11.19
signal to noise ratio and, 11.12–11.15

phase shift keyed (PSK) modulation,
12.13, 15.7–15.8, 15.11

See also binary phase shift keying
(BPSK); M-ary phase shift keying
(MPSK)

quadri-phase, 15.4, 15.8, 15.47–15.48,
16.12, 16.15–16.16, 17.26,
17.30–17.31

physical layer communications, 1.4–1.6,
12.1, 12.9

Planck’s constant, 9.19
Poincaire’s theorem, 3.2–3.4, 3.34
point-to-point data communications,

12.1
positive frequency spectrum, 2.14
power meters, 2.13–2.14
power signals, 2.2
practice and theory, 1.6
probability

See also bit error probability; random
variables; word error probability

axioms of, 3.1–3.5
example solutions for, 3.33–3.36
homework problems on, 3.23–3.32
independence and, 3.3
random variables and, 3.6
uniform a priori, 13.11–13.14,

13.16–13.18
probability density function (PDF), 3.6

additive white Gaussian noise and,
9.35

bandpass noise and, 10.2–10.3,
10.10–10.11, 10.19, 10.20, 10.22,
10.29

coherent demodulation and, 11.6
defined, 3.8
finding, 3.12
Gaussian random variables and, 3.22,

9.6–9.8, 9.7–9.9, 9.12–9.13
homework problems on, 3.31–3.32
joint, 3.14–3.16, 3.18–3.19
message signals and, 9.39
multiple bit transmission and, 14.28
optimal demodulator complexity and,

15.6–15.7
properties of, 3.8–3.9
random process characterization and,

9.4
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probability density function (Cont.):
single bit demodulation and, 13.8,

13.10
transformation of random variables

and, 3.19, 3.20–3.21
probability mass function (PMF), 3.8,

3.14–3.16, 3.30, 17.12, 17.14,
17.20

probability theory, 1.8, 3.2
pulse, 2.2, 2.3
pulse amplitude modulation (PAM),

15.7–15.8, 15.11, 15.32, 15.33,
15.41

pulse position modulation (PPM),
14.34–14.35

quadrature amplitude modulation
(QAM), 15.10, 15.11–15.12, 15.18,
15.31, 15.47

quadrature carrier multiplexing (QCM),
8.9–8.10

quadrature modulation, 6.16–6.17, 6.27
demodulation and, 6.23–6.27
homework problems on, 6.33–6.34,

6.40
modulator for, 6.22–6.23
SSB-AM and, 6.19–6.21
VSB filter design and, 6.17–6.19

quadrature (Q) component, 4.3, 4.6, 10.4
quadri-phase shift keying (QPSK), 15.4,

15.8, 15.47–15.48, 16.12,
16.15–16.16, 17.26, 17.30–17.31

Qualcomm, 1.6

radio
analog demodulation and, 5.7
angle modulation and, 7.2, 7.6
bandwidth and, 5.10, 12.6
direct digital synthesis and, 7.6
DSB-AM and, 6.8
energy/power signals and, 2.2
history of communications and, 1.1,

1.4
hybrid modulation and, 11.18–11.19
LC-AM and, 6.16
multiplexing and, 8.11–8.13
noise and, 5.5
orthogonal modulation and, 15.18,

15.22, 15.23, 15.26

output limitations for, 6.30–6.31
scatter plot and, 16.13–16.14
spectral mask and, 16.1
transmitted reference systems and,

6.25
raised cosine pulse, 16.3–16.5
random processes

See also Gaussian random process;
under homework problems

acronyms for, C.1
bandpass, 10.4–10.6
basic definitions of, 9.2–9.5
correlation function and, 10.6
example solutions for, 9.42–9.43
formulas for, A.2
linear systems and, 9.23–9.27
mini-projects on, 9.44–9.45
nonstationary, 9.9
notation for, B.2
sample path of, 9.2
solution of canonical problem and,

9.27–9.30
stationary

bandpass noise and, 10.8–10.9
defined, 9.9, 9.10
frequency domain and, 9.15–9.19
Gaussian, 9.11–9.15

statistical averages and, 9.4
random variables

See also Gaussian random variables;
single bit demodulation structures

acronyms for, C.1
concept of, 3.6
cumulative distribution function and,

3.6–3.8
example solutions for, 3.34–3.36
homework problems on, 3.23–3.32
mini-projects on, 3.36–3.37
multiple, 3.14

central limit theorem and, 3.21
Gaussian, 3.16–3.19
joint density/distribution functions

and, 3.14–3.16
joint moments/statistical averages

and, 3.16
transformation of, 3.19–3.21

nonstationary random processes and,
9.9

notation for, B.1
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probability density function and,
3.8–3.9

sampling and, 9.4
stationary random processes and, 9.10
statistical averages and, 3.9–3.10
transformation of, 3.12–3.13
types of, 3.6

Rayleigh density, 3.20
Rayleigh random variable, 3.28–3.29
Rayleigh’s energy theorem, 2.10, 2.12,

4.14, 13.26, 13.50
real signals, 2.5, 2.8
Reed-Solomon codes, 17.23, 17.26
Riemann sum, 2.24
run length limited (RLL) codes, 17.27

sampled power spectral density, 2.13–2.14
sample paths, 9.2, 9.3
satellite communication, 1.1–1.2, 4.2,

12.13–12.14, 16.21
scatter plot, 16.12–16.14
Schwarz’s inequality, 13.19–13.20
semiconductor transistor, 1.2
Shannon, Claude

information theory and, 12.8–12.9,
12.10

linear modulation and, 15.11–15.12
modulations with memory and, 1.10
orthogonal modulations and, 15.16

OMWM, 17.2, 17.8, 17.26, 17.30
sideband amplitude modulation

(SSB-AM)
angle modulation and, 7.24
complexity and, 11.19
example solution for, 6.43
homework problem on, 6.36, 6.38–6.39
mini-project on, 6.46
multiplexing and, 8.14
quadrature modulations and, 6.16,

6.19–6.21, 6.24, 6.25–6.26
signal to noise ratio and, 11.8–11.9,

11.21–11.22, 11.27–11.28
spectral efficiency and, 11.19

signal classification, 2.1–2.6. See also
complex baseband representation

signal processor, 1.2
signals

acronyms for, C.1
example solutions for, 2.33–2.36

frequency domain analysis of, 2.6
bandwidth of signals and, 2.14–2.16,

2.17
Fourier series and, 2.6–2.8
Fourier transform and, 2.9–2.14,

2.16–2.18
homework problems on, 2.25–2.33
linear time-invariant systems and,

2.18–2.22
Matlab utilization and, 2.23–2.25
mini-projects on, 2.36–2.37
notation for, B.1
sampling and, 2.23–2.24

signal to noise ratio (SNR)
angle demodulation and, 11.12–11.17
bandpass demodulation and, 11.4–11.6
bandpass noise and, 10.2, 10.24–10.25
bandwidth and, 12.9
coherent amplitude demodulation and,

11.6–11.12
demodulator output for, 5.9–5.10
digital communication and, 12.5
example solutions on, 11.26–11.28
filter design and, 13.18–13.20
frequency shift keying and, 14.19
homework problems on, 5.14–5.14,

9.40–9.41, 11.20–11.25
mini-projects on, 11.29
MLBD and, 13.18
noncoherent demodulation and,

11.9–11.12
pre-emphasis and, 11.17–11.19
signal design and, 13.26
single bit demodulation and, 13.45
square quadrature amplitude and,

15.10
union bound and, 14.15, 14.25, 14.26
unmodulated signals and, 11.1–11.3

sinc function, 2.2
single bit demodulation structures,

13.1–13.3
See also under homework problems
design problem and, 13.6
error probability and, 13.7–13.14
example solutions for, 13.50–13.55
fidelity and, 13.14–13.18
filter design and, 13.18–13.25
filter output and, 13.9–13.11
frequency shift keying and, 13.30–13.36
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single bit demodulation (Cont.):
mini-projects on, 13.55–13.57
phase shift keying and, 13.36–13.39
signal design and, 13.25–13.28
spectral characteristics and,

13.28–13.30
statistical hypothesis testing and,

13.5–13.6
uniform a priori probability and,

13.11–13.14, 13.16–13.18
sinusoidal angle modulation, 7.25–7.26
sinusoidal message signal, 7.7–7.14,

7.28–7.29, 7.30–7.31, 7.34
spectral density

of bandpass noise, 10.1, 10.3,
10.12–10.15

homework problems on, 10.19–10.20,
10.21–10.22, 10.23, 10.25, 10.29

bandpass signals and, 4.13
bandwidth and, 2.16, 12.8–12.9
of complex envelope, 7.8, 10.14
fidelity and, 12.5
Fourier transform and, 2.11–2.12,

9.16
message signal characterization and,

5.1
multiple bit transmission and,

14.19–14.20, 14.25, 14.28, 14.30,
14.33, 14.36

notation for, B.1
OMWM and, 17.12
signal analyzers and, 2.13–2.14
of random process, 9.16, 9.17, 9.18

deterministic signals and, 9.19
homework problems, 9.30–9.34,

9.35–9.37, 9.41
linear systems and, 9.24, 2.25, 2.27
thermal noise and, 9.19, 9.20, 2.21

signal to noise ratio and, 11.2, 11.7,
11.9, 11.13, 11.15, 11.25

single bit demodulation and, 13.27,
13.28–13.30

homework problems on, 13.40,
13.41, 13.43, 13.45,
13.46–13.48

spectral efficiency
of angle modulation, 7.3, 7.24
AWGN and, 12.9

bandwidth and, 5.10, 12.6, 12.9–12.10
bit error probability and, 13.39
containment and, 16.1–16.2
digital design and, 13.6
example solutions for, 16.22–16.23
filter design and, 6.17
FM and, 11.5, 11.17
of frequency shift keying, 13.34, 13.36,

14.20, 14.21, 14.40
function of, 5.9
linear stream modulations and,

16.7–16.11
mini-projects on, 16.23–16.28
multiple bit transmission and, 14.30
multiplexing and, 8.10, 8.13
optimal demodulator complexity and,

15.44, 15.46, 15.52
of orthogonal modulations, 17.1

OFDM, 16.5–16.7
OMWM, 17.3–17.4, 17.7–17.8

phase modulation and, 11.14
of phase shift keying, 14.25
quadrature modulations and, 6.16,

6.27
squared cosine pulse, 16.3–16.5
square quadrature amplitude and,

15.10
SSB-AM and, 11.19
text overview and, 1.8, 1.10, 5.11
VSB-AM and, 6.24

spectral mask, 16.3
spectrum analyzer, 1.7, 1.8, 2.13–2.14,

6.33, 7.27
square cosine function, 16.8–16.9
squared cosine pulse, 16.3–16.5, 16.19
statistical averages, 3.9–3.10, 3.16,

9.4–9.5
statistical hypothesis testing, 13.3–13.6
statistics formulas, A.2
stochastic processes. See random

processes
stream modulation

mini-projects on, 16.24–16.26
optimal demodulator complexity and,

15.26–15.30, 15.36, 15.39–15.40,
15.41

orthogonal, 16.15–16.18, 16.27–16.28
OMWM, 17.9–17.15, 17.17–17.21
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spectral efficiency and, 16.21–16.22
spectral shaping of, 16.7–16.11

systems engineering, 1.2–1.3. See also
specific subject matter

Taylor series, 7.18
telegraph, 1.1, 1.4, 8.17–8.18
telephone

AWGN and, 12.14
bandpass signals and, 4.2
DTMF and, 12.11–12.12, 14.32–14.33
history of communications and, 1.1
multiplexing and, 8.17, 8.18
OCDM and, 15.23
OFDM and, 15.16
OMWM and, 17.9
spectral mask and, 16.2

television
analog communication and, 5.1, 5.4,

8.9
bandwidth efficiency of, 5.11
color signals and, 4.19
error vector magnitude and, 16.13
history of communications and, 1.1
multiplexing and, 8.17
noncoherent demodulation and, 6.27
quadrature modulation and, 6.16,

6.19
spectral containment and, 16.1–16.2

termination, 17.3
theory. See communication theory
thermal noise, 9.1, 9.19–9.21. See also

random processes
time signals, 2.6
total probability theorem, 3.4, 3.15
transatlantic communication, 1.2
transcendental functions, A.1–A.2
translation and dilation theorem,

2.11
transmission, analog, 5.5–5.8
transmission efficiency, 5.9–5.10, 6.11,

11.7, 11.11, 11.14, 11.17
transmitted reference based

demodulation, 6.23–6.27
trapezoidal rule, 2.27
trellis coded modulation (TCM), 17.4,

17.23–17.26, 17.32
trigonometric formulas, A.1

undersea cables, 1.2
Ungerboeck, Gottfried, 17.5
uniform a priori probability, 13.11–13.14,

13.16–13.18
union bound, 14.10

Euclidian distance and, 14.12–14.14
example solutions and, 15.49
homework problems, 14.28–14.29,

14.32, 14.33, 14.35, 14.36, 14.40
linear modulation and, 15.8,

15.32–15.33
for MFSK, 14.19, 14.21
for MPSK, 14.23–14.24, 14.25, 14.26
OMWM and, 17.23, 17.33
quadrature amplitude modulation and,

15.31
signal to noise ratio and, 14.15–14.16
word error probability and,

14.10–14.12, 14.37

Varaldi, J., 17.5, 17.30, 17.33
variable phase shift keying (VPSK),

14.30
vector diagram, 4.7–4.9

analog fidelity and, 11.10
of angle modulation and, 7.35
of DSB-AM, 6.7
error vector magnitude and, 16.13
of frequency shift keying, 13.31
homework problems on, 7.28–7.29,

7.31, 7.34–7.35, 17.36
of LC-AM, 6.14–6.15
of OFDM, 15.17
of orthogonal stream modulations,

16.15–16.16, 16.17
of phase shift keying, 13.36
of SSB-AM, 6.23–6.24
phase modulation and, 7.21
text overview and, 1.8

vector signal analyzer, 1.7, 1.8, 4.8, 16.10,
16.14

vestigial frequency, 6.18
vestigial sideband amplitude modulation

(VSB-AM), 6.27
angle modulation and, 7.24
complex envelope of, 6.17
complexity and, 11.19
filter design of, 6.17–6.19
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vestigial sideband amplitude (Cont.):
function of, 6.16–6.17
homework problems on, 6.32–6.33,

6.35,13.42
modulator for, 6.22–6.23

Viterbi, Andrew, 1.6, 17.8
voiceband modem, 12.10
voltage controlled oscillator (VCO), 7.6,

7.30–7.31, 8.1, 8.4

Watts, 2.4
weak law of large numbers (WLLN),

9.4–9.5
Wiener-Khinchin theorem, 9.17–9.18
WiPhy, 1.5
wireless communication

analog modulation and, 1.9
convolution codes and, 17.23, 17.39
energy efficiency and, 12.8
history of communication and, 1.1, 6.4
homework problems, 14.30,

14.35–14.36, 15.36, 15.41
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